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Abstract. System designers need to have insight in the response times
of service systems to see if they meet performance requirements. We
present a high-level evaluation technique to obtain the distribution of
services completion times. It is based on a high-level domain-specific lan-
guage that hides the underlying technicalities from the system designer.
Under the hood, probabilistic real-time model checking technology is
used iteratively to obtain precise bounds and probabilities. This allows
reasoning about nondeterministic, probabilistic and real-time aspects in
a single evaluation. To reduce the state spaces for analysis, we use two
sampling methods (for measurements) that simplify the system model: (i)
applying an abstraction on time by increasing the length of a (discrete)
model time unit, and (ii) computing only absolute bounds by replacing
probabilistic choices with non-deterministic ones. We use an industrial
case on image processing of an interventional X-ray system to illustrate
our approach.

1 Introduction

Service-oriented systems are designed for interconnection with other systems and
are commonplace in the domains of business, engineering and operations [12].
Their complexity lies in their capability to handle many service requests in par-
allel, for multiple kinds of services. To that end, they are equipped with multiple
resources to process services requests, with variable execution times. Service-
oriented systems operate in a real-time manner. When used to perform safety-
critical tasks, they have to respect real-time requirements like bounded response
times. In this way, their safety is determined by their performance.

Performance prediction early in design is difficult [8], especially when the sys-
tem of concern does not exist yet. Simulation can provide an indication of average
response times, but simulation results tend to be too optimistic. Worst-case exe-
cution time analysis [16], on the other hand, leads to absolute bounds. While
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it can prove that hard real-time requirements are met, the computed bounds
are often pessimistic, leading to costly, over-dimensioned implementations. For
many applications, soft real-time guarantees are sufficient, i.e., it is acceptable if
deadlines are met with a certain (high) probability. In such a scenario, a designer
may want to know, e.g., the latency value for which, in the long run, 85 % of
the service requests complete. These questions can be answered by probabilis-
tic real-time model checking, in which probabilistic, nondeterministic and timed
aspects are combined in one model.

This paper presents an approach that allows computing response time dis-
tributions using iterative probabilistic model checking. First a model is specified
in a high-level domain specific language, iDSL [2], that abstracts from various
under-the-hood technicalities, making it usable for systems engineers. From this
model input for the Modest Toolset [7] is automatically generated in the
Modest modelling language [6], which can be used for both simulations and
model checking. By calling the model checking procedures iteratively, we are
able to efficiently compute response time distributions in an automated fashion,
which allows to better compare different designs. This is also the main differ-
ence to our previous work [2–4], where this performance evaluation trajectory
has first been proposed, however without the ability to compute response time
distributions precisely.

We illustrate our approach with a case study on interventional X-ray (iXR)
systems as built by our industrial partner Philips Healthcare. These systems
provide a continuous stream of X-ray images to a surgeon that operates on a
patient. Low latency is necessary for hand-eye coordination [10], i.e., the surgeon
must perceive the image stream to be real-time. Low response times of images are
thus of vital importance, but a few misses of response deadlines are acceptable.

Related work. The tagged customer approach [5] is a numerical method to com-
pute the response time distribution for open queuing networks, represented as
continuous-time Markov chains (CTMCs). It may be used as a fast but approxi-
mate measure besides simulation, especially when utilizations are low and service
times have high variances. The hierarchical performance evaluation tool (HIT,
[1]) supports the model-based evaluation of computing system performance. HIT
models are highly structured, based on functional hierarchies and modulariza-
tion, as with the Y-chart philosophy [11]. HIT models are analysed using various
techniques. However, the HIT model at hand determines which techniques can
be used, with simulation covering the greatest spectrum. It does not have spe-
cific support for response time distributions. Modular Performance Analysis with
Real-Time Calculus (MPA, [17]) is based on the Network Calculus and computes
hard lower and upper bounds using event streams. Hence, these approaches do
not deliver what we do.

Context. The measures that we compute and the type of systems our approach is
designed for make it fall right into the field of performance evaluation [9]. Typical
performance evaluation approaches build on fully stochastic formalisms, such as
continuous-time Markov chains or stochastic Petri nets. However, our examples
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require a mixture of deterministic timing with probabilistic effects and concur-
rency; we want also to be able to compute hard bounds; and we use abstraction
techniques for model simplification that introduce nondeterministic delays. Since
they capture exactly these aspects in a compositional fashion, we chose prob-
abilistic timed automata (PTA, [14]) as the semantic basis of our models. The
analysis of PTA is supported by a number of tools including Prism [13] and the
Modest Toolset [7]. We use the latter due to its high-level input language
and the ability to perform model checking using the included mcsta tool as well
as simulation using the modes simulator.

2 Problem Statement and Case Study

We describe service-oriented systems (Section 2.1) and their performance char-
acteristics (Section 2.2), and use the case study on iXR systems as an example.

2.1 Service-Oriented Systems

In service-oriented systems, the system receives a service request after which the
system replies with a service response that completes the request. The latency
is the elapsed time between service request and response. A service decomposes
into a number of atomic tasks that each require access to resources (e.g. a CPU,
I/O bus or GPU) for computation or data transfer. These tasks may have vari-
able execution times. A service system can make use of multiple instances of
one or more services at the same time, which gives rise to concurrency among
service instances. A scheduling policy resolves this concurrency by prescribing
an order in which tasks gain access to resources, e.g., first-in, first-out (FIFO).
A scenario describes when these service requests arrive; for example, “a service
system receives one service request every 100ms, forever”. Service systems can
have one or more configurations, each with their own properties.

Example: iXR Systems. provide a continuous stream of images to support
a surgeon that operates a patient, i.e., they provide an image processing (IP)
service. Service requests are incoming, unprocessed images that arrive with fixed
inter-arrival times. The iXR system responds with processed images. The latency
should be low enough to enable hand/eye-coordination [10]. The system com-
prises one resource, the CPU. The service decomposes into a pipeline of twelve
image processing steps, all performed on the CPU via a FIFO scheduling policy.
Service IP receives 10 images per second. We consider two configurations having
image resolutions of 5122 and 10242 pixels, respectively.

2.2 Performance Questions

We define performance questions of service-oriented systems to assess their per-
formance. There are black-box and white-box measures. Black-box measures are
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Fig. 1. The iDSL solution chain

observable from the outside of the system, and examples include the latency per
service. White-box measures, such as resource utilizations, require knowledge
about the inside of the system. We focus on service latencies because they are
the prime measure of interest in the case study on iXR systems, viz., latencies
should be low enough to enable hand/eye coordination. We show two categories
of performance questions that are concerned with service requests of a given
service in a given service system, operating in a given scenario, as follows:
Q1. What is the latency for which a given percentage of the service requests

completes?
Q2. Which percentage of the service requests has a latency below a given value?

Example: iXR systems have performance questions that are as follows:
Q1a. What is the latency for which 85% of the service requests completes?
Q2a. Which percentage of the service requests has a latency below 55ms?

3 A Formal Model for Service Systems

iDSL comprises a high-level language for modelling service systems, and a
toolset to evaluate their performance (see Figure 1 for its solution chain). Each
iDSL model leads to the generation of performance artefacts for many so-called
designs. iDSL has been developed using the Xtext and Xtend plug-ins of Eclipse
for Domain Specific Languages (DSLs). iDSL is thus an Eclipse plug-in with an
extensive Integrated development environment (IDE). In a pre-processing phase,
measurements can be imported into the model and syntactic sugar is resolved.
For each design, performance analysis is done via multiple mcsta (see Section 4)
and modes calls of the Modest Toolset [7] for model checking and simulation,
respectively. Visualizations are generated with Graphviz and GNUplot.

In Section 3.1, we provide the syntax of the iDSL language by showing its key
language constructs. We apply it to iXR systems in Section 3.2 and show three
sampling methods for measurements in Section 3.3. In Section 3.4, we define
utility and cost functions that answer performance questions using a query on the
computed results. In Section 3.5, we define the semantics of iDSL by describing
the transformation from iDSL to Modest.
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3.1 iDSL Language Syntax

We specify service systems formally using iDSL [2], following the six concepts as
illustrated in Figure 2

Fig. 2. The iDSL language’s concepts.

1. A process decomposes service
requests into atomic tasks. iDSL
provides the following process alge-
bra constructs: palt, a probabilistic
choice among alternatives; alt, a non-
deterministic choice between alterna-
tives; par for parallel activities; and
seq for sequential activities. iDSL also
offers a mutex, a mutual exclusion to
run processes uninterruptedly.
2. Resources are capable of perform-
ing one atomic task at a time, in a
certain amount of time. A mapping assigns atomic tasks to resources.
3. A service system consists of one or more services, each implemented using a
process, a set of resources and a mapping between processes and resources.
4. A scenario comprises a number of invoked service requests over time to observe
the performance behaviour of the system in specific circumstances.
5. Measures of interest define which performance measures are obtained.
6. A study evaluates a selection of systematically chosen systems and scenarios.

3.2 iDSL Model of iXR Systems

Let us now explain the iDSL
model of an iXR system:
1. Section process (right) con-
tains process “Image -processing”
that specifies how images are
processed, viz., via two high-level
operations “Noise reduction” and
“Refine”. They in turn decom-
pose in a sequential pipeline of
twelve image operations, each
with a load (an amount of
work), specified via an abstrac-
tion mechanism. These loads
are assumed to be independent.
Section 3.3 shows how these
abstract loads are implemented.
2. Section resource comprises resource “Image processing PC”, that has a CPU
with a rate of 1, i.e., it can process 1 unit of load per μs, the time unit of choice.
The resource is defined as follows.
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3. Section system comprises a service named “Image Processing Service”, which
connects process “Image Processing” to resource “Image Processing PC” by
defining a mapping, i.e., each of the twelve image operations is performed on
the CPU, and a FIFO scheduling policy is used to resolve concurrency.

4. Section scenario comprises scenario “Image Processing Run”, in which the
service is invoked 10 times per second, i.e., once every 100000 s, forever.

5. Below, section measure contains two measures: “ServiceResonseTimes”
retrieves average latencies of 100 service requests via simulations, using 3 runs.
Simulations provide quick insight into the general behaviour of a system, but
are less suitable for showing the extreme behaviour of a system.

Measure “CDF . . . ” yields a cumulative distribution function (CDF) with
latencies, obtained via probabilistic model checking. As usual, a CDF is a func-
tion that displays for each latency value l, the percentage of the service requests
that has a latency below l, e.g., cdf(60) = 0.5 means that half of all service
requests have a latency below 60 ms. This measure is obtained via model check-
ing and is thus much slower than simulation, but conveys different insights, e.g.,
absolute lower and upper bounds. It is explained in detail in Section 4.

6. Finally, section study allows for design instances to be defined that are each
evaluated using the defined measures. We model two iXR systems having image
resolutions 5122 and 10242 pixels, respectively.
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iDSL offers two approaches to handle uncertainty: probabilism and nondetermi-
nism. Probabilism specifies a range of weighted outcomes, e.g., an image opera-
tion completes with probability 0.6 in 45 s, and 0.4 in 46 s. Non-determinism
is similar but without probabilities, e.g., an image operation completes in either
45 s, 46 s, or between 45 s and 46 s. Nondeterminism can also occur when
a system processes multiple service requests, i.e., if a resource is potentially
accessed multiple times at the same time, the order of action is undefined.

3.3 Three Sampling Methods for Measurements

In Section 3.2 (process), twelve image operations are defined using abstract loads.
In our case, these loads are based on 300 latency measurements each, performed
on a real iXR system, to calibrate the model. We show three implementations
for “pre-processing”, each corresponding to a different way of sampling, viz.,
uniform, abstract time, and non-deterministic time sampling. The other image
operations are implemented similarly.

Uniform Sampling. Below, the abstract load “preproc” defines the variable
load of “Pre processing”, using uniform sampling. In uniform sampling, each
measurement has an equal probability to be sampled. The load is defined for
two image resolutions, viz., 5122 and 10242 pixels. The dspace operator selects
the right set of measurements, depending on the resolution of the design instance
at hand. Uniform from file refers to an external file and a position in that file
at which the correct measurements are stored.

iDSL transforms the implementations into basic process algebra constructs, via a
so-called model transformation. This leads to one palt-construct per resolution,
consisting of measurements. For resolution 5122, it is as follows:

E.g., the probability for 130 s is 8
300 , because 8 out of 300 measurements are

130 s, for 131 s it is 67
300 , because 67 out of 300 measurements are 131 s, etc.

Abstract Time Sampling. Next, the abstract load “preproc” defines the vari-
able load of “Pre processing” using abstract time sampling, as follows.
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In abstract time sampling, measurements are divided by a given constant number
and rounded to make the model simpler at the price of some precision. We
divide by 250 for resolution 5122, and 800 for 10242. The final results will be
multiplied by the same constants again. The result of the model transformation
for resolution 5122, is as follows.

Non-deterministic Time Sampling. Finally, “preproc” defines the variable
load of “Pre processing” using non-deterministic time sampling. It is as follows:

In non-deterministic time sampling, the time of an image operation is defined as
the smallest segment that contains all measurements, as follows.

Non-deterministic time sampling is typically used to obtain absolute latency
bounds. Semantically, the above means that any real value in segment [130 : 136]
is a valid sample, but that their individual probabilities are unknown.

3.4 Performance Queries in iDSL

In the following, we add performance queries to the iDSL model. They are speci-
fied as so-called utility and cost functions that specify a query on the performance
results, and return a real number. They rely on measures. In the case study, we
show two measures that are based on simulations and model checking, resp.

A function is either a cost function when lower values are preferred, e.g.,
the average latency of a service, or a utility function when higher values are
preferred, e.g., the percentage of service requests completed after some time.

The iDSL model comprises both the system model and a scenario in which it
operates. We analyze the response times to service requests of a given service S
of this system, the latencies. To this end, we introduce four model checking-based
functions and two simulation functions, based on Q1 and Q2 (see Section 2.2).
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First, we introduce two pairs of model checking functions.
1. Function Q1alb (Q1aub) returns the minimum (maximum) latency before
which P percent of the service requests of service S complete.
2. Function Q2alb (Q2aub) returns the minimum (maximum) percentage of ser-
vice requests of service S that has a latency below time T .
Second, we introduce two similar simulation based functions:
1. Function Q1asim returns the latency before which P percent of the service
requests of service S complete, based on R simulation runs of Rq requests each.
2. Function Q2asim returns the percentage of service requests of service S that
has a latency below time T , based on R simulation runs of Rq requests each.

Note that model checking-based functions have two variants, viz., a minimum
and maximum one; they return bounds. Simulation has two parameters: runs
and requests. The higher these values are, the more accurate the results will be.

Example: iXR Systems. We define two groups of performance queries for
iXR systems in iDSL, which are added to the Measure section of iDSL. Each
performance question is defined three times, viz., twice for model checking and
once for simulation. Simulations are based on 3 runs of 100 requests each.

Questions of type Q1 ask latencies before which a given percentage of service
requests completes. They are cost functions, since lower latencies are preferred:

Questions of type Q2 ask percentages of service requests that have latencies
below a given time. They are utility functions since higher values are preferred:

3.5 Translation to Modest

The semantics of the iDSL language is specified via a transformation from iDSL
models to Modest models. Modest is a high-level modelling language rooted in
process algebra with a formal semantics in terms of stochastic hybrid automata
(SHA) [6]. Several other popular formalisms such as PTA and discrete-time
Markov chains are special cases of SHA. The analysis of Modest models is
supported by the Modest Toolset [7], which in particular includes the tools
modes for simulation (or: statistical model checking) and mcsta for model check-
ing of Modest models conforming to the PTA subset of the language.
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Fig. 3. An interaction diagram.

iDSL is a high-level language specif-
ically tailored to service systems, yield-
ing, for the iXR case, a model that
is seven times smaller textually than
the autogenerated Modest code. Addi-
tionally, small architectural changes to
the iDSL model can affect the whole
Modest code, making a Modest-only
approach hard w.r.t. maintenance.

An iDSL model transforms into one or more Modest models, each containing
an overarching Modest process. This process decomposes in a number of parallel
sub-processes of class generator, process, mapping or resource. They interact in
the way as shown in Figure 3, viz., a generator triggers a process, which in turn,
via a mapping, obtains access to a resource and receives an acknowledgement.

iDSL processes transform into processes of class process in Modest. Process
algebra constructs in iDSL are thereby translated to their Modest counter-
parts. Processes also contain calls to mapping processes, for each atomic task.
iDSL resources become resource processes in Modest, containing a queue and a
counter for service time. Mappings lead to mapping processes that each connect
an atomic tasks to a resource. iDSL systems and services do not lead to Modest
code, but merely organize the iDSL model. In the iDSL scenario, service requests
lead to a Modest generator that sends a trigger to a process periodically and
forever. Measures lead to one or more Modest models, depending on the mea-
sure. In the next section, we show how multiple Modest models are generated
for model checking purposes. An iDSL study contains design instances that are
evaluated separately. Separate Modest models are generated for each design.

4 Computing Response Time Distributions

We present a new approach to compute latency response times, based on iterative
probabilistic model checking. It answers performance questions of iDSL models
(of Section 3.4) in five steps: (i) iDSL models are transformed into Modest
models that are used to retrieve service latencies (Sect. 4.1); (ii) latencies are
aggregated into one overarching latency per service (Sect. 4.2); (iii) mcsta is
applied iteratively to obtain probability bounds (Sect. 4.5); (iv) these bounds
are transformed into a set of possible CDFs (Sect. 4.4); and (v) performance
questions are answered using the set of possible CDFs (Sect. 4.5).

4.1 From iDSL Queries to Modest

We generate a range of Modest models to answer performance queries, for
each iDSL model i, each service s within that model, and both the minimum
and maximum probability (a flag f). The models have one parameter, t ∈ R≥0,
and return probability p: the probability that a service completes within time t.
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The Modest models are generated using the transformation in Section 3.5.
Also, a measure is added to the specific service the model measures, i.e., its
process is enclosed by stopwatches that record latencies of its service requests.
Finally, a property to retrieve the minimum or maximum probability (pmin or
pmax) that a service completes within time t is added. Hence, Modest models
are reused to obtain many probabilities, for many values of time t. For the sake of
simplicity, we specify an abstract function M that retrieves such a probability:

p = M(i, s, f, t),

where p is either the minimum or maximum probability (depending on flag f)
that service s in iDSL model i completes within time t.

M is implemented using the following three steps: (i) select the Modest
model of iDSL model i, service s and f ; (ii) run this model in mcsta with param-
eter time t; and (iii) return the result of mcsta as probability p.

4.2 Aggregating Latencies of Service Requests

Modest models have been generated that return the probability that a service
request completes within a given time. In iDSL, however, a service leads to
an infinite stream of service requests, each with their own latency. Ideally, the
average of these latencies is a measure for the performance of the whole service:

PΩ(t) = lim
k→∞

1
k

k∑

n=1

Pn(t), (1)

where PΩ(t) is the combined probability, n the service request number, t the
latency time, Pn(t) the probability that service request n finishes within time t.
However, this infinite sum is not computable. Hence, we show the following two
weighted averages of the latencies that can be used to approximate the measure.

First, the arithmetic mean considers the first N service requests and weighs
them equally, as follows:

PΩ(t) =
1
N

N∑

n=1

Pn(t), (2)

where N ∈ N
+ is the number of service requests considered, e.g., N = 100. It

is similar to (1) for large values of N . However, even for small values of N , it

(a) with a service request counter (b) without a counter

Fig. 4. Binary probabilistic choices induce the geometric distribution
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has two drawbacks: (i) it requires a counter to be added to the state in Modest
to keep track of the service request number; and (ii) latencies of the (N + 1)th

service request and later are neglected.
Second, the geometric distribution [15] weighs service requests exponentially

decreasing, as follows:

PΩ(t) =
∞∑

n=1

(1 − ρ)n−1 ρ Pn(t), (3)

where ρ ∈ (0 : 1) is the parameter of the geometric distribution.

It is, again, similar to (1) for ρ close to 0. Lower ρ-values lead to a more complex
model but more precise results, and vice versa. Since the geometric distribu-
tion considers all service requests and it is capable of finding absolute maximum
latencies. In Modest, it is implemented as a binary probabilistic choice every
time a service request completes (as depicted in Figure 4a): either the currently
measured latency is returned, with probability ρ, or the next service request is
evaluated, with probability 1−ρ. Moreover, the geometric distribution is memo-
ryless, i.e., the binary choice does not rely on state information. Consequently, it
is possible to omit the service request number from the model, leading to a single
reoccurring service request (as in Figure 4b). In the remainder of this paper, we
only consider the geometric distribution with ρ = 1

10 , empirically determined.

(a) The initial scan and resulting
bounds

(b) The set of possible CDFs

Fig. 5. Cumulative Distribution Functions (CDFs) based on function M

4.3 Iterative Model Checking for Probability Bounds

We provide an algorithm to compute function M, for a given iDSL model i,
service s in this model and a minimum/maximum bound flag f . M(i, s, f, t) is
iteratively applied for different values t, comprising three stages, viz., an initial
scan, a binary lower & upper bound search, and a brute force computation.
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Initial Scan. The initial scan gives an idea of the order of magnitude of the
time values. We compute M(i, s, pmin/max, t) for t = 1, 2, 4, 8, 16, . . . , 2m, 2m+1,
. . . , 2n, 2n+1 until M(i, s, pmin/max, 2n+1) = 1. The lower bound is
then located between 2m and 2m+1 with M(i, s, pmin/max, 2m) = 0 and
M(i, s, pmin/max, 2m+1) > 0, and the upper bound between 2n and 2n+1 with
M(i, s, pmin/max, 2n) < 1 and M(i, s, pmin/max, 2n+1) = 1. Note that m and n
are unique values.

Figure 5a depicts the initial scan graphically. It shows computations i1, i2,
. . . , i7, with i7 having a probability of 1. We observe that the lower bound is
located between i3 and i4, and the upper bound between i6 and i7.
Binary Lower & Upper Bound Search. Next, two binary searches are
performed to determine the exact lower and upper bound, using the ranges of
the initial scan. The binary searches are applied to [2m : 2m+1] and [2n : 2n+1]
for the lower and upper bound, respectively. They lead to lower and upper bound
lb and ub, respectively. By definition, M(i, s, pmin/max, t) = 0, for t < lb, and
M(i, s, pmin/max, t) = 1, for t > ub. Thus, only M(i, s, pmin/max, t), for t ∈ [lb :
ub], need to be determined yet.
Brute Force Computation. We obtain M(i, s, pmin/max, t) for all times t ∈
[lb : ub]. We compute them on c CPU cores by distributing the possible values
for t equally to the available CPU cores.

Finally, a cache is used throughout all computations for M to avoid duplicate
computations, which is possible because M is deterministic.

4.4 Transforming Bounds into a Set of Possible CDFs

By iteratively computing values of function M, lower and upper bound proba-
bilities (pmin and pmax) of latencies have been computed, for a given iDSL model
i and service s. Figure 5b shows five probabilities (upper bounds U1, U2 and U3,
and lower bounds L1 and L2) and two CDFs that respect these bounds. We
consider the set of all CDFs that respect these bounds, i.e., each CDF is below
the upper bounds and above the lower bounds, for all times t. Formally, function
CDFall : I × S → 2 ̂CDF returns, where ĈDF is the universe of all CDFs, given
an iDSL model i and service s, the set of CDFs that respect the bounds in M:

CDFall(i, s) = { cdf ∈ ĈDF | cdf (0) = 0 ∧ M(i, s, pmin, t) = p1 ⇒ cdf (t) ≥ p1

∧ M(i, s, pmax, t) = p2 ⇒ cdf (t) ≤ p2 }
Constraint cdf (0) requires all the values to be greater than or equal to 0.

4.5 Answering the Performance Queries Using the CDFs

We now use CDFall to answer the performance queries, as follows. Queries of type
Q1, the minimum time for which a service request completes with probability p,
are determined, as follows:

Q1(i, s, p, Tmin) = min { t | (t, p) ∈ cdf ∧ cdf ∈ CDFall(i, s) }
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Queries of type Q2, the minimum probability that a latency is below a given
time t, are determined, as follows:

Q2(i, s, t, Pmin) = min { p | (t, p) ∈ cdf ∧ cdf ∈ CDFall(i, s) }
The maximum cases of Q1 and Q2 are determined analogously.

5 Case Study Results

We apply the performance analysis approach of Section 4 to the iXR system
of the case study. We define three experiments and compare their results with
simulations and real measurements, in three steps: (i) we present CDFs with
latency times; (ii) we show the execution times and model sizes; and (iii) we
show the answers to the performance questions (for Experiment 1).

Three experiments are defined, based on the sampling methods in Section
3.3, respectively. Experiment 0 uses uniform sampling. Running MCSTA leads

(a) Experiment 1, Image Res. 5122 (b) Experiment 1, Image Res. 10242

(c) Experiment 2, Image Res. 5122 (d) Experiment 2, Image Res. 10242

Fig. 6. CDFs with latencies of IP of iXR systems: measurements on a real iXR system
(a), model checking (lower & upper bounds) (b+c) and simulations (d).
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to a incremental generation of the state space, but runs out of memory and
stalls after having generated 38 million states. Experiment 1 uses abstract time
sampling. Experiment 2 uses non-deterministic time sampling, but on a subset
of the system to reduce complexity, i.e., only the first 3 image operations are
considered, instead of all 12.

CDFs with Latencies. Figure 6 shows latency CDFs, for resolutions 5122 and
10242, and experiment 1 and 2. They show the percentage of service requests
that complete, on the Y-axis, within a given latency, on the X-axis.

Table 1. Two experiments: execution times for simu-
lations and model checking, the number of states of the
Modest model and the number of MCSTA calls.

Exp sim. MC img.
time time res. states calls

Experiment 1: 56” 3:17’28” 5122 8.05M 88
abstract time 10242 1.29M 85
Experiment 2: 44” 5:59’22” 5122 2.03M 49
bounds only 10242 2.77M 57

Experiment 1: Figure 6a
and 6b convey that the
bounds, obtained by model
checking, do not enclose
all measurements in both
cases, e.g., in Figure 6a the
lower bound has probabil-
ity 0.16 for time 16.5 while
measurements are close to
0. This imprecision results
from the time abstrac-
tion. Also, model checking
returns higher time values
than simulations for probabilities close to 1.
Experiment 2: Figure 6c and 6d show that the computed bounds enclose all mea-
surements, as required. Simulations show, compared with measurements, more
average behaviour, i.e., less variance and tighter bounds.

Table 2. Performance questions outcomes

5122 10242

n sim lb ub sim lb ub
Q1a 85 16.9 16.8 17.0 55.0 55.2 56.0
Q1b 0 16.6 15.8 15.8 53.8 52.0 52.0
Q1c 50 16.8 16.5 16.8 54.4 54.4 55.2
Q1d 90 17.0 16.8 17.0 55.1 55.2 56.0
Q1e 100 18.1 18.5 18.5 57.0 59.2 59.2
Q2a 55 x x x 84% 32% 77%
Q2b 17 91% 91% 96% x x x

Execution Times and Complex-
ities. Table 1 shows for Experiment
1 and 2 the execution times (on an
AMD A6-3400M APU, 8 GB RAM
system) and state space sizes. All
simulations finish within a minute,
whereas model checking takes in the
order of hours, i.e., up to 500 times
longer. The number of states ranges
from 1.29 million to 8.05 million.
mcsta is called up to 88 times.
Results of the Performance
Queries. Table 2 shows the answers to the performance queries for Experiment
1 (as obtained in Section 4.4 and 4.5).

Table 2 (top) shows that model checking leads to lower values (for n = 0), via
comparable values (for n = 50), to higher values (for n = 100) than simulations,
i.e., it has a higher variance. For resolution 10242, Model checking values are
higher , for n = 85. This difference even increases for p = 90 and p = 100.
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Table 2 (bottom) shows that, for a given latency, the percentage of service
requests that meet a latency deadline can be obtained. E.g., if 90 % of the images
need to be in time, then a latency of 17 ms for resolution 5122 is met.

6 Conclusion

We have introduced a high-level domain specific language to model service sys-
tems and retrieve their response time distributions, usable by system designers.
Besides the traditionally used simulations, response times are also obtained via
iterative probabilistic model checking. Since model checking faces the state space
explosion problem, we have introduced sampling methods to reduce the model
complexity: (i) increasing the model time unit, and (ii) eliminating probabilism.
A case studty on iXR systems shows the feasibility of our approach.
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