Skip to main content

Leveled Strongly-Unforgeable Identity-Based Fully Homomorphic Signatures

  • Conference paper
  • First Online:
Information Security (ISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9290))

Included in the following conference series:

Abstract

Recently, Gorbunov, Vaikuntanathan and Wichs proposed a new powerful primitive: (fully) homomorphic trapdoor function (HTDF) based on small integer solution (SIS) problem in standard lattices, from which they constructed the first leveled existentially-unforgeable fully homomorphic signature (FHS) schemes.

In this paper, we first extend the notion of HTDF to identity-based setting with stronger security and better parameters. The stronger security requires that the identity-based HTDF (IBHTDF) is not only claw-free, but also collision-resistant. And the maximum noise comparing to Gorbunov-Vaikuntanathan-Wichs’ HTDF roughly reduces from \(O(m^d\beta )\) to \(O(4^dm\beta )\), which will result in polynomial modulus \(q=\mathrm {poly}(\lambda )\) when \(d=O(\log \lambda )\), where \(\lambda \) is the security parameter and d is the depth bound of circuit. We then define and construct the first leveled strongly-unforgeable identity-based fully homomorphic signature (IBFHS) schemes.

This work is supported in part by the National Nature Science Foundation of China under award No. 61272040 and No. 61379137, and in part by the National 973 Program of China under award No. 2013CB338001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here \( \widetilde{\mathbf {G}}^{-1}\) is not the inverse matrix of \(\widetilde{\mathbf {G}}\) but a deterministic algorithm.

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC\(^1\). In: STOC 1986, pp. 1–5. ACM (1986)

    Google Scholar 

  4. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Boyen, X., Fan, X., Shi, E.: Adaptively secure fully gomomorphic signatures based on lattices. http://eprint.iacr.org/2014/916

  7. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Brakerski Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS, pp. 1–12 (2014)

    Google Scholar 

  10. Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient verification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  12. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  14. Clear, M., McGoldrick, C.: Bootstrappable identity-based fully homomorphic encryption. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 1–19. Springer, Heidelberg (2014)

    Google Scholar 

  15. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178. ACM (2009)

    Google Scholar 

  18. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: STOC 2015, pp. 469–477. ACM (2015)

    Google Scholar 

  19. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  23. Xie, X., Xue, R.: Bounded fully homomorphic signature schemes. http://eprint.iacr.org/2014/420

Download references

Acknowledgement

We are very grateful to the anonymous ISC reviewers for valuable comments and constructive suggestions that helped to improve the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, F., Wang, K., Li, B., Gao, Y. (2015). Leveled Strongly-Unforgeable Identity-Based Fully Homomorphic Signatures. In: Lopez, J., Mitchell, C. (eds) Information Security. ISC 2015. Lecture Notes in Computer Science(), vol 9290. Springer, Cham. https://doi.org/10.1007/978-3-319-23318-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23318-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23317-8

  • Online ISBN: 978-3-319-23318-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics