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Abstract. iDSL is a language and toolbox for performance prediction of
Medical Imaging Systems; It enables system designers to automatically
evaluate the performance of their designs, using advanced means of model
checking and simulation techniques under the hood, and presents results
graphically. In this paper, we present a performance evaluation approach
based on iDSL that (i) relies on few measurements; (ii) evaluates many
different design alternatives (so-called “designs”); (iii) provides under-
standable metrics; and (iv) is applicable to real complex systems. Next
to that, iDSL supports advanced methods for model calibration as well
as ways to aggregate performance results. An extensive case study on
interventional X-ray systems shows that iDSL can be used to study the
impact of different hardware platforms and concurrency choices on the
overall system performance. Model validation conveys that the predicted
results closely reflect reality.

1 Introduction

Embedded systems have faced a significant increase in complexity over time
and are confronted with stringent costs constraints. They are frequently used
to perform safety critical tasks, as with Medical Imaging Systems (MIS). Their
safety is significantly determined by their performance. As an example of an
important class of MIS, we consider interventional X-ray (iXR) systems, as built
and designed by Philips Healthcare.

These systems create images continuously based on X-ray beams, which are
observed by a surgeon operating a patient. Images need to be shown quickly for
hand-eye coordination [14], viz., the surgeon perceives images to be real-time.

In earlier work, when the ASD method [10] was considered to be used for the
design of iXR machines, we have evaluated their performance using simulation
models, derived from the design specification by hand.

This paper presents a fully formalised performance evaluation trajectory in
which we go from real measurements, via a formal model, to performance pre-
dictions, for many different designs, in a fully automated way. Starting point
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for this evaluation are models expressed in the IDSL formalism, which has been
introduced in [4] and is extended here to fit our new approach. From such mod-
els input for the Modest toolset [11] is automatically generated and results are
visualized using Graphviz and Gnuplot. This is not only very efficient, it also
brings advanced formal performance evaluation techniques, e.g., based on model
checking of timed automata and Markov chains, and discrete-event simulation,
at the fingertips of system designers, without bothering them with the technical
details of these. Furthermore, the approach allows to efficiently predict the per-
formance of a large number of design variants, to compare them, and select the
best design given a set of constraints and measures of interest. However, note
that in contrast to Design Space Exploration (DSE) [2], in which a few optimal
designs are being searched for, we evaluated a large and fixed amount of designs.

Even though the presented approach is fairly general, we illustrate its fea-
sibility on so-called biplane iXR systems, which comprise two imaging chains,
positioned in perpendicular planes to enable 3D-imaging. They are currently
implemented using two separate hardware platforms. However, for various rea-
sons, e.g., costs, physical space, energy consumption and failure rate, it is worth
investigating running the software for both image chains on shared (but more
powerful) hardware. Hence, we use the above mentioned approach to predict the
performance for shared hardware as a case study. Sharing hardware gives poten-
tial to concurrency, which may result in increased latency and jitter of images,
which, in their turn, affect (perceived) system safety.

We have identified four key objectives that such an integral and fully auto-
mated performance evaluation approach should meet, i.e., it should

O1: use as few costly measurements as possible;
O2: be able to evaluate a large number of complex designs;
O3: present its predictions intuitively via understandable (aggregated) metrics;
O4: be applicable to real complex systems.

These objectives are realized through the following four contributions made in
this paper. First, the model is calibrated using measurements and measurement
predictions to rely on few costly measurements. In contrast, current Design Space
Exploration approaches typically require many measurements to be readily avail-
able [2,13]. Second, we use iDSL [4], a language and toolbox for automated per-
formance evaluation of service systems, and extend it to support the prediction
of unseen empirical cumulative distribution functions (eCDFs). The automation
allows us to evaluate many designs, using Modest [11] for simulations, in line with
previous work [5,12]. Third, we use a variety of aggregation functions to evaluate
designs on different aspects. Fourth, we conduct a case study on a real-life MIS,
viz., Image Processing of iXR systems. We validate our model by comparing its
predictions with corresponding measurements. Also, the predictions are used to
gain insight in the performance of biplane iXR systems with shared hardware.
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Paper Outline: This paper is organised as follows: Section 2 provides the
methodology of our approach. Section 3 describes how measurements are taken,
predicted and applied. Section 4 sketches the iDSL tool chain and model. Section
5 presents the results of the case study. Section 6 concludes the paper.

2 Methodology

Fig. 1. The solution chain of the approach
comprising pre-processing (performing mea-
surements and deriving execution times), pro-
cessing (predicting eCDFs and simulating)
and post-processing (aggregate functions).

We specify our approach as a solu-
tion chain as depicted in Figure 1,
consisting of three consecutive
stages, viz., pre-processing, pro-
cessing and post-processing. The
iDSL toolbox automates these steps
and connects them seamlessly.

During pre-processing, mea-
surements are performed and exe-
cution times derived from them.
They are performed for differ-
ent iXR system configurations and
yield large sets of so-called activ-
ities for every single design. An
activity specifies, for a particular
resource and a performed func-
tion, the time interval of execution.
Activities are visualized automat-
ically in Gantt charts [15]. They
are grouped to obtain total execu-
tion times per function and in turn
aggregated into so-called empirical
cumulative distribution functions.

During processing, we start
with many inverse eCDFs, all based
on measurements, that cover all
possible designs of interest. Many are used for model validation (explained below)
and a fraction of them is used to predict new, inverse eCDFs. Hence, one may
reason about the performance of many designs, while relying on only few mea-
surements, in line with Objective O1.

Next, the iDSL model is executed to obtain performance results, in two steps:
(i) iDSL predicts eCDFs for all designs and calibrates the model based on these
eCDFs; and (ii) iDSL performs many simulations via the Modest toolset (see
Section 4), yielding results for all designs, meeting Objective O2.

During post-processing, results are processed into aggregated, understand-
able metrics, facilitating the interpretation of the results (Objective O3).
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3 Measurements and Emperical CDFs

In this section, measurements performed on design instances are used to predict
the performance of other design instances, in four steps: (i) we perform measure-
ments that yield activities; (ii) these activities are grouped into execution times;
(iii) these execution times are used to estimate emperical CDFs (eCDFs); and
(iv) we predict eCDFs for the complete design space, relying on few estimated
eCDFs. We discuss these 4 steps below in more detail.

3.1 Measuring Activities on a Real System

Measurements on embedded systems are typically performed by executing real
program code augmented with stopwatches, during a so-called execution run.
Stopwatches administer the starting and ending times of functions that run on
different resources. We consider iXR systems that loop in cycles and perform a
sequence of n image processing operations (f1, f2, ..., fn) on m parallel resources
(r1, r2, ..., rm). Measurements lead to activities Act : Res × Cycle × Time ×
Time×Func that specify a resource that performs a given function, in a certain
cycle, during a time interval. Figure 2 visualizes this in a Gannt-chart.

The system designer requires iXR systems to meet two properties: (i)
resources process only one operation for one image at a time, which reduces
complexity but comes at the price of a reduced utilization; and (ii) iXR systems
adhere to a strict FIFO scheduling policy to preserve the image order. Combined,
these two properties ensure non-overlapping functions.

3.2 Grouping Activities into Execution Times

To reduce complexity, we combine activities that perform the same functionality,
in the same cycle, but on different resources, into one execution time; formally:

Ef (c) = max{t2 | (ri, c, t1, t2, f) ∈ Act} − min{t3 | (rj , c, t3, t4, f) ∈ Act}, (1)

Fig. 2. Activities displayed in a Gantt-chart: The time is on the X-axis and correspond-
ing resources are on the Y -axis. It shows how E activities are grouped into execution
times. Activities form rectangles that are labelled with the performed function.
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Fig. 3. The empirical distribution func-
tion and its inverse, both based on k
samples. They are used to determine the
probability that a random variable is
below a certain value, and for sampling,
respectively. It shows the execution time
v (X-axis) and corresponding cumula-
tive probability p (Y -axis).

where f is a function, c the cycle, ri and rj resources, and t1, t2, t3 and t4
times. Execution time Ef (c) may include time during which all resources idled.
This may result from executing code without stopwatches, or a resource waiting
for another resource. Either way, this idle time is attributed to Ef (c) to not
underestimate execution times. Finally, EΩ(c) represents the overall execution
time; formally:

EΩ(c) = max{t2 | (ri, c, t1, t2, fi) ∈ Act} − min{t3 | (ri, c, t3, t4, fj) ∈ Act}. (2)

3.3 Using Execution Times to Estimate eCDFs

We now estimate eCDFs that summarize execution times for different functions.
We group the execution times for function f in an array, where we delete the first
j samples from j + k measured cycles to eliminate initial transient behaviour.
In order to chose a suitable truncation point j, we use the Conway rule [7], and
define j as the smallest integer for each function f that is neither the minimum
nor the maximum of the remaining samples:

min(Ef (j + 1), ..., Ef (j + k)) �= Ef (j + 1) �= max(Ef (j + 2), ..., Ef (j + 1)).

This results in array Xf with |Xf | = k elements, where Xf (i), with 1 ≤ i ≤ |Xf |,
denotes the ith element of Xf :

Xf = (Ef (j + 1), Ef (j + 2), ..., Ef (j + k)). (3)

Now, let X∗
f be a numerically-sorted permutation of Xf , such that X∗

f (i) ≤
X∗

f (j), for all i ≤ j. Clearly, |X∗
f | = |Xf | = k and again, X∗

f (i) with 1 ≤ i ≤ |X∗
f |

denotes the ith element of X∗
f .

In the following, we define the eCDF function ef and its inverse e−1
f based

on X∗
f , for all functions f . The eCDF function ef (v) : R → [0 : 1] is a discrete,

monotonically increasing function that returns the probability that a random
variable has a value less than or equal to v. It is defined, for each function f ,
using the commonly known empirical distribution function [1], as follows:

ef (v) =
1
k

k∑

i=1

1{X∗
f (i) ≤ v}, (4)
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where 1 is the usual indicator function. Figure 3 shows an example plot of ef ,
based on k values, which consists of |X∗

f |+1 horizontal lines, one for each of the
cumulative probabilities (0, q, 2q, 3q, ..., 1). It shows that ef (v) = 1

|X∗
f | = q, for

X∗
f (1) ≤ v < X∗

f (2).
The inverse eCDF function e−1

f : [0 : 1] → R is used to draw samples in
line with distribution ef (v), when simulating. Due to the discontinuities, ef

is not invertible. We resolve this by rounding each probability p to the next
higher probability p′ for which e−1

f (p′) is defined (see the vertical dotted lines in
Figure 3). Thus, e−1

f (p) returns for each p ∈ [0 : 1] a value v, as follows:

e−1
f (p) =

{
X∗

f (1), if p = 0,

X∗
f (�|Xf | p�), if 0 < p ≤ 1.

(5)

This inverse eCDF e−1
f (p) can be used within the inverse transformation method

[8]. Due to the above definition, only actual sample are returned.

3.4 Predicting eCDFs for the Complete Design Space

We now predict eCDFs for different designs choices. Formally, a Design Space
has n dimensions, each comprising a set of designs alternatives dimi =
{val1, val2, ..., valmi

}, for 1 ≤ i ≤ n. The Design Space Model DSM : dim1 ×
dim2 × ... × dimn is then the n-ary Cartesian product over all dimensions. A
Design Space Instance DSI, also called a “design” or “design instance”, provides
a unique assignment of values to all dimensions: x = (x1, x2, ..., xn), where each
entry xi ∈ dimi represents the respective design choice for dimension i.

For the sake of simplicity, Qx denotes an inverse eCDF e−1
f that is based

on a set of measurements of an execution run for design x. Additionally, Qx(p)
denotes a sample drawn from Qx, for probability p.

Clearly the number of designs can grow large, making it costly and infeasi-
ble to perform measurements for all possible designs. Hence, we predict inverse
eCDFs based on other inverse eCDFs without additional measurements, as fol-
lows. We carefully select a base design b̄ to serve as basis for all eCDF predictions,
i.e., b̄ is a design that performs well so that its execution times mostly comprise
service time and no queueing time. Consequently, set Q̂ comprises all inverse
eCDFs that need to be acquired through measurements. They correspond to b̄
and all neighbours of b̄ that differ in exactly one dimension, specified as a union
over all dimensions, as follows.

Q̂ = ∪n
i=1{Qb̄[vi]i | vi ∈ dimi}, (6)

where i is the dimension number, and b̄[vi]i = (b1, b2, ..., bi−1, vi, bi+1, ..., bn).
Let t be the design for which the inverse eCDF has to be predicted. We

assume that all n design dimensions are independent. As we will see below, this
assumption does well in the case we have addressed so far.
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Fig. 4. A geometric interpretation
of a 3D Design Space Model; each
spatial dimension relates to a design
space dimension. Each point in 3D-
space represents a Design Space
Instance by assigning a value to
each dimension. An arrow depicts
a ratio between two Design Space
Instances.

Using only inverse eCDFs in Q̂, we specify the product of n ratios that each
compensate for the difference between b̄ and t̄ in exactly one dimension:

R(p) =
n∏

i=1

Qb̄[ti]i(p)
Qb̄(p)

, (7)

where t̄=(t1, t2, ..., tn), p the probability, and n the number of dimensions.
Measuring all eCDFs in a design space with n dimensions and maximally v

values per dimension requires |DSM | = O(vn) measurements, while the predic-
tion approach only requires |Q̂| = O(vn) measurements. Predicting eCDFs is
particularly efficient for many dimensions, e.g., for 5 dimensions having 5 values
each, prediction requires only 25 out of 3125 (0.8%) eCDFs to be measured.

We illustrate eCDF prediction on an iXR machine with three design dimen-
sions: (i) the image processing function, which is f1, f2,..., fn, or Ω (the sum
of all functions); (ii) the mode is either mono(plane) for one imaging chain, or
bi(plane) for two parallel imaging chains; (iii) the resolution is the number of
pixels of the images processed, and is either 5122, 10242 or 20482 pixels.

Let d̄ = (fi,mj , rk) denote design instance d̄ with function fi, mode mj , and
resolution rk. It is presented conveniently in 3D-space (see Figure 4). Addition-
ally, Qd̄ denotes the inverse eCDF of this particular design.

Let t̄ = (f1, bi, 10242) be the design, for which we predict an inverse eCDF.
Let b̄=(Ω,mono, 5122) be the selected base design on which this prediction is
based. We then require eCDFs based on measurements for design b̄ and for
(f1,mono, 5122), (Ω, bi, 5122) and (Ω,mono, 10242) that each differ from b̄ in
exactly one dimension and from t̄ in all other dimensions. We assume that the
three design dimensions are independent. R(p) is then the product of three ratios
that each compensate for the difference between design b̂ and t̂ in one dimension:

R(p) =
Qf1,mono,5122(p)

Qb̄(p)
· QΩ,bi,5122(p)

Qb̄(p)
· QΩ,mono,10242(p)

Qb̄(p)
. (8)

The eCDF of the design Qt̄ is then predicted as follows: Qt̄(p) ≈ Qb̄(p) ·R(p), for
probabilities p ∈ [0 : 1]. To validate, we compare R(p) with ratio Qt(p)/Qb(p)
that is obtained when measuring Qt̄(p) in Figure 5, for all probabilities p ∈ [0 : 1].
Figure 5 shows the three ratio terms of (8):
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Fig. 5. Inverse eCDFs with relative execution times, which are the quotient of two
eCDFs. On the X-axis, it shows relative execution times, and on the Y -axis, cumulative
probabilities. Both axes show ratios and are therefore unitless.

(i) Q(f1,mono,5122) / Qb̄ (dark blue) compares the execution times of function f1
and Ω. Function f1 takes about 0.4 of the total execution time;

(ii) Q(Ω,bi,5122) / Qb̄ (red) compares the performance of a mono and biplane
system. Most values are close to 1. Hence, their performance is comparable;

(iii) Q(Ω,mono,10242) / Qb̄ (purple) shows the performance effect of a resolution
increase from 5122 to 10242 pixels, which is 3.2 for most probabilities p, which
is less than the fourfold increase of pixels.
Presumably, image processing comprises a constant and pixel dependent part,

leading to relatively faster processing for larger images. We also see that (iv) R(p)
matches its measurement-based counterpart Qt̄(p)/Qb̄(p) well.

The shown graphs are fairly constant for most probabilities p, which indicates
that design instances are linearly dependent. However, they display smaller val-
ues for probabilities p close to 1. This is because of the inverse eCDF Qb̄, which
has high execution times for probabilities near 1. Since all ratios discussed have
Qb̄ in their numerator, they consequently display smaller values for the same
probabilities. In Section 5, we show the results of predicting the performance of
designs, using these ratios.

4 Extending the iDSL Language and Solution Chain

In this section, we explain how we use iDSL [4] to automate the solution chain
of Figure 1. For this purpose, we have build on previous work of iDSL in which
a language and toolbox for performance evaluation of service systems has been
constructed. The language comprises six sections that constitute the concep-
tual model, i.e., Process, Resource, System, Scenario, Measures and Study (see
Figure 7). Figure 6 shows the iDSL solution chain that automates the method-
ology. To support it, the iDSL toolbox has been extended with functionalities
“Resolve eCDF”, realizing the concepts of Section 3, and “Compute aggregate”
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Fig. 6. The fully automated iDSL solution chain. An iDSL model and execution times
are used to predict eCDFs, leading to an iDSL model having the predicted eCDFs
incorporated in it. For each design, measures are performed and a number of aggregate
functions are computed using these measures. Finally, the aggregate values of all design
instance are sorted and turned into trade-off plots.

(see Figure 6, component 1 and 3). Below, we discuss the iDSL model of iXR
systems (Section 4.1), followed by the two extensions (Section 4.2 and 4.3).

4.1 The iDSL Model of iXR Systems

The iDSL model is defined as follows. Process Image Processing (IP) encom-
passes two high-level functions “Noise reduction” and “Refine”, which in turn
decompose into a sequence of n atomic functions f1,f2,. . . ,fn (as depicted in
Figure 8). IP is enclosed by a Mutual Exclusion to enforce a strict FIFO schedul-
ing policy by processing images in one go. The only resource, CPU, is equipped
with a FIFO queue. Service IP maps all processes to the CPU. The Scenario
prescribes that images arrive f times per second with fixed inter-arrival times,
where f is the frame-rate. The Measure simulation yields, in one run, latencies
of 50 images and the utilization of the CPU. The Design space is the Cartesian
product resolution and mode. However, to compute two trade-off graphs (as in
Figure 9), we also vary the buffer size and frame-rate.

Fig. 7. The concepts of iDSL [4]: A
service system provides services to
consumers. A service is implemented
using a process, resource and map-
ping. A process decomposes service
requests into atomic tasks, each assigned
to resources by the mapping. Resources
perform one atomic task at a time. A sce-
nario comprises invoked service requests
over time. A study evaluates a set sce-
narios to derive the system’s charac-
teristics. Measures of interest are the
retrieved measures.
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Fig. 8. Service IP contains process IP, which decomposes into a sequential hierarchy
of functions. All atomic functions map to resource CPU. In the figure, it shows latency
times (in μs) for each function and the utilization for Resource CPU. Latency demand-
ing functions are dark to be easily pinpointed by the system designer. Green Resource
CPU has a low utilization. This visual is auto-generated from the iDSL description.

The iDSL model of iXR systems can be depicted as a Discrete-time Markov
chain (DTMC) informally, as follows. Its states are composed of an image
counter, a function counter, the accrued service time of the processed func-
tion, the time until the next image arrives, and the queue of Resource CPU. Its
key events are the arrival of a new image, which is placed in the queue or dis-
carded when the queue is full, and the current function finishing processing. All
states have one or two outgoing transitions. The latter case represents a binary
probabilistic choice, driven by an eCDF, to decide whether the currently pro-
cessed function receives further processing, or finishes. Principally, the number
of states is infinite due to an ever-increasing image counter. However, omitting
this counter from the state, yields a finite-state DTMC that can be analyzed via
model checking [4] to retrieve aggregated latencies, e.g., the maximum latency.
iDSL generates the DTMC via the Modest language, which in turn transforms
into it a Stochastic Timed Automata [11] network. We only use simulations in
this paper.

4.2 Automated Prediction of eCDFs for the Complete Design Space

Pre-processing step “Resolve eCDF” performs iDSL model transformations in
which eCDF constructs are resolved, using execution times of designs. Our iDSL
model (as in Figure 8) contains Process IP with n functions (f1,f2,. . . ,fn) whose
probabilistic execution times are individually computed as in (8), for each design.
Concretely, “Resolve eCDF” predicts eCDFs using execution times, followed by
a discretization step that turns these eCDFs into finite probabilistic choices. It
thereby applies the following four steps, for each function, mode and resolution.
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First, the required eCDFs, as in the right hand of (8), are obtained by retriev-
ing the corresponding execution times, from which in turn eCDFs are estimated.
Second, solving this equation yields the eCDF to be predicted. Third, n samples
are taken from this predicted eCDF for probabilities ( 1

n , 2n ,· · · ,1) to discretize it,
i.e., we use n = 1000. Fourth, these n samples are combined in a probabilistic
choice, a process algebra construct that iDSL supports by default. After this,
the resulting probabilistic choices are ordered by design and function within that
design, and added to the iDSL model.

4.3 Automated Aggregation of Latencies

The post-processing step “Compute aggregate” applies, for each design, a num-
ber of aggregate functions on n obtained latencies from simulations (we use
n = 50). We selected the average, maximum and median as the functions of
interest (for an example, see Table 1). Concretely, “Compute aggregate” executes
when a simulation run finishes and computes the specified aggregate functions.

Next, “Process aggregate values” generates trade-off plots [6,9] that help the
system designer with balancing between two system aspects by plotting these
aspects of designs in a 2D-plane (for examples, see Figure 9). They visualize how
gains on one system aspect pay its toll on another. A design dominates another
design when it ranks better on one aspect and is at least a good on the other
aspect. Dominated designs are called Pareto suboptimal, others Pareto optimal.

Finally, “Process aggregate values” sorts design instances on each individual
aspect. This enables the comparison of designs on a particular system aspect.

5 Results of a Case Study on iXR Systems

In this section, we study the performance results of an iXR system to show the
validity and applicability of our work by evaluating a concrete iXR system.

We obtained all results by executing the constructed iDSL model on a
PC (AMD A6-3400M, 8Gb RAM) using 32’27” (minutes, seconds). Predicting
eCDFs took 1’48” (6%), simulations 30’13” (91%) and aggregate functions 19”
(1%).

5.1 The Performance of an iXR System

In the following, we present eCDFs with execution times and corresponding
aggregate metrics, a latency break-down graph, and two trade-off graphs.

We assess if the performance of biplane iXR systems on shared hardware is
as good as monoplane ones. We use eCDFs with execution times in which
we compare the measured performance (in Figure 10) of these biplane systems
(green) with monoplane ones (red), for resolutions 5122 (top), 10242 (middle)
and 20482 (bottom). As an effect of sharing hardware, biplane systems perform
worse than monoplane ones for image resolutions 5122 and 10242, viz., their
average latencies are 6% and 2% higher (as in Table 1), respectively. In contrast,



238 F. van den Berg et al.

Fig. 9. Two trade-off graphs. Left, designs (Ω, 2048, bi, b) where b is the buffer size,
which affects the relative number of time-outs (y-axis) and the average latency (x-
axis). Designs (Ω, 2048, bi, 0) and (Ω, 2048, bi, 1) are Pareto optimal (black triangles),
opposed to the other designs that are Pareto suboptimal (green circles). Right, designs
(Ω, 2048, bi, f) where f is the frame-rate (x-axis) affecting the time-out ratio (y-axis).

biplane systems with an image resolution of 20482 perform 9% better than their
monoplane counterparts, due to more powerful hardware biplane systems entail.

Additionally, we assess whether the predictions reflect reality. Therefore, we
compare the predicted performance (in Figure 10) of these biplane systems (blue)
with the monoplane one (black). They are consistently 6-7% slower, just as the
difference in the average and median latency of the aggregate metrics (in
Table 1). This difference stems from eCDF prediction, i.e., it is the ratio for
mode between monoplane and biplane: Q(Ω,bi,5122) / Qb̄ (in Figure 5).

Furthermore, iDSL creates latency breakdown charts for all designs,
including design (Ω, 2048, bi) (see Figure 8). “Spatial noise reduction” and “Tem-
poral noise reduction” (dark gray) are on average the most time consuming
functions of IP. We consider the utilization of CPU of 0.65 “good” (green).

Finally, we show two trade-off graphs (in Figure 9). They provide insight
in how an increase in one system aspect implies a loss in another one. For illus-
tration purpose, the design space is therefore expanded here with the dimen-
sions buffer size and frame-rate. First, Figure 9, (left) shows how the buffer size
influences both the average latency (x-axis) and the time-out ratio (the relative
amount of images rejected by the system due to overuse) (y-axis), for designs
(Ω, 2048, bi, b) where b ≥ 0 is the buffer size. Note that both axis are reversed,
so that designs that are on the top-right in the graph are preferable, e.g., design
(Ω, 2048, bi, 1) is preferred to (Ω, 2048, bi, 2). The design with n = 0 yields 50%
time-outs and a latency of 119ms, whereas the design with n = 1 leads to 16%
time-outs, but at the price of a latency of 184ms. All designs with n ≥ 2 yield
16% time-outs, but with an ever increasing latency due to queuing time as n
increases, making them Pareto suboptimal.

Figure 9 shows that the frame-rate and the time-out ratio are positively
correlated, for designs (Ω, 2048, bi, f) where f is the frame-rate. For f ≤ 7, no
time-outs occur, whereas for f > 7 the number of time-outs increases steadily.
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5.2 The Validity and Applicability of the iDSL Model

We compare the predicted and measured eCDFs of six designs to see if the
predicted results reflect reality, using two similarity functions for eCDFs: the
Kolmogorov distance Kd and the maximum execution ratio Er. Er is inspired
by Kd, but returns the “horizontal distance”; these distances are also indicated in
the plot in Figure 10. Er is normalized using the median values of its arguments,
making Er symmetric and unitless. They are defined as follows.

Kdm,n = sup
x∈R

|Fm(x) − Fn(x)|, Erm,n =
supp∈[0:1] |Gm(p) − Gn(p)|

1
2Gm(0.5) + 1

2Gn(0.5)
,

Fig. 10. Measured and predicted execution times eCDFs, for resolution 512 (top), 1024
(middle) and 2048 (bottom), and mode monoplane and biplane. (iDSL auto-generated)



240 F. van den Berg et al.

Table 1. For three aggregate functions, the predicted and measured outcomes (in ms)
and their difference Δ, based on the first 50 latency values, for six designs.

Average latency Maximum latency Median latency

Design Pred. Meas. Δ Pred. Meas. Δ Pred. Meas. Δ

(Ω, 512, mono) 9 9 0% 9 12 -22% 9 9 0%
(Ω, 512, bi) 9 9 0% 12 15 -21% 9 9 0%
(Ω, 1024, mono) 27 28 -2% 29 33 -12% 27 27 0%
(Ω, 1024, bi) 29 28 4% 30 29 3% 29 28 4%
(Ω, 2048, mono) 122 123 -1% 149 198 -25% 120 120 0%
(Ω, 2048, bi) 130 112 16% 149 126 19% 128 112 14%

where m and n are eCDFs, Fi(x) the probability of eCDF i for value x, and
Gi(p) the value of eCDF i for probability p.

Table 2 shows outcomes for Kd and Er. It shows the maximum distance p
and time it occurred for Kd, and the maximum time ratio at which p occurred
for Er. Kd is generally low, i.e., most of its values are below 0.16. However,
for design (Ω, 1024, bi) and (Ω, 2048, bi), Kd is high, 0.86 and 1, resp. Table 1
shows the measured and predicted outcomes of the aggregated functions. Like
Kd, predictions for the average and median latency are high for two designs, i.e.,
for design (Ω, 1024, bi), 4% and 4%, and for (Ω, 2048, bi) 16% and 14% difference,
resp. Contrarily, the eCDFs for these designs (in Figure 10, green and blue) are
not that far apart, although the predictions are clearly conservative. This is due
to the relative efficiency gain that occurs when both the resolution and mode
are increased, which eCDF prediction does not address.

Table 2. Comparing measured and predicted
eCDFs via two similarity functions.

Design Kd x Er p
(Ω, 512,mono) 0.13 8.4 ms 0.27 1.00
(Ω, 512, bi) 0.08 8.9 ms 0.35 1.00
(Ω, 1024,mono) 0.22 27.0 ms 0.14 1.00
(Ω, 1024, bi) 0.86 28.4 ms 0.04 0.20
(Ω, 2048,mono) 0.15 122.6 ms 0.50 0.98
(Ω, 2048, bi) 1.00 125.1 ms 0.24 0.98

Note that Kd is high when
the execution times do not vary
much and the overlap is small (in
Figure 10, green and blue), while
the graphs are fairly similar. Hence,
we propose measure Er, tailored
to this domain, comparing rela-
tive execution times. In the case
study, Er has its maximum (see
Table 2), for probabilities near 1,
the worst case behaviour. Er is high
for designs (Ω, 512,mono), (Ω, 512, bi) and (Ω, 2048,mono) due to outliers. How-
ever, Figure 10 shows that their graphs are relatively similar, especially for prob-
ability values below 0.8.

6 Conclusions and Future Work

In this paper, we used iDSL, a language and toolbox for performance prediction
of medical imaging systems. We extended iDSL to support the prediction of
unseen eCDFs based on other measured eCDFs, and aggregate functions.
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iDSL provides a performance evaluation approach in which we (i) rely on few
costly measurements; (ii) use the iDSL toolset to automatically evaluate many
designs and present the results visually; (iii) automatically generate aggregated
metrics; and (iv) evaluate the performance of complex iXR systems.

In a case study, we have investigated the performance effect of biplane iXR
systems on shared hardware. Measurements indicate that these systems perform
as good as monoplane ones, but predictions show more conservative results.

iDSL generates latency breakdown charts for each design that show the sys-
tem designer the process structure, the time consuming processes and resource
utilizations, at one glance. iDSL also generates trade-off graphs, in which designs
are plotted on two oppose system aspects. They provide the system designer
insight in how an increase on one system aspect implies a loss on another one.

We validated the model by comparing its outcomes with measurements. They
mostly reflect reality, but are conservative for high resolution biplane systems.
The case study involved a medical imaging system, but we consider the approach
applicable to many service-oriented systems.

In parallel work we have extended iDSL with probabilistic model checking
to obtain execution time eCDFs [3] using the Modest toolset [11].
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