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Abstract. Segment routing is an emerging network technology that ex-
ploits the existence of several paths between a source and a destination
to spread the traffic in a simple and elegant way. The major commercial
network vendors already support segment routing, and several Internet
actors are ready to use segment routing in their network. Unfortunately,
by changing the way paths are computed, segment routing poses new op-
timization problems which cannot be addressed with previous research
contributions. In this paper, we propose a new hybrid constraint pro-
gramming framework to solve traffic engineering problems in segment
routing. We introduce a new representation of path variables which can
be seen as a lightweight relaxation of usual representations. We show
how to define and implement fast propagators on these new variables
while reducing the memory impact of classical traffic engineering mod-
els. The efficiency of our approach is confirmed by experiments on real
and artificial networks of big Internet actors.

Keywords: traffic engineering, segment routing, constraint program-
ming, large neighborhood search.

1 Introduction

During the last decades, the Internet has quickly evolved from a small network
mainly used to exchange emails to a large scale critical infrastructure responsi-
ble of significant services including social networks, video streaming, and cloud
computing. Simultaneously, Internet Service Providers have faced increasing re-
quirements in terms of quality of service to provide to their end-users, e.g., low
delays and high bandwidth. For this reason, controlling the paths followed by
traffic has become an increasingly critical challenge for network operators [22]
– especially those managing large networks. Traffic Engineering – a field at the
intersection of networking, mathematics, and operational research – aims at op-
timizing network traffic distribution. Among its main objectives, avoiding link
overload is one of the most important as it leads to drop of network reliability,
e.g., loss of packets and increasing delays [1]. New traffic engineering objectives
recently emerged [29]. For instance, a network operator may want specific de-
mands to get through different sequences of network services, e.g., suspect traffic
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through a battery of firewalls and high-priority traffic via load-balancer and on
low-delay paths [13].

Segment Routing (SR) [12] has been recently proposed to cope with those
challenges. It is an emerging network architecture that provides enhanced packet
forwarding capabilities while keeping a low configuration impact on networks.
Segment Routing is both an evolution of MPLS (MultiProtocol Label Switch-
ing) [23] and of IPv6 [31]. Many actors of the network industry support segment
routing and several internet service providers will implement segment routing to
manage their networks [12,13,14,28]. All-in-one, segment routing seems to be a
promising technology to solve traffic engineering problems.

The basic idea of Segment Routing is to prepend packets with a stack of
labels, called segments, contained in a segment routing header. A segment rep-
resents an instruction. In this work, we focus on node segments that can be used
to define paths in a weighted graph that represents the network topology. A
node segment contains the unique label of the next router to reach. When such
a router is reached, the current node segment is popped and the packet is sent
to the router referenced by the next segment and so on. Note that segment rout-
ing exploits all the equal cost shortest-paths to reach a given destination. Such
equal cost shortest-paths – called Equal-Cost Multi-Paths (ECMP) paths – are
extremely frequent in network architectures and it is not rare to see as much as
128 different shortest-paths between a source and a destination within a single
network [13]. Fig. 1 illustrates the use of two node segments to define a segment
routing path from router s to router t. Note that the use of segments provides
extreme flexibility in the path selection for different demands.
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Fig. 1. A segment routing header with two segments prepended to a packet. First, the
packet is sent to router d using the ECMP path from s to d (assuming unary link
costs). Then, the packet is sent to the next label b following the ECMP path from d to
b. Finally, all the segments have been processed and the original packet is sent to its
destination t using the ECMP path from b to t.

Unfortunately, optimization approaches proposed in the past years do not
consider the enhanced forwarding capabilities of segment routing [12]. Indeed,
they all incur two major limitations. First, they typically focus on the basic
problem of avoiding network congestion while not considering specific additional
requirements [13,29]. Second, all past work assumes network technologies differ-
ent from segment routing. For example, one of the most successful approaches
also used in commercial traffic engineering tools is a tabu search algorithm [18]
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proposed by Fortz and Thorup in [15]. However, this method is based on the as-
sumption that the network paths are computed as shortest paths in the network
topology, hence it simply cannot be used to optimize segment routing networks.
Similar considerations also apply to optimization frameworks used for more flex-
ible protocols, like RSVP-TE [11,20].

In this work, we focus on the traffic placement problem using segment rout-
ing. Precisely, this problem consists in finding an SR-path for each demand such
that the usage of each link is minimized while respecting a set of side constraints
on the demands and the network (§2). We target large networks, like those of
Internet Service Providers, hence both performance and scalability of the opti-
mization techniques are crucial requirements, in addition to good quality of the
solution. We note that classical constraint programming encoding of the prob-
lems generally lead to expensive memory consumption that cannot be sustained
for large networks (several hundreds of nodes) (§3.1). We thus propose a data
structure to encode the domain of our demands that is dedicated to this problem
(§3.2 and §3.3). This encoding has the advantage of reducing the memory con-
sumption of classical constraint programming from O(n4) to O(n3). We describe
specific and light propagators for constraints defined on top of this new represen-
tation (§4). Our results are finally evaluated on synthetic and real topologies (§5
and §6). They highlight that constraint programming and large neighborhood
search is a winning combination for segment routing traffic engineering.

2 The General Segment Routing Problem

Let us introduce some notations and definitions. A network is a strongly con-
nected directed graph that consists of a set of nodes N (i.e. the routers) and
a set of edges E (i.e. the links). An edge e ∈ E can be represented as the pair
(u, v) where u ∈ N is the source of the edge and v ∈ N is its destination. The
capacity of an edge is denoted capa(e) ∈ N. For every demand d in the set D,
we have an origin src(d) ∈ N, a destination dest(d) ∈ N, and a bandwidth
requirement bw(d) ∈ N. We now introduce the notions of forwarding graph and
segment routing path.

Definition 1 (Forwarding Graph). A forwarding graph describes a flow be-
tween a pair of nodes in the network. Formally, a forwarding graph FG(s, t) is a
non-empty directed acyclic graph rooted in s ∈ N that converges towards t ∈ N
and such that s 6= t.

Definition 2 (Flow Function). A forwarding graph FG(s, t) is associated
with a flow function flow(s,t)(e, b) → N that returns the amount of the band-
width b ∈ N received at node s that is forwarded to node t through edge e ∈ E
by the forwarding graph. Particularly, flow functions respect the equal spreading
mechanism of ECMP paths. That is, each node of the forwarding graph FG(s, t)
splits its incoming traffic equally on all its outgoing edge contained in FG(s, t).
Flow functions thus respect the flow conservation constraints.

Fig. 2 illustrates the flow function of some ECMP paths.



4 Renaud Hartert, Pierre Schaus, Stefano Vissicchio, and Olivier Bonaventure

s d tc

a b

s d tc

a b

s d tc

a b

ECMP from s to a ECMP from s to d ECMP from s to t

24 2

2

4 4 64 4

448

Fig. 2. Three different Equal-Cost Multi-Paths used to transfer 8 units of bandwidth
on a network with unary link costs. Each router splits its incoming traffic equally on
its outgoing edges. In this context, the value of flow(s,a)((a, d), 8) is 0, the value of
flow(s,d)((a, d), 8) is 4, and the value of flow(s,t)((a, d), 8) is 2.

Definition 3 (Segment Routing Path). A Segment Routing path (SR-path)
from s ∈ N to t ∈ N is a non-empty sequence of forwarding graphs

FG(s, v1), FG(v1, v2), . . . , FG(vi, vi+1), . . . , FG(vk, vk−1), FG(vk, t)

denoted (s, v1, . . . , vk, t) and such that the destination of a forwarding graph is the
the source of its successor in the sequence. Also, the source of the first forwarding
graph and the destination of the last forwarding graph respectively correspond to
the source and the destination of the SR-path.

Segment routing paths are illustrated in Fig. 3.
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Fig. 3. Three different SR-paths based on the forwarding graphs of Fig. 2. An SR-path
is represented by the sequence of nodes (top) corresponding to the extremities of its
forwarding graphs (bottom).

We can now formalize the problem we want to solve. Let FG be a set of
forwarding graphs on a network such that there is at most one forwarding graph
for each pair of nodes (u, v) ∈ N ×N with u 6= v. Let SR(d) be the SR-path
of demand d ∈ D using the forwarding graph in FG. The General Segment
Routing Problem (GSRP) consists in finding a valid SR-path for each demand
d such that the capacity of each edge is not exceeded

∀e ∈ E :
∑
d∈D

∑
FG(i,j)∈SR(d)

flow(i,j)(e, bw(d)) ≤ capa(e) (1)

and such that a set of constraints on the SR-paths and the network is respected.
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Proposition 1. The general segment routing problem is NP-Hard.

Proof. The Partition problem [6] is an NP-complete problem that consists of n
numbers c1, . . . , cn ∈ N. The question is whether there is a set A ⊆ {1, . . . , n}
such that ∑

i∈A
ci =

∑
j∈A

cj

where A is the set of elements not contained in A. This problem can easily be
reduced to the instance of the GSRP depicted in Fig. 4 with all edge capacities
fixed to

∑n
i=1 ci/2. First, consider n demands d1, . . . , dn from node s to node t

such that bw(di) = ci. Then, consider that forwarding graphs are defined such
that there are only two possible SR-paths from node s to node t (see Fig. 4).
Finding a valid SR-path for each demand amounts to find a solution to the
Partition problem, i.e., demands having (s,A, t) as SR-path are part of the set
A while the remaining demands are part of the set A. ut

s ts t

AA

Fig. 4. The NP-complete Partition problem can be encoded as an instance of the
GSRP on this network. Forwarding graphs are defined such that there are only two
possible SR-paths from node s to node t.

Practical considerations. Due to hardware limitations, segment routing headers
usually contain no more than k ∈ [4, 16] segments which limits the number of
forwarding graphs to be contained in an SR-path to k. Furthermore, an SR-path
should not include a loop, i.e., packets should never pass twice on the same link
in the same direction.

3 Segment Routing Path Variables

This section is dedicated to the ad-hoc data structure we use to model the
decision variables of the GSRP. Specialized domain representations are not new
in constraint programming [34] and several data structures have already been
proposed to represent abstractions such as intervals, sets, and graphs [8,10,16,17].

3.1 Shortcomings of Classical Path Representations

Observe that an SR-path from node s to node t can be seen as a simple path
from s to t in a complete graph on N where each link (u, v) corresponds to the
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forwarding graph FG(u, v). With this consideration in mind, let us motivate the
need of an alternative representation by reviewing classical ways to model path
variables, i.e., path-based, link-based, and node-based representations [39].

In path-based representations, a single variable is associated to each path. The
domain of this variable thus contains all the possible paths to be assigned
to the variable. This representation is usual in column generation frame-
works [2]. In the context of the GSRP, complete path-based representations
have an impracticable memory cost of Θ(|D||N|k) where k is the maximal
length of the SR-paths.

Link-based representations are surely the most common way to model path
variables [25,42]. The idea is to associate a boolean variable x(d, e) to each
demand d ∈ D and edge e ∈ E. The boolean variable is set to true if edge e is
part of the path, false otherwise. Hence, modeling SR-paths with link-based
representations requires Θ(|D||N|2) boolean variables.

Basically, a node-based representation models a path as a sequence of visited
nodes [33]. This could be easily modeled using a discrete variable for each
node that represents the successor of this node. The memory impact of such
representation is Θ(|D||N|2).

As mentioned above, memory and computational costs are of practical im-
portance as we want to solve the GSRP on networks containing several hundreds
of nodes with tens of thousands of demands. In this context, even link-based and
node-based representations suffer from important shortcomings in both aspects.

3.2 Segment Routing Path Variables

Given the impossibility of using classic representations, we propose a new type
of structured domain which we call SR-path variable. An SR-path variable repre-
sents a sequence of visited nodes1 from the source of the path to its destination.
The domain representation of this variable contains (see Fig. 5):

1. A prefix from the source to the destination that represents the sequence of
already visited nodes ;

2. The set of possible nodes, called candidates, to append to the prefix of already
visited nodes.

Basically, the domain of an SR-path variable is the set of all the possible exten-
sions of the already visited nodes followed directly by a node contained in the
set of candidates and finishing at its destination node. An SR-path variable can
thus be seen as a relaxation of classic node-representations. An SR-path variable
is assigned when the last visited node is the path destination. It is considered as
invalid if it is unassigned and if its set of candidates is empty.

The particularity of SR-path variables is that the filtering of the domain is
limited to the direct successor of the last visited node, i.e., the set of candidates

1 Recall that an SR-path is a sequence of forwarding graphs denoted by a sequence of
nodes (see Definition 3).
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(see Fig. 5). Hence, no assumption can be made on the part of the sequence
that follows the prefix of already visited nodes and the set of candidates. As a
side effect, visiting a new node c automatically generates a new set of candidates
as assumptions on the successor of c were impossible until now. It is then the
responsibility of constraints to reduce this new set of candidates.

s
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FG (d, b)

FG (d, a)a
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Fig. 5. A partial SR-path (left) and its corresponding SR-path variable (right). The
SR-path variable maintains the partial sequence of visited nodes from the source s
to the destination t and a set of candidates. Candidates represent the possible direct
successors of the last visited node.

An SR-path variable S supports the following operations:

– visited(S): returns the sequence of visited nodes.
– candidates(S): returns the set of candidates.
– visit(S, c): appends c to the sequence of visited nodes.
– remove(S, c): removes c from the current set of candidates.
– position(S, c): returns the position of c in the sequence of visited nodes.
– isAssigned(S): returns true iff the path has reached its destination.
– length(S): returns an integer variable representing the length of the path.
– src(S), dest(S), last(S): returns the source node, the destination node,

and the last visited node respectively.

3.3 Implementation

We propose to use array-based sparse-sets [5] to implement the internal struc-
ture of SR-path variables. Our data structure is similar to the one proposed
to implement set variables in [8]. The sparse-set-based data structure relies on
two arrays of |N| elements, nodes and map, and two integers V and R. The V

first nodes in nodes correspond to the sequence of visited nodes. The nodes at
positions [V, . . . , R[ in nodes form the set of candidates. The map array maps
each node to its position in nodes. Fig. 6 illustrates this data structure and its
corresponding partial SR-path.

The sparse-set-based implementation of SR-path variables offers several ad-
vantages. First, it is linear in the number of nodes since it only relies on two
arrays and two integers. Also, it implicitly enforces the AllDifferent constraint
on the sequence of visited nodes. Finally, it allows optimal computational com-
plexity for all the operations presented in Table 1. Many of these operations
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Fig. 6. An incremental sequence variable implemented in a sparse set. The sequence
of visited nodes is s, d the set of candidates is {a, b, c}. Node t is not a valid candidate.

can be implemented trivially by comparing node positions to the value of V

and R. However, the visit and remove operations require more sophisticated
manipulations of the data structure.

Iterate on the sequence of visited nodes Θ(|visited|)
Iterate on the set of candidates Θ(|candidates|)
Iterate on the set of removed candidates Θ(|removed|)
Returns the last visited node in the sequence O(1)

Test if a node has been visited, removed, or is still a candidate O(1)

Returns the position of a visited node in the sequence O(1)

Remove a candidate O(1)

Visit a candidate O(1)

Table 1. A sparse-set-based implementation offers optimal time-complexities for sev-
eral operations.

Visit a new node. Each time a node is visited, it swaps its position in nodes

with the node at position V. Then, the value of V is incremented to append
the visited node to the sequence of visited nodes. Finally, the value of R is set
to |N| to restore the set of candidates to all the non-visited nodes. The visit

operation is illustrated in Fig. 7. Observe that the sequence of visited nodes
keeps its chronological order.

Remove a candidate. The remove operation is performed in a similar way as the
visit operation. First, the removed node swaps its positions in nodes with the
node at position R. Then, the value of R is decremented to exclude the removed
node from the set of candidates. Fig. 8 illustrates this operation.

Backtracking is achieved in O(1). Indeed, we only need to trail the value
of V to restore the previous sequence of visited nodes. Unfortunately, this ef-
ficient backtracking mechanism cannot restore the previous set of candidates.
Nevertheless, this problem could be addressed by one of the following ways:

– The set of candidates could be recomputed on backtrack ;
– Changes in the set of candidates could be trailed during search ;
– Search could be restricted to visit all valid candidates with n-ary branching.
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Fig. 7. State of the internal structure before (left) and after (right) visiting node b.
First, node b exchanges its position with the node at position V in nodes, i.e., c. Then,
V is incremented and R is set to |N|.
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Fig. 8. State of the internal structure before (left) and after (right) removing node c.
First, node c exchanges its position with the node at position R in nodes, i.e., b. Then,
R is decremented.

We chose to apply the third solution as visiting a new node automatically restores
the set of candidates to all the non-visited nodes (by updating the value of R
to |N|). This search mechanism thus allows us to keep backtracking in constant
time since previous sets of candidates do not need to be recovered.

4 Constraints on SR-Path Variables

We model the GSRP by associating an SR-path variable to each demand in D.
These variables are the decisions variables of the problem. Also, each link of the
network e ∈ E is associated with an integer variable load(e) that represents
the total load of this link, i.e., the total amount of traffic routed through e. We
now present some constraints developed on top of the SR-path variables. These
constraints are designed to meet requirements of network operators. Constraints
on SR-path variables are awaken if one of both following events occurs in a
variable of their scope:

– visitEvent(S, a, b) : tells the constraints that node b has been visited just
after node a in the SR-path variable S ;

– removeEvent(S, a, b) : tells the constraints that node b is not a valid candi-
date to be visited after node a in the SR-path variable S.
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We implemented a propagation algorithm specialized for these events in an AC5-
like framework [41].

4.1 The Channeling constraint

The role of the Channeling constraint is to ensure consistency between an SR-
path variable S and the load of each link in the network. The Channeling

constraint maintains the following property:

∀c ∈ candidates(S),∀e ∈ FG(last(S), c) :

load(e) + flow(last(S),c)(e, bw(d)) ≤ capa(e)
(2)

The filtering of the Channeling constraint is enforced using two filtering pro-
cedures. The first filtering procedure is triggered each time a new candidate is
visited by an SR-path variable to adjust the load variable of all the links tra-
versed by the visited forwarding graph. Then, the second filtering procedure is
called to reduce the set of candidates by removing forwarding graphs which can-
not accommodate demand d due to the insufficient remaining bandwidth of their
links. This second filtering procedure is also called each time the load variable
of a link is updated.

The Channeling constraint relies intensively on forwarding graphs and flow
functions. In our implementation, we chose to precompute these flow functions
for fast propagation of the Channeling constraint. Such data structures may
have an important impact of O(|N|2|E|) in memory. Fortunately, this cost can
be reduced to O(|N||E|) by exploiting the shortest-paths DAG2 returned by
Dijkstra’s algorithm.3 Indeed, we can test the presence of an edge (u, v) in a
shortest-path from s to t using the transitive property of shortest-paths as fol-
lows:

dist(s, u) + cost(u, v) + dist(v, t) = dist(s, t). (3)

This property allows one to use shortest-paths DAGs to recompute flow functions
and forwarding graphs in O(|E|) when required.

4.2 The Length constraint

The Length constraint limits the number of forwarding graphs contained in an
SR-path variable S:

|visited(S)| = length(S). (4)

This constraint aims to respect real network hardware limitations in terms of
maximum number of segments to be appended to packets [12]. We designed a
simple filtering procedure for the Length constraint by comparing the number

2 Shortest-paths DAGs can be easily computed by maintaining several shortest-paths
to a given node in Dijkstra’s algorithm.

3 Recall that we make the assumption that forwarding graphs correspond to ECMP
paths.
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of visited nodes to the bounds of the length variable. Let min(length(S)) and
max(length(S)) respectively be the lower bound and the upper bound of the
length variable of S. Changes on the bounds of this variable trigger both following
filtering procedures :

– If |visited(S)| < min(length(S))− 1, we know that the destination of the
SR-path is not a valid candidate as visiting it next will result in a path that
is smaller than the lower bound of its length variable ;

– If |visited(S)| = max(length(S))−1, the destination of the SR-path must
be visited next to respect the upper bound of its length variable.

The Length constraint is also awakened when a new node is visited. In this
case, the filtering procedure first checks if the visited node is the destination
of the path. If it is the case, the length variable is assigned to |visited(S)|.
Otherwise, the lower bound of the length variable is updated to be strictly greater
than |visited(S)| as the path destination still has to be visited.

4.3 The ServiceChaining constraint

Many operators have lately shown interest for service chaining, i.e., the ability
to force a demand to pass through a sequence of services [29]. The aim of the
ServiceChaining constraint is to force an SR-path variable S to traverse a par-
ticular sequence of nodes described by a sequence of services. Each service is tra-
versed by visiting one node in a given set, i.e., the set of nodes providing the corre-
sponding service in the network. Let services = (service1, . . . , servicek) denote
the sequences of services to be traversed. The filtering rule of the ServiceChaining
constraint enforces the sequence of visited nodes to contain a non-necessarily
contiguous subsequence of services:

visited(S) = . . . , s1, . . . , s2, . . . , sk, . . .

∀i ∈ {1, . . . , k} : si ∈ servicei
(5)

The filtering of the ServiceChaining constraint uses similar procedures as those
used by the Length constraint.

4.4 The DAG constraint

The DAG constraint prevents cycles in the network. A propagator for this con-
straint has already been proposed in [10]. The idea behind this propagator is to
forbid the addition of any link that will result in a cycle in the transitive closure
of the set of edges visited by an SR-path variables. In the context of the GSRP,
the filtering of the DAG constraint can be strengthened by taking in consideration
that an SR-path is a sequence of forwarding graphs which are acyclic by defini-
tion. First, we know that the source (resp. destination) of an SR-path variable
S has no incoming (resp. outgoing) traffic:

@FG(u, v) ∈ S : src(S) ∈ nodes(FG(u, v)) (6)
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@FG(u, v) ∈ S : dest(S) ∈ nodes(FG(u, v)) (7)

Additional filtering is achieved using the definition of SR-paths and the following
proposition.

Proposition 2. Let c be a node traversed by two forwarding graphs such that c
is not one of the extremities of those forwarding graphs. Then, there is no acyclic
SR-path that visits both forwarding graph.

Proof. Let c be a node traversed by FG(i, j) and FG(u, v) such that c 6∈
{i, j, u, v} and that FG(i, j) and FG(u, v) are part of the same SR-path. As
SR-paths are defined as a sequence of forwarding graphs, we know that FG(i, j)
is traversed before FG(u, v) or that FG(u, v) is traversed before FG(i, j). Let us
consider that FG(i, j) is traversed before FG(u, v). In this case, we know that
there is a path from node j to node u. According to the definition of forwarding
graphs, we also know that there is a path from c to j and from u to c. Therefore,
there is a path from c to c which is a cycle. The remaining part of the proof is
done symmetrically. ut
The DAG constraint thus enforce the following redundant property:

∀{FG(u, v), FG(i, j)} ⊆ S :

nodes(FG(u, v)) ∩ nodes(FG(i, j)) ⊆ {u, v}.
(8)

The filtering procedures of the DAG constraint are triggered each time an SR-path
variable visits a new node. Note that the set of nodes traversed by the visited
forwarding graph of an SR-path variable – necessary to implement these filtering
procedures – can be maintained incrementally with a memory cost of O(|D||N|)
or it can be recomputed when required with a time complexity of O(|N|).

4.5 The MaxCost constraint

Often, service level agreements imply that some network demands must be
routed on paths with specifics characteristics, e.g., low delays. Such requirements
can easily be enforced using the MaxCost constraint that ensures that the total
cost of an SR-path does not exceed a maximum cost C. To achieve this, we asso-
ciate a positive cost to each forwarding graph FG(u, v). Let cost(FG(u, v)) ∈ N
denote this cost and minCost(s, t) denote the minimum cost of reaching node t
from node s with an SR-path of unlimited length. Such minimum costs could
be easily precomputed using shortest-paths algorithms and only require a space
complexity of Θ(|N|2) to be stored. The filtering rule of the MaxCost constraint
(based on the transitive property of shortest-paths) enforces:

∀c ∈ candidates(S) :

cost(visited(S)) + cost(last(S), c) + minCost(c, dest(S)) ≤ C
(9)

where cost(visited(S)) is the total cost of already visited forwarding graphs.
Substantial additional filtering could be added by specializing the minCost

function to also consider the length variable of an SR-path variable. This would
require to pre-compute the all pair shortest-distance for all the k possible lengths
of the path with, for instance, labeling algorithms [3,9].
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5 Hybrid Optimization

Finding a first feasible solution of the GSRP can be a difficult task. In this
context, it is often more efficient to relax the capacity constraint of each link
and to minimize the load of the maximum loaded links until respecting the
original capacity constraints.

Frameworks such as Large Neighborhood Search (LNS) [38] have been shown
to be very efficient to optimize large scale industrial problems in many do-
mains [4,21,26,27,32,37]. The idea behind LNS is to iteratively improve a best-
so-far solution by relaxing some part of this solution. In the context of GSRP,
this could be easily achieved by removing demands that seem inefficiently placed
and to replace them in the network to improve the objective function. The se-
lected set of removed demands defines the neighborhood to be explored by a
branch-and-bound constraint programming search.

Instead of dealing with all the load variables with a unique aggregation func-
tion (e.g. the maximum load), we designed a specific hybrid optimization scheme
to make the optimization more aggressive. At each iteration, we force a randomly
chosen most loaded link to strictly decrease its load. The load of the remaining
links are allowed to be degraded under the following conditions:

– The load of the most loaded links cannot increase;
– The load of the remaining links are allowed to increase but must remain un-

der the maximum load, i.e., the set of the most loaded links cannot increase;
– The load of the non-saturated links must remain under their link capacity

to not increase the number of saturated links.

This optimization framework can be seen as particular instantiation of the
variable-objective large neighborhood search framework [36].

Neighborhoods to be explored by constraint programming are generated us-
ing the following procedure [38]:

1. Let Dmax be the set of demands routed through the most loaded links;
2. While fewer than k demands have been selected:

(a) Let A be the array of the not yet selected demands in Dmax sorted by
non-increasing bandwidth;

(b) Generate a random number r ∈ [0, 1[;
(c) Select the brα|A|c demand in array A.

The parameter α ∈ [1,∞[ is used to control the diversification of the selection
procedure. If α = 1 all demands have the same chance to be selected. If α =∞
the k demands with the highest bandwidth are always selected. The sub-problem
generated by removing the selected demands is then explored by constraint pro-
gramming with a CSPF-like (Constrained Shortest Path First) heuristic [7]:

1. Select the unassigned demand with the largest bandwidth;
2. Try to extend the SR-path variable of this demand as follows:

(a) If the demand destination is a valid candidate, visit the destination to
assign the SR-path variable;
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(b) Otherwise, visit all the candidates sorted by non-decreasing order of their
impact on the load of the most loaded links.

3. If the SR-path variable has no valid candidate, backtrack and reconsider the
previous visit.

We call this heuristic an assign-first heuristic because it tends to assign SR-path
variables as soon as possible.

6 Experiments and Results

We performed many experiments on real and synthetic topologies and demands.
Real topologies are meant to assess the efficiency of our approach on real practical
situations. Conversely, synthetic topologies were used to measure the behavior
of our approach on complex networks. The data set is summarized in Table 2.
Eight of these topologies are large real-world ISP networks and from the publicly
available Rocket Fuel topologies [40]. Synthetic topologies were generated using
the Delaunay’s triangulation algorithm implemented in IGen [30]. Notice that
these synthetic topologies are highly connected from a networking point of view,
i.e., they have an average node degree of 5.72.

Whenever available – that is for topology RealF, RealG, and RealH – we
used the real sets of demands measured by operators. In the other cases, we
generated demands with similar characteristics as the ones in our real data sets
as described in [35]. Finally, we proportionally scaled up all the demands until
a maximum link usage of approximatively 120% was reached.4 This allowed us
to consider critical situations in our analysis.

We measured the efficiency of our approach by minimizing the maximum link
load on each network presented in Table 2. Our experiments were performed on
top of the open-source OscaR Solver [24] with a MacBook Pro configured with
2.6 GHz Intel CPU and 16GB of memory, using a 64-Bit HotSpotTM JVM 1.8.

Topology |N| |E| |D| Before Relaxation Max load

RealA 79 294 6160 120% 68% 72%

RealB 87 322 7527 142% 72% 82%

RealC 104 302 10695 130% 86% 86%

RealD 141 418 19740 140% 96% 96%

RealE 156 718 23682 121% 76% 78%

RealF 161 656 25486 117% 65% 74%

RealG 198 744 29301 162% 37% 74%

RealH 315 1944 96057 124% 76% 76%

SynthA 50 276 2449 103% 69% 71%

SynthB 100 572 9817 100% 59% 75%

SynthC 200 1044 37881 135% 53% 84%

Table 2. Topologies and results.

4 In a solution with all demands routed through their ECMP path.



Solving Segment Routing Problems with Hybrid CP 15

For each instance, we computed a linear programming lower bound on the
maximum load by solving the linear multi-commodity flow problem on the same
topology and demands with Gurobi 6.0 [19] (see column “Relaxation” of Table 2).
We also show the initial maximum load of the network if no segment is used to
redirect demands through the network (see column “Before” of Table 2). The
results provided by our optimization framework after 60 seconds of computations
are presented in the last column of Table 2. Note that the linear relaxation cannot
be reached in real networks because it assumes that flows can be arbitrarily split,
a function that does not exist in current routers. In practice, even if uneven
splitting became possible in hardware, it would be impossible from an operational
viewpoint to maintain different split ratio for each flow on each router.

As we see, our approach is able to find close to optimal solutions at the
exception of instance RealG. Moreover, the solutions found by our approach are
optimal for instances RealC, RealD, and RealH. This is due to the fact that
these instances contain links that must be traversed by many demands. Fig. 9
illustrates the changes in link loads to highlight such bottleneck links.

SynthB

75%

34%
15%

90%

258%

RealC

86%

20%

1%

90%

130%

RealH

76%

22%

0%

90%

124%

Fig. 9. Load of the 40 most loaded edges before (left) and after (right) optimization
on a synthetic topology and two real ones. The load of many links have to be reduced
to improve the maximum load on the artificial topologies while only a few have to be
considered on the real ones. Real topologies contain more bottleneck links.

7 Conclusion

This paper presented an hybrid framework to solve segment routing problems
with constraint programming and large neighborhood search. First, we intro-
duced and formalized this new problem encountered by network operators. Then,
we analyzed the shortcomings of classical constraint programming models to
solve this problem on large networks. We thus proposed a new domain structure
for path variable that we called SR-path variable. The particularity of this struc-
ture is that it sacrifices tight domain representation for low memory cost and
fast domain operations. We explained how to implement common requirements
of network operators in terms of constraint on this new variable. The efficiency
of our approach was confirmed on large real-world and synthetic topologies.
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