

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License

Newcastle University ePrints - eprint.ncl.ac.uk

Ezhilchelvan P, Mitrani I. Static and Dynamic Hosting of Cloud Servers. In:

12th European Performance Engineering Workshop. 2015, Madrid, Spain:

Springer.

Copyright:

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-23267-6_2

DOI link to article:

http://dx.doi.org/10.1007/978-3-319-23267-6_2

Date deposited:

12/01/2016

Embargo release date:

14 August 2016

http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB
http://eprint.ncl.ac.uk/
http://dx.doi.org/10.1007/978-3-319-23267-6_2
http://dx.doi.org/10.1007/978-3-319-23267-6_2

Static and Dynamic Hosting of Cloud Servers

Paul Ezhilchelvan and Isi Mitrani

School of Computing Science, Newcastle University, NE1 7RU, UK
e-mail: paul.ezhilchelvan@ncl.ac.uk, isi.mitrani@ncl.ac.uk

Abstract. The problem of maximizing the profit achieved by hiring
servers from a Cloud and offering virtual machines to paying customers
is examined. A number of VMs, each running a user job, can share a
server. Hiring a server incurs an initial set-up cost, as well as running
costs proportional to the duration of hire. New jobs that cannot start
immediately may be lost, or they may be queued. It may or may not be
possible to move running VMs from server to server. The effect of these
different conditions on several hiring policies, both static and dynamic,
is analyzed and evaluated.

1 Introduction

This paper addresses a problem that arises in the market for computer services.
A host gains income by running user jobs on servers that it hires from a Cloud
provider. To run a job, a Virtual Machine (VM) is instantiated on one of the
servers. However, there is a limit on the number of VMs, and hence jobs, that can
run in parallel on one server without unduly degrading each other’s performance.
When that limit is reached for all currently hired servers, the host may
(a) reject newly arriving jobs, thus losing revenue;
(b) queue newly arriving jobs, possibly having to pay penalties mandated by a
Service Level Agreement (SLA);
(c) hire more servers, incurring more costs.

The cost of hiring a server may include a fixed initial set-up component, plus
a cost proportional to the duration of hire. In the case of queued jobs, the SLA
may guarantee a bound on waiting, with a penalty payable when that bound
is exceeded. In all cases, the problem is to decide what actions to take so as to
maximize the long-term average profit (revenues minus costs) obtained per unit
time.

We analyze, evaluate and compare several server hiring policies. Some of
these are static, choosing a fixed number of servers and keeping them for as
long as the input parameters remain the same. Others are dynamic, hiring and
releasing servers in response to changes in the number of jobs in the system.
The majority of policies reject incoming jobs which cannot start immediately.
However, the possibility of queueing such jobs subject to waiting time guarantees
is also considered.

In a practical application, these policies would have to be combined with some
monitoring and parameter estimation technique that would detect when the

loading parameters change. We do not dwell on that aspect because it has already
been covered quite extensively in the literature (see below). Our assumption is
that the system reaches steady state during a period where the parameters stay
the same.

It should be pointed out that the behaviour of a dynamic policy depends on
whether a running VM can be moved from one server to another or not. In the
former case, jobs can be packed into the smallest number of servers required,
whereas in the latter one may need to keep an unnecessarily large number of
partially filled servers.

A special queueing model is analyzed and solved for the case of a dynamic
hiring policy with non-movable VMs.

The general conclusion reached after a number of numerical experiments
comparing the different hiring policies is that a static policy can perform really
well, provided that it is chosen optimally (this proviso is important!). Dynamic
policies do tend to produce higher profits, but the improvements rarely exceed
10%.

There has been quite a lot of work on server allocation, often in the context
of the trade-off between performance and energy consumption. In most cases
the focus has been on static policies, with an emphasis on estimating the traffic
and reacting to changes in the parameters. Such studies were carried out by
Mazzucco et al. [7, 8], using models and empirical observations. Bod́ık et al. [2]
use statistical machine learning to estimate the workload during the next period.

Chaisiri et al. [3] attempt to exploit the lower costs of future reservations in
order to minimize the overall cost of hiring Cloud servers. They use stochastic
and deterministic programming techniques, coupled with approximations. This
study has some dynamic features. However, the actual demand process is not
modelled and therefore neither losses nor waiting can be taken into account.

A dynamic optimization using Markov decision theory was carried out by
McGough and Mitrani [9] for a model with batch arrivals and also when hiring
decisions are made at fixed intervals. Gandhi et al [5], and Mitrani [12] analyzed
certain dynamic server allocation policies with set-up costs. In these studies
jobs are queued but there are no SLAs, and the possibility of rejections is not
considered.

More distantly related work concerns the maximization of throughput and
the minimization of waiting or response time in different scheduling contexts,
e.g. Urgaonkar et al. [13], Chandra et al. [4] and Bennani and Menascé [1]. A
deterministic example of job scheduling with migration in order to minimize the
number of servers was considered by Ghribi et al [6].

In all of the above papers, servers are assumed to serve one job at a time
(VMs are mentioned in [8] for the purpose of parameter estimation, but are not
included in the analysis). Where a dynamic policy has been compared to a static
one (e.g. in [9]), the latter has been chosen in an ad-hoc manner, rather than
optimally. The effect of not being able to move VMs between servers has not
been examined.

Section 2 introduces a number of static and dynamic policies and evaluates
the profit they achieve. The models involve job losses and also queueing. The
dynamic policies assume that VMs can move instantaneously from one server to
another. The model of a dynamic policy that does not move VMs is analyzed in
section 3. Section 4 summarizes the conclusions and outlines some directions for
further research.

2 Static and dynamic policies

A host hires servers from a cloud provider in order to offer services to paying
customers, Servers can be hired and released instantaneously and at any time.
Similarly, VMs can be initiated and terminated instantaneously and at any time.
In this section we also assume that VMs can be moved from server to server
without delay and without incurring costs.

The service provided by a VM during its lifetime is referred to as a ‘job’. A
server can run efficiently up to m parallel VMs, so if there are n active servers
at a given moment, there is room for a maximum of nm jobs.

The cost of a server which is used for a period of length t is c1+c2t. The first
term, c1, if non-zero, may be considered as a ‘set-up’ cost, or it may be introduced
by the provider in order to discourage short-term hire. The coefficient c2 reflects
the cost of operating a server per unit time.

Jobs arrive into the system in a Poisson stream at rate λ. Their lifetimes may
have arbitrary distribution with mean 1/µ. The offered load is thus ρ = λ/µ.
The values of these parameters are assumed to remain constant long enough so
that the system can be treated as being in steady state.

The assumption of easily movable VMs implies that jobs can be ‘packed’
efficiently. Suppose that the servers currently hired are numbered 1, 2, When
accepting an incoming job, allocate it to the server with the lowest index that
has room for it. When a job is completed and its VM is terminated, move a job
from the non-empty server with the highest index (if different) to the vacated
place. This ensures that if there are j jobs present, they can be run on ⌈j/m⌉
servers, where ⌈x⌉ is the smallest integer exceeding or equal to x.

The problem that needs to be addressed in this context is: When, and how
many, servers should be hired or released? One possibility is to employ a static
policy whereby a fixed number of servers, n, is hired and kept for as long as the
parameters λ and µ retain their values. An incoming job that finds all servers
full, i.e. nm jobs present, is rejected. If the policy is static, the question of moving
jobs between servers does not arise.

In such a system, the number of jobs present behaves like an M/M/K/K
queue, i.e. an Erlang loss model where K = nm is the maximum number of
jobs that can be accepted. The steady-state probability, qj , that there are j jobs
present is equal to (e.g., see [11])

qj =
ρj

j!

[
nm∑
k=0

ρk

k!

]−1

; j = 0, 1, . . . , nm . (1)

The decision on what value of n to choose depends on the objective function
to be optimized. If, for example, the aim is simply to avoid job losses, one could
fix a desirable value, ε, and hire the smallest number of servers which ensures
that the probability of rejection does not exceed ε:

n∗ = min{n : q(nm) ≤ ε} . (2)

This will be referred to as the ‘fix-ε’ policy.
Alternatively, one could attempt to maximize profit. Suppose that every ac-

cepted job brings in a revenue of r. Then the average long-run profit produced
by n servers per unit time, R(n), is given by

R(n) = rλ(1− q(nm))− c2n , (3)

The long-run set-up costs incurred per unit time are zero, because after the
initial moment there are no new hiring events.

It is known that the Erlang loss probability, q(nm), is convex in n (see [10]).
Hence, the profit function R(n) is concave in n and has a single maximum. The
optimal number of servers, and the corresponding maximum achievable profit,
can therefore be computed quite easily by evaluating R(n) for n = 1, 2, . . ., and
stopping as soon as R(n+1) < R(n). The resulting hiring policy will be referred
to as ‘fix-opt’.

Now consider the possibility of hiring and releasing servers dynamically, in
response to changes in the system state. A rather general policy of this type
would work as follows: Hire a block of k1 servers; if there are k1m jobs present
and a new job arrives, hire a new block of k2 servers. This goes on up to a
maximum of b blocks with a total of n = k1 + k2 + . . . + kb servers. When a
job completes, a job from a block with a higher index (if any) is moved into
its place so as to maintain optimal packing. If, as a result of this completion,
a block empties, all the servers in it are released. One may also decide to keep
block 1 permanently hired. This policy will be referred to as ‘blocks-b’, with a
bound of n.

The number of jobs in the system under the blocks-b policy with bound n has
the same distribution, given by (1), as under the static policy with n servers. In
particular, the probability that an incoming job is accepted is the same. However,
the dynamic policy incurs set-up costs, while reducing the operating costs.

Let Ki be the total number of servers in the first i blocks: Ki = k1 + k2 +
. . . + ki; i = 1, 2, . . . , b; Kb = n and, by definition, K0 = 0. Since block i + 1
is hired whenever an incoming job finds exactly Kim jobs present, the average
number of hiring events per unit time is

S = λ
b−1∑
i=0

q(Kim)ki+1 . (4)

For a given number, j, of jobs present (1 ≤ j ≤ nm), denote by K(j) the
number of servers currently hired. That is the smallestKi such thatKi ≥ ⌈j/m⌉.

With that notation, the average number of servers hired, L, can be written as

L =
nm∑
j=1

qjK(j) . (5)

Hence, the average long-term profit obtained per unit time under the blocks-b
policy is equal to

R(n) = rλ(1− q(nm))− c1S − c2L . (6)

To determine the best blocks-b policy with a bound n, one would have to
search not only with respect to n, but also with respect to b and ki. That search
may be quite expensive. However, two special cases can be handled quite easily.
At one extreme is the policy which we shall call ‘one-by-one’: it hires and releases
servers one at a time (b = n and ki = 1 for all i). The best one-by-one policy can
be found by a simple search with respect to n. At the other extreme is blocks-2,
where only two blocks are used; b = 2, k1 + k2 = n. The search in this case is
with respect to n and k1.

Figure 1 illustrates the performance of the above policies in the context of a
system where each server runs up to 5 VMs in parallel. The average residence
of a VM is taken as the unit of time, µ = 1. The revenue per job is r = 1, while
the server costs are c1 = 0.1 and c2 = 3. Thus, a server can make a profit by
running 5 jobs, but the margin is not large.

For the policies fix-opt, one-by-one and blocks-2, the profit produced by the
best server bound n (and, in the case of blocks-2, the best block sizes k1 and k2,
all determined by a search), is plotted against the offered load by increasing the
arrival rate. For the fix-eps policy, the value of n is chosen so that no more than
one job in a thousand is lost, ε = 0.001.

We observe that the fix-ε policy has the worst performance, actually losing
money unless the arrival rate exceeds 30. This is not surprising, since the value
of ε is quite small, and the costs of servers are disregarded when choosing n. Of
the dynamic policies, one-by-one is better than blocks-2, but not by much. Both
are better than the static fix-opt policy, but again not by much.

The server allocations for each value of λ are shown in the table below (the
values of λ now go up to 100). n∗ is the best number of servers found for the
fix-opt policy; n1∗ is the best upper bound for the one-by-one policy; k1 and k2
are the best block sizes for the blocks-2 policy. Note that n1∗ is always larger
than n∗, while k1 (at least in this example) is the same as n∗. The improvement
in profit produced by the blocks-2 policy is due to the small second block which
is brought into play when the first block is full.

The above behaviour is observed for other parameter values, as long as the
set-up costs are quite small compared to the operating costs. When that is not
the case, the comparison is less clear-cut. This is illustrated in Figure 2, where
the performance of the fix-opt, one-by-one and blocks-2 policies is plotted against
the set-up cost c1. The job arrival rate is λ = 40 and the other parameters are
as in figure 1.

Since the fix-opt policy is not affected by the set-up cost, its plot is a horizon-
tal line. The one-by-one policy starts off as the best of the three, but eventually

-5

0

5

10

15

20

10 15 20 25 30 35 40 45 50

R

λ

fix-ε policy

+

+
+

+
+

+
fix-opt policy

×

×

×

×

×

×
one-by-one policy

∗

∗

∗

∗

∗
∗

blocks-2 policy

△

△

△

△

△
△

Fig. 1. Comparison of hiring policies
m = 5, µ = 1, r = 1, c1 = 0.1 c2 = 3

Table 1. Server allocations

λ n∗ n1∗ k1 k2
20 4 14 4 1

40 8 20 8 1

60 12 27 12 1

80 16 33 16 2

100 20 39 20 2

becomes the worst. This is because it keeps hiring and releasing servers even
when that is not warranted by the high set-up costs. The blocks-2 policy is more
conservative. It yields slightly lower profits than one-by-one when c1 is low, but
on the other hand it never becomes worse than fix-opt as c1 increases. What
happens is that for high values of c1, the best blocks-2 policy is of the form
k1 = n, k2 = 0. In other words, it becomes identical to fix-opt.

The conclusions that can be drawn from these results, as well as from others
derived with different parameter values and cost coefficients, can be summarized
as follows:

The optimally chosen static policy fix-opt, which does not incur repeated
set-up costs and does not require moving VMs from server to server, performs
very well. The dynamic policies from the blocks-b family can achieve 10% – 15%

9

10

11

12

13

14

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R

c1

fix-opt policy

+ + + + + + + +

+
one-by-one policy

×

×

×

×

×

×

×

×

×
blocks-2 policy

∗
∗

∗
∗

∗
∗ ∗ ∗

∗

Fig. 2. Comparison of hiring policies; different set-up costs
m = 5, µ = 1, r = 1, λ = 40 c2 = 3

higher profits when the set-up costs are low. The best blocks-2 policy is always
at least as good as the fix-opt policy and is never much worse than one-by-one.

2.1 Queued jobs

Instead of rejecting the jobs that find all available VMs occupied, it may be
possible to queue them. That would avoid the revenue loss due to rejections,
but would raise the question of quality of service. Since customers do not like
waiting, the host would normally offer some Service Level Agreement (SLA), e.g.
promising to pay a penalty u for any job whose waiting time exceeds a given
threshold, v.

Would that be worth doing? To evaluate the trade-off, assume that the service
times are distributed exponentially. Consider the static policy that hires a fixed
number of servers, n, and queues jobs. The long-run average profit produced per
unit time is now

R(n) = λ[r − uP (w > v)]− c2n , (7)

where P (w > v) is the steady-state probability that the waiting time in the
M/M/(nm) queue exceeds v. For a stable queue (ρ < nm), that probability is
given by (e.g., see [11])

P (w > v) = qe−µ(nm−ρ)v , (8)

where q is the steady-state probability that an incoming job would have to wait:

q =
ρnm

(nm− 1)!(nm− ρ)

nm−1∑
j=0

ρj

j!
+

ρnm

(nm− 1)!(nm− ρ)

−1

. (9)

This last expression is known as the ‘Erlang-C formula’, or ‘Erlang’s delay for-
mula’.

The policy that uses the value of n which maximizes the right-hand side of (7)
will be referred to as fixQ-opt. The trade-off between fix-opt and fixQ-opt would
clearly depend on the SLA. Intuitively, queueing jobs is likely to be advantageous
if customers are willing to put up with waiting, otherwise rejections would be
better.

In figure 3, the fixQ-opt policy is compared with fix-opt for three different
thresholds v. To make the queueing policy more directly comparable to the
rejection one, the penalty u is taken to be equal to r. In other words, customers
whose jobs wait longer than v get their money back. From the profit perspective,
it is as if they had been rejected. The other parameters are as in figure 1. The
threshold values chosen are v = 0.2, v = 0.4 and v = 0.6. In other words, the
penalty is payable if the customer’s waiting time is more than 20%, 40% or 60%
of their residence time. In all cases, the achieved average profit is plotted against
the arrival rate, λ.

0

2

4

6

8

10

12

14

16

18

10 15 20 25 30 35 40 45 50

R

λ

fix-opt

+

+

+

+

+

+
fixQ-opt: v=0.2

×

×

×

×

×

×
fixQ-opt: v=0.4

∗

∗

∗

∗

∗∗
fixQ-opt: v=0.6

△

△

△

△

△

△

Fig. 3. Rejection vs queueing; different thresholds v
m = 5, µ = 1, r = u = 1, c2 = 3

We observe that when customers are impatient (v = 0.2), it is better to reject
jobs than to queue them. The situation is reversed when customers are quite
tolerant of waiting (v = 0.6) and the load exceeds 20. However, the differences
are not large in either case. For the intermediate threshold (v = 0.4), there
is even less to choose between queueing and rejecting. Moreover, increasing v
beyond 0.6 does not improve the profits achieved by fixQ-opt significantly.

In summary, one can say again that, as long as the number of servers is
chosen optimally, the management of the jobs is of secondary importance.

N.B. The Markovian assumptions of Poisson arrivals and exponential service
times can be relaxed, at the price of replacing the exact results with approxima-
tions. There are approximate results for the G/GI/n/n loss model, as well as
for the G/GI/n queue. To use those expressions one would need to estimate not
only the average interarrival and service times, but also their second moments.

3 Virtual machines do not move

The dynamic policies examined in the last section relied for their operation on
the ability to move virtual machines from server to server instantaneously and
without cost. It would be interesting to evaluate the extent to which profits are
affected when that flexibility is removed. In order to do that, we shall assume
that the job service times are distributed exponentially, with mean 1/µ.

Consider the dynamic policy blocks-2, where n servers are divided into two
blocks, 1 and 2, of sizes k1 and k2 respectively (k1+k2 = n). A VM, once started
in a server, remains there until its job completes. Let us assume that the servers
in block 1 are permanently hired. Incoming jobs are allocated VMs in block 1
whenever there are fewer than k1m jobs present there; otherwise they go to block
2, if there are fewer than k2m jobs there; when all nm VMs are busy, jobs are
rejected. The servers in block 2 are released when a departure leaves all of them
empty; they are re-hired at the next arrival instant which finds block 1 full.

A single integer - the total number of jobs present - is no longer enough to
describe the state of the system. One needs to specify the number of jobs, I,
present in block 1, and the number of jobs, J , present in block 2. Those two
random variables are not independent: J can increase only when I = k1m. Let
pi,j be the joint steady-state probability that I = i and J = j (i = 0, 1, . . . , k1m;
j = 0, 1, . . . , k2m).

The servers in block 2 are being used whenever J > 0. Hence, the average
number of servers hired, L, is given by

L = k1 + k2

[
1−

k1m∑
i=0

pi,0

]
. (10)

The hiring of block 2 occurs whenever an incoming job finds the system in state
I = k1m, J = 0. Hence, the average number of server hiring events per unit
time, S, is

S = λk2pk1m,0 . (11)

Jobs are rejected when both blocks are full, which occurs with probability
pk1m,k2m. The average profit obtained per unit time is thus given by an ex-
pression similar to (6):

R(n) = rλ(1− pk1m,k2m)− c1S − c2L . (12)

It now remains to determine the joint distribution pi,j . The instantaneous
transition diagram for the Markov process (I, J) is illustrated in figure 4.

mm m

mm m

m mm

-- -- -
� � �

-- -- -
� � �

? ? ?

?

? ?

? ?

?

6

6

6

�� �
-- -

λ λ

λ λ λ

λ

λ

λ

µ

µ µ µ

2µµ

2
µ

2
µ

2
µ

k1mµ

k1mµ

k1mµ

k
2 m

µ

k
2 m

µ

k
2 m

µ

1

k2m

0 1

i

k1m

µ 2µ

λ

2µ

λ λ λ

j

0

Fig. 4. Transition diagram

For i = 0, 1, . . . , k1m − 1 and j = 0, 1, . . . , k2m, the probabilities pi,j satisfy
the following balance equations:

(λ+ iµ+ jµ)pi,j = λpi−1,j + (i+ 1)µpi+1,j + (j + 1)µpi,j+1 , (13)

where p−1,j = 0 and pi,k2m+1 = 0 by definition. When i = k1m, the equations
become:

(λ+ k1mµ+ jµ)pk1m,j = λpk1m−1,j + λpk1m,j−1 + (j + 1)µpk1m,j+1 , (14)

where pk1m,k2m+1 = 0 by definition.
The numerical complexity of solving this set of simultaneous equations, plus

the normalizing equation, by Gaussian elimination, can be high. It is on the order

of O[(k1m+1)3(k2m+1)3]. Fortunately, we can exploit the special structure of
this Markov process in order to reduce that complexity considerably.

Note first that the total number of jobs present, I+J , behaves like the number
of calls in an Erlang loss system M/M/nm/nm with offered traffic ρ = λ/µ. In
particular, the rejection probability, pk1m,k2m, is equal to the probability qnm,
given by expression (1) for j = nm.

Examining equations (13) for j = k2m and i = 0, 1, . . . , k1m− 1 in turn, we
see that they can be transformed into recurrence relations. Denoting k2m by K,
these can be written as

pi,K = ai+1pi+1,K ; i = 0, 1, . . . , k1m− 1 , (15)

where a0 = 0 and

ai+1 =
i+ 1

(1− ai)ρ+ i+K
; i = 0, 1, . . . , k1m− 1 . (16)

After evaluating pk1m,k2m and the coefficients ai, the recurrences (15) enable
the probabilities, pk1m−1,K , pk1m−2,K , . . ., p0,K to be computed by successive
substitution. Denote the sum of those probabilities, i.e. the marginal probability
that block 2 is full, by p·,K . Equating the rate at which the number of jobs in
block 2 decreases from K to K − 1 with that at which it increases from K − 1
to K, we obtain

Kµp·,K = λpk1m,K−1 . (17)

This equation determines pk1m,K−1. In general, if the marginal probability,
p·,j+1, that there are j + 1 jobs in block 2 is known, then the probability pk1m,j

is determined from

(j + 1)µp·,j+1 = λpk1m,j ; j = 0, 1, . . . ,K − 1 . (18)

Now consider the balance equations corresponding to row j in the diagram,
for j = 0, 1, . . . ,K − 1. They can be written in the form

pi,j = ai+1,jpi+1,j + bi+1,j ; i = 0, 1, . . . , k1m− 1 , (19)

with a0,j = 0,

ai+1,j =
i+ 1

(1− ai,j)ρ+ i+ j
; i = 0, 1, . . . , k1m− 1 , (20)

and b0,j = 0,

bi+1,j =
ρbi,j + (j + 1)pi,j+1

(1− ai,j)ρ+ i+ j
; i = 0, 1, . . . , k1m− 1 . (21)

Having determined the probabilities in row j + 1, and consequently pk1m,j from
(18), these relations determine all the other probabilities in row j.

Proceeding in this manner through rows K−1, K−2, . . ., 0, one can compute
all unknown probabilities. The numerical complexity of that procedure is on the
order of O[(k1m+ 1)(k2m+ 1)], i.e. it is linear in the number of unknowns.

It may be expected that the inability to move VMs and pack them into the
smallest number of servers would reduce the effectiveness, and hence the profits,
of a dynamic hiring policy. The extent of that reduction is illustrated in figure
5. The blocks-2 policy of this section is compared with the fix-opt and blocks-
2 policies of section 2, where VMs could move instantaneously from server to
server. For both versions of the dynamic policy, the block sizes k1 and k2 are
chosen optimally, by performing a search. In all cases, the achieved profit is
plotted against the arrival rate λ, while the other parameters are as in figure 1.

0

5

10

15

20

25

30

35

20 30 40 50 60 70 80 90 100

R

λ

fix-opt policy

+

+

+

+

++
blocks-2 movable

×

×

×

×

×
×

blocks-2 immovable

∗

∗

∗

∗

∗

∗

Fig. 5. Static and dynamic policies with movable and immovable VMs
m = 5, µ = 1, r = 1, c1 = 0.1 c2 = 3

The figure shows that when VMs cannot be moved, the advantage of dynamic
hiring is almost eliminated. The blocks-2 policy with immovable VMs still pro-
duces slightly higher profits than the fix-opt policy, but the improvements are
on the order of 1%.

4 Conclusion

We have evaluated and compared the performance of several static and dynamic
server hiring policies. The results of a number of numerical experiments lead

to the rather general conclusion that a well-chosen static policy can be nearly
as good as a dynamic one. Moreover, either an increase in set-up costs, or a
restriction in the movement of VMs, tends to reduce the gains achieved by a
dynamic policy. That will be the case, for example, if VMs can be moved, but
not instantaneously. The costs and durations of moving VMs were examined in
more detail in Voorsluys et al [14].

Among the dynamic hiring policies, the simple blocks-2 policy may be recom-
mended. The best block sizes are quite easily determined, and it is robust with
respect to rising set-up costs. However, its advantages are significantly reduced
if VMs cannot move from server to server.

If the incoming jobs belong to different classes, with different parameters,
and if servers are hired and dedicated to separate classes, then our results would
apply to each individual class. The situation would be more complicated if VMs
of different classes were allocated to the same server. That would require further
work.

What if jobs do not arrive in a Poisson stream? Some answers may be ob-
tained by applying approximate results, but those would probably need to be
validated by simulations.

References

1. M.N. Bennani and D. Menascé, “Resource allocation for autonomic data centers
using analytic performance methods”, Procs., 2nd IEEE Conf. on Autonomic Com-
puting (ICAC-05), pp 229-240, 2005.

2. P. Bod́ık, R. Griffith, C. Sutton, A. Fox, M. Jordan and D. Patterson, “Statistical
machine learning makes automatic control practical for internet datacenters”, Conf.
on Hot Topics in Cloud Computing (HotCloud’09), Berkeley, CA, USA, 2009.

3. S. Chaisiri, B.S. Lee and D. Niyato, “Optimization of resource provisioning cost in
cloud computing”, IEEE Transactions on Services Computing, 5(2), pp. 164–177,
2012.

4. A. Chandra, W. Gong and P. Shenoy, “Dynamic resourse allocation for shared
data centers using online measurements”, Procs., 11th ACM/IEEE Int. Workshop
on Quality of Service (IWQoS), pp 381-400, 2003.

5. A. Gandhi, M. Harchol-Balter and I. Adan, “Server farms with setup costs”, Per-
formance Evaluation, 67, 11, pp. 1123-1138, 2010.

6. C. Ghribi, M. Hadji and D. Zeghlache, “Energy Efficient VM Scheduling for Cloud
Data Centers: Exact Allocation and Migration Algorithms”, 13th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing, pp. 671-678, 2013.

7. M. Mazzucco, D. Dyachuk, and M. Dikaiakos, “Profit-aware server allocation for
green internet services”, IEEE Int. Symp. on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS), pp. 277-284, 2010.

8. M. Mazzucco, M. Vasar, and M. Dumas, “Squeezing out the cloud via profit-
maximizing resource allocation policies”, IEEE Int. Symp. on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS), pp.
19-28, 2012.

9. A.S. McGough and I. Mitrani, “Optimal Hiring of Cloud Servers”, Procs, European
Performance Engineering Workshop (EPEW), Florence, 2014.

10. E.J. Messerli, “Proof of a convexity property of the Erlang B formula”, Bell System
Technical Journal 51, pp. 951-953, 1972.

11. I. Mitrani, Probabilistic Modelling, Cambridge University Press, 1998.
12. I. Mitrani, “Trading Power Consumption Against Performance by Reserving Blocks

of Servers”, Procs, European Performance Engineering Workshop (EPEW), Mu-
nich, 2012.

13. R. Urgaonkar, U. C. Kozat, K. Igarashi and M. J. Neely, “Dynamic Resource Allo-
cation and Power Management in Virtualized Data Centers”, IEEE/IFIP NOMS
2010, Osaka, Japan, 2010.

14. W. Voorsluys, J. Broberg, S. Venugopal and R. Buyya, “Cost of Virtual Machine
Live Migration in Clouds: A Performance Evaluation”, LNCS, vol. 5931, pp. 254-
265, 2009.

