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Abstract. Qualitative calculi play a central role in representing and reasoning
about qualitative spatial and temporal knowledge. This paper studies distributive
subalgebras of qualitative calculi, which are subalgebras in which (weak) com-
position distributives over nonempty intersections. It has been proven for RCC5
and RCC8 that path consistent constraint network over a distributive subalgebra
is always minimal and globally consistent (in the sense of strong n-consistency)
in a qualitative sense. The well-known subclass of convex interval relations pro-
vides one such an example of distributive subalgebras. This paper first gives a
characterisation of distributive subalgebras, which states that the intersection of a
set of n ≥ 3 relations in the subalgebra is nonempty if and only if the intersection
of every two of these relations is nonempty. We further compute and generate all
maximal distributive subalgebras for Point Algebra, Interval Algebra, RCC5 and
RCC8, Cardinal Relation Algebra, and Rectangle Algebra. Lastly, we establish
two nice properties which will play an important role in efficient reasoning with
constraint networks involving a large number of variables.

Keywords: Qualitative Calculi; Qualitative Spatial and Temporal Reasoning;
Distributive Subalgebra; Region Connection Calculus; Rectangle Algebra

1 Introduction

A dominant part of qualitative spatial and temporal reasoning (QSTR) research focus
on the study of individual or multiple qualitative calculi. Roughly speaking, a quali-
tative calculus M is simply a finite class of relations over a universe U of spatial or
temporal entities which form a Boolean algebra. Usually, we assume that the identity
relation is contained in one atomic relation in M and relations in M are closed un-
der converse [19]. Well-known qualitative calculi include Point Algebra (PA) [28,26]
and Interval Algebra (IA) [1] for representing temporal relations and Region Connec-
tion Calculus RCC5 and RCC8 [22], Cardinal Relation Algebra [12,18], and Rectangle
Algebra [14,3] for representing spatial relations.

For convenience, we write RCC5/8 for either RCC5 or RCC8. Since the composi-
tion of two RCC5/8 relations R,S is not necessarily a relation in RCC5/8 [11,16], we
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write R �S for the smallest relation in RCC5/8 which contains R ◦S, the usual compo-
sition ofR,S, and callR�S the weak composition ofR,S [11,16]. Unlike RCC5/8, the
calculi PA, IA, CRA and RA are closed under composition and are all relation algebras.
With weak composition, RCC5/8 is also a relation algebra.

Using a qualitative calculus M, we represent spatial or temporal information in
terms of relations inM, and formulate a spatial or temporal problem as a set of qual-
itative constraints (called a qualitative constraint network or QCN). A qualitative con-
straint has the form (xRy), which specifies that two variables x, y are related by the
relation R inM. A QCN N is consistent if there exists an assignment of values in U
to variables in N such that all constraints in N are satisfied simultaneously. If this is
the case, we call this assignment a solution of N . We say M is minimal if, for each
constraint (xRy) in N , R is the minimal (or strongest) relation between x and y that
is entailed by N . We say N is globally consistent if every partial solution (i.e. a par-
tial assignment that satisfies all constraints in a restriction of N ) can be extended to a
solution of N .

The consistency problem and the minimal labelling problem (MLP) are two major
reasoning tasks of QSTR research. The consistency problem decides whether a QCN
has a solution and the MLP decides if it is minimal. These problems have been inves-
tigated in depth in the past three decades for many qualitative calculi in the literature,
see e.g. [1,2,3,5,15,18,21,23,26].

Both problems are in general NP-hard for IA, CRA, RCC5/8, and RA. Local con-
sistency algorithms like path consistency algorithm (PCA) are designed for solving
these problems approximately [1]. A QCN N = {viRijvj : 1 ≤ i, j ≤ n} is path
consistent (PC) if each Rij is non-empty and contained in the (weak) composition
of Rik and Rkj for any k. Applying PCA will either find an inconsistency in N in
case N is not path consistent, or return a path consistent network that is equivalent
to N , which is also known as the algebraic closure or a-closure of N [19]. A QCN
N = {viRijvj : 1 ≤ i, j ≤ n} is called basic or atomic if every relation Rij is an
atomic relation inM.

Interestingly, for every qualitative calculusMmentioned in this paper and any basic
QCNN overM, path consistency ensures consistency, i.e. any path consistent network
has a solution. This holds also for any tractable subclass S of M that contains all
basic relations and is closed under (weak) composition, intersection, and converse. For
example, it was found in [21] that there exists a unique maximal tractable subclass
of IA, written as H and called ORD-Horn. It was proved, also in [21], that any path
consistent network overH is consistent.

In this paper, we study distributive subalgebras of qualitative calculi. We assume
M is a qualitative calculus which satisfies the condition that every path consistent basic
QCN has a solution. A subalgebra of M is a subclass of M that contains all atomic
relations and is closed under (weak) composition, intersection, and converse. A subal-
gebra S is distributive if (weak) composition distributives over nonempty intersection,
i.e. R � (S ∩ T ) = (R � S) ∩ (R � T ) and (S ∩ T ) � R = (S � R) ∩ (T � R) for any
R,S, T ∈ S with S ∩ T 6= ∅.

Although distributive subalgebra is a new concept proposed recently in [9,15], sev-
eral examples of distributive subalgebras have been studied before. The first such a
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subalgebra, the subclass of convex IA relations CIA, was found in [17], where Ligozat
also proved that path consistent networks over CIA is globally consistent. As every glob-
ally consistent network is minimal, this shows that path consistent networks over CIA is
also minimal. Later, Chandra and Pujari [5] defined a class of convex RCC8 relations
(written D8

41 in [15] and this paper) and proved that every path consistent network over
D8

41 is minimal. More recently, Amaneddine and Condotta [2] found another subclass
of IA, written as SIA, and proved that CIA and SIA are the only maximal subalgebras
of IA such that path consistent networks over which are globally consistent. It turns out
that these subalgebras are all maximal distributive subalgebras of IA or RCC8 [15].

The important concept of distributive subalgebra was also found very useful in iden-
tifying a subnetwork that is equivalent to a given one but has no redundant relations.
Such a subnetwork is called a prime subnetwork in [9,15]. It was proved there that every
constraint network over a distributive subalgebra of RCC5/8 has a unique prime sub-
network, which can be found in cubic time; and, in contrast, it is in general NP-hard to
decide if a constraint is non-redundant in an arbitrary RCC5/8 constraint network. The
cubic time algorithm for finding the prime subnetwork is very useful in applications
such as computing, storing, and compressing the relationships between spatial objects
and hence saving space for storage and communication. We refer the reader to [15] for
a real-world application example and detailed discussions.

As the focus of [9] and [15] is redundancy in RCC5/8 constraint networks, there are
several interesting topics left untouched, which are the subject of this paper. We first
give a characterisation of distributive subalgebras in terms of intersections of relations
and then compute and find all maximal distributive subalgebras for every qualitative
calculus mentioned before. Lastly, we establish two nice properties regarding partial
path consistency [4] and variable elimination [30] of constraint networks over a dis-
tributive subalgebra. These properties will play an important role in efficient reasoning
with sparse constraint networks involving a large number of variables.

The remainder of this paper is organised as follows. In Section 2, we first give a
short introduction of the qualitative calculi mentioned above and recall basic notions
including weak composition, path and global consistency. Section 3 then presents a
characterisation of distributive subalgebras and Section 4 shows how we compute and
find all maximal distributive subalgebras of these calculi. We then prove in Section 5
two important properties of distributive subalgebras that will be used in efficient rea-
soning with large sparse constraint networks. In Section 6 we discuss the connection
between distributive subalgebras and conceptual neighbourhood graphs, and relation
with classical CSPs. The last section then concludes the paper.

2 Qualitative Calculi

In this section, we first recall the qualitative calculi PA, IA, CRA, RCC5/8, and RA,
and then, recall some relevant notions and results of these constraint languages.

Suppose U is a domain of spatial or temporal entities. Write Rel(U) for the Boolean
algebra of binary relations on U . A qualitative calculus [19] M on U is defined as
a finite Boolean subalgebra of Rel(U) which has an atom that contains the identity



4 Zhiguo Long and Sanjiang Li

relation idU on U and is closed under converse, i.e., R is inM iff its converse

R−1 = {(a, b) ∈ U × U : (b, a) ∈ R}

is inM [19]. A relation α in a qualitative calculusM is atomic or basic if it is an atom
inM. Note that the set of basic relations of a qualitative calculus is jointly exhaustive
and pairwise disjoint (JEPD). Well-known qualitative calculi include, among others,
PA [28,26], IA [1], CRA [12,18], RA [14,3], and RCC5 and RCC8 [22].

2.1 Point Algebra and Interval Algebra

Definition 1 (Point Algebra (PA) [28]). Let U be the set of real numbers. The Point
Algebra is the Boolean subalgebra generated by the JEPD set of relations {<,>,=},
where <,>,= are defined as usual.

PA contains eight relations, viz. the three basic relations<,>,=, the empty relation,
the universal relation ?, and three non-basic relations ≤,≥, 6=.

Definition 2 (Interval Algebra (IA) [1]). Let U be the set of closed intervals on the
real line. Thirteen binary relations between two intervals x = [x−, x+] and y =
[y−, y+] are defined by the order of the four endpoints of x and y, see Table 1. The
Interval Algebra is generated by these JEPD relations.

We write

BIA = {b,m,o, s,d, f,eq, fi,di, si,oi,mi,bi} (1)

for the set of basic IA relations. Ligozat [17] defines the dimension of a basic interval
relation as 2 minus the number of equalities appearing in the definition of the relation
(see Table 1). That is, for basic relations we have

dim(eq) = 0,dim(m) = dim(s) = dim(f) = 1,dim(b) = dim(o) = dim(d) = 2.

For a non-basic relation R we define

dim(R) = max{dim(θ) : θ is a basic relation in R}. (2)

Using the conceptual neighbourhood graph (CNG) of IA [13], Ligozat [17] gives a
geometrical characterisation for ORD-Horn relations. Consider the CNG of IA (shown
in Table 1 (ii)) as a partially ordered set (Bint,�) (by interpreting any relation to be
smaller than its right or upper neighbours). For θ1, θ2 ∈ Bint with θ1 � θ2, we write
[θ1, θ2] as the set of basic interval relations θ such that θ1 � θ � θ2, and call such a
relation a convex interval relation. An IA relation R is called pre-convex if it can be ob-
tained from a convex relation by removing one or more basic relations with dimension
lower than R. For example, [o,eq] = {o, s, fi,eq} is a convex relation and {o,eq} is
a pre-convex relation. Ligozat has shown that ORD-Horn relations are precisely pre-
convex relations. Every path consistent network over H is consistent [21]. In addition,
every path consistent network over CIA is globally consistent and minimal [17].
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Relation Symb. Conv. Dim. Definition
before b bi 2 x+ < y−

meets m mi 1 x+ = y−

overlaps o oi 2 x− < y− < x+ < y+

starts s si 1 x− = y− < x+ < y+

during d di 2 y− < x− < x+ < y+

finishes f fi 1 y− < x− < x+ = y+

equals eq eq 0 x− = y− < x+ = y+

(i) (ii)
Table 1: IA basic relations (i) definitions and (ii) conceptual neighbourhood graph,
where x = [x−, x+], y = [y−, y+] are two intervals.

2.2 RCC5 and RCC8

The RCC5/8 constraint language is a fragment of the Region Connection Calculus
(RCC) [22]. The RCC is a first order theory based on a binary connectedness relation
and has canonical models defined over connected topological spaces [25,16]. Since ap-
plications in GIS and many other spatial reasoning tasks mainly consider objects repre-
sented in the real plane, in this paper, we interpret regions as non-empty regular closed
sets in the plane, and say two regions are connected if they have non-empty intersection.

Definition 3 (RCC5 and RCC8 Algebras). Let U be the set of non-empty regular
closed sets, or regions, in the real plane. The RCC8 algebra is generated by the eight
topological relations

DC,EC,PO,EQ,TPP,NTPP,TPP−1,NTPP−1,

where DC,EC,PO,TPP and NTPP are defined in Table 2, EQ is the identity
relation, and TPP−1 and NTPP−1 are the converses of TPP and NTPP respec-
tively (see Fig. 1 for illustration). RCC5 is the sub-algebra of RCC8 generated by the
five part-whole relations

DR,PO,EQ,PP,PP−1,

where DR = DC∪EC, PP = TPP∪NTPP, and PP−1 = TPP−1∪NTPP−1.

Relation Definition Relation Definition
DC a ∩ b = ∅ TPP a ⊂ b, a 6⊂ b◦
EC a ∩ b 6= ∅, a◦ ∩ b◦ = ∅ NTPP a ⊂ b◦
PO a * b, b * a, a◦ ∩ b◦ 6= ∅ EQ a = b

Table 2: Topological interpretation of basic RCC8 relations in the plane, where a, b are
regions, and a◦, b◦ are the interiors of a, b, respectively.
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Fig. 1: Illustration for basic relations in RCC5 / RCC8

2.3 Cardinal Relation Algebra and Rectangle Algebra

Definition 4 (Cardinal Relation Algebra (CRA) [12,18]). Let U be the real plane.
Define binary relationsNW,N,NE,W,EQ,E, SW,S, SE as in Fig. 2. The Cardinal
Relation Algebra is generated by these nine JEPD relations.

Relation Definition
NW x < x′, y > y′

N x = x′, y > y′

NW x > x′, y > y′

W x < x′, y = y′

EQ x = x′, y = y′

E x > x′, y = y′

SW x < x′, y < y′

S x = x′, y < y′

SW x > x′, y < y′

Fig. 2: Basic relations of CRA. Fig. 3: Examples: P1 NW Q and P2 E Q

CRA can be viewed as an extension of PA to the plane. Similarly, IA can also
be extended to regions in the plane. We assume an orthogonal basis in the Euclidean
plane. For a bounded region a, its minimum bounding rectangle (MBR), denoted by
M(a), is the smallest rectangle which contains a and whose sides are parallel to the
axes of the basis. We write Ix(a) and Iy(a) as, respectively, the x- and y-projections
ofM(a). The basic rectangle relation between two bounded regions a, b is α ⊗ β iff
(Ix(a), Ix(b)) ∈ α and (Iy(a), Iy(b)) ∈ β, where α, β are two basic IA relations (see
Figure 4 for illustration). We write BRA for the set of basic rectangle relations, i.e.,

BRA = {α⊗ β : α, β ∈ BIA}. (3)

There are 169 different basic rectangle relations in BRA. The Rectangle Algebra (RA)
is the algebra generated by relations in BRA [3].
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(i) (ii)

Fig. 4: (i) The minimum bounding rectangleM(b) of a region b; (ii) the RA relation of
a to b is m⊗ o.

Henceforth, for two IA relations R,S, we will write R ⊗ S for the (non-basic)
relation {α ⊗ β : α ∈ R, β ∈ S, α, β ∈ B}; analogously, for two subclasses of IA
relations R and S, we will write R ⊗ S for the set of RA relations {R ⊗ S : R ∈
R, S ∈ S}. The following lemma is straightforward.

Lemma 1. Let ∆ = {vi(Rij ⊗ Sij)vj}ni,j=1 be an RA network, where Rij and Sij are
arbitrary IA relations. Then ∆ is satisfiable iff its projections ∆x = {xiRijxj}ni,j=1

and ∆y = {yiSijyj}ni,j=1 are satisfiable IA networks.

As a consequence, we know H ⊗ H is a tractable subclass of RA. No maximal
tractable subclass has been identified for RA, but a larger tractable subclass of RA has
been identified in [3].

2.4 Properties of Qualitative Calculi

While PA, IA, CRA and RA are all closed under composition, the composition of two
basic RCC5/8 relations is not necessarily a relation in RCC5/8 [11,16].

For two RCC5/8 relations R and S, recall that we write R � S for the weak compo-
sition of R and S. Suppose α, β, γ are three basic RCC5/8 relations. Then we have

γ ∈ α � β ⇔ γ ∩ (α ◦ β) 6= ∅. (4)

The weak composition of two (non-basic) relations R and S is computed as follows:

R � S =
⋃
{α � β : α ∈ R, β ∈ S}.

Because PA, IA, CRA and RA are closed under composition, we have

Proposition 1. For M being PA, IA, CRA or RA, weak composition is the same as
composition, i.e. for any R,S ∈M, we have R ◦ S = R � S.
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Proposition 2 (See [10]). With the weak composition operation �, the converse opera-
tion −1, and the identity relation, PA, IA, RCC5/8, CRA, and RA are relation algebras.
In particular, the weak composition operation � is associative. Moreover, for PA, IA,
RCC5/8, CRA, and RA relations R,S, T , we have the following cycle law

(R � S) ∩ T 6= ∅⇔ (R−1 � T ) ∩ S 6= ∅⇔ (T � S−1) ∩R 6= ∅. (5)

Figure 5 gives an illustration of the cycle law.

Fig. 5: Illustration of the cycle law (from [15]).

In the following, we assume � takes precedence over ∩.
We say a network N = {viRijvj : 1 ≤ i, j ≤ n} is path consistent if for every

1 ≤ i, j, k ≤ n, we have

∅ 6=Rij ⊆ Rik �Rkj .

In general, path consistency can be enforced by calling the following rule until an empty
constraint occurs (then N is inconsistent) or the network becomes stable

Rij ← (Rik �Rkj) ∩Rij ,

where 1 ≤ i, j, k ≤ n are arbitrary. A cubic time algorithm, henceforth called the path
consistency algorithm or PCA, has been devised to enforce path consistency. For any
qualitative constraint network N , the PCA either detects inconsistency of N or returns
a path consistent network, written Np, which is equivalent to N and also known as the
algebraic closure or a-closure of N [19]. It is easy to see that in this case Np refines
N , i.e., we have Sij ⊆ Rij for each constraint (viSijvj) in Np.

Definition 5. LetM be a qualitative calculus with universe U . SupposeN = {viTijvj :
1 ≤ i, j ≤ n} is a QCN over M and V = {v1, ..., vn}. For a pair of variables
vi, vj ∈ V (i 6= j) and a basic relation α in Tij , we say α is feasible if there exists a
solution (a1, a2, . . . , an) in U of N such that (ai, aj) is an instance of α. We say N
is minimal if α is feasible for every pair of variables vi, vj (i 6= j) and every basic
relation α in Tij .

A scenario of N is a basic network with form Θ = {viθijvj : 1 ≤ i, j ≤ n},
where each θij is a basic relation in Tij . A scenario is consistent if it has a solution.
We sayN is weakly globally consistent (globally consistent, respectively) if any consis-
tent scenario (solution, respectively) of N↓V ′ can be extended to a consistent scenario
(solution, respectively) of N , where V ′ is any nonempty subset of V and N↓V ′ is the
restriction of N to V ′.
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It is clear that every (weakly) globally consistent network is consistent and minimal.
In the following, we assume the qualitative calculusM has the following properties:

M is a relation algebra with operations �, idU , and −1; (6)
Every path consistent basic network overM is consistent. (7)

3 Distributive Subalgebras

Definition 6. [15] Let M be a qualitative calculus. A subclass S of M is called a
subalgebra if S contains all basic relations and is closed under converse, weak compo-
sition, and intersection. A subalgebra S is distributive if weak composition distributes
over non-empty intersections of relations in S, i.e. R � (S ∩ T ) = (R � S) ∩ (R � T )
and (S ∩ T ) �R = (S �R) ∩ (T �R) for any R,S, T ∈ S with S ∩ T 6= ∅.

Suppose X is a subclass ofM. We write X̂ for the subalgebra ofM generated by
X , i.e. X̂ is the closure of X inM under intersection, weak composition, and converse.
In particular, B̂ denotes the closure of B inM.

Proposition 3. LetM be one of the calculi PA, IA, RCC5/8, CRA, RA and B the set of
basic relations ofM. Then B̂ is a distributive subalgebra.

This shows that the above definition of distributive subalgebra is well-defined for
these calculi and every distributive subalgebra ofM contains B̂ as a subclass.

3.1 Distributive Subalgebra Is Helly

Helly’s theorem [7] is a very useful result in discrete geometry. For n convex subsets of
R, it says if the intersection of any two of them is non-empty, then the intersection of the
whole collection is also non-empty. Interestingly, relations in a distributive subalgebra
have a similar property as convex sets in the real line and, moreover, relations having
such property are exactly those in a distributive subalgebra.

Definition 7. A subclass S of a qualitative calculus is called Helly if, for everyR,S, T ∈
S, we have

R ∩ S ∩ T 6= ∅ iff R ∩ S 6= ∅, R ∩ T 6= ∅, S ∩ T 6= ∅. (8)

If S is a subalgebra, then it is straightforward to prove that S is Helly if and only if, for
any n relations R1, ..., Rn in S, we have

n⋂
i=1

Ri 6= ∅ iff (∀1 ≤ i 6= j ≤ n) Ri ∩Rj 6= ∅ (9)

The following result is first proved for RCC5/8 in [15]. Following a similar proof,
it is straightforward to show this holds in general.
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Lemma 2 ([15]). Suppose M is a qualitative calculus that satisfies (6), i.e. M, with
the weak composition, the converse operation, and the identity relation, is a relation
algebra. Then every distributive subalgebra ofM is Helly.

Surprisingly, the above condition is also sufficient.

Theorem 1. SupposeM is a qualitative calculus that satisfies (6). Let S be a subalge-
bra ofM. Then S is distributive if and only if it is Helly.

Proof. Since Lemma 2 already shows the “only if” part, we only need to show the “if”
part. SupposeR,S, T are three relations in S. We first noteR�(S∩T ) ⊆ R�S∩R�T .
Furthermore, for any basic relation γ, by using the cycle law twice, we have

γ 6∈ R � (S ∩ T )⇔ {γ} ∩R � (S ∩ T ) = ∅
⇔ R−1 � γ ∩ S ∩ T = ∅
⇔ R−1 � γ ∩ S = ∅ or R−1 � γ ∩ T = ∅
⇔ {γ} ∩R � S = ∅ or {γ} ∩R � T = ∅
⇔ γ 6∈ R � S or γ 6∈ R � T.

This showsR� (S∩T ) = R�S∩R�T . That is, S is Helly only if it is distributive. ut

3.2 Path Consistency Implies Weakly Global Consistency

We have the following very important result for distributive subalgebras.

Theorem 2. Let M be a qualitative calculus that satisfies (6) and (7). Suppose S is
a distributive subalgebra ofM. Then every path consistent network over S is weakly
globally consistent and minimal.

This result was first proved for RCC5/8 in [15]. If every path consistent network over
S is consistent, then, following the proof in [15, Theorem 18], we can show every path
consistent network over S is also weakly globally consistent and minimal. From the
analysis in the following section, we can easily see that this is the case for PA, IA,
CRA, RA, and RCC5/8. To show the general case, the proof is given in Appendix.

4 Maximal Distributive Subalgebras

A distributive subalgebra S is maximal if there is no other distributive subalgebra that
properly contains S. In this section, we compute and list all maximal distributive sub-
algebras for RA, IA, CRA, RA, and RCC5/8.

4.1 Maximal Distributive Subalgebras of PA, IA, RCC5, and RCC8

Let X be a subclass ofM. Recall we write X̂ for the subalgebra ofM generated by X
and write B for the set of basic relations inM. ForM being PA, IA, RCC5, or RCC8,
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to compute the maximal distributive subalgebras ofM, we first compute B̂, and then

check by a program if ̂̂B ∪ Z satisfies distributivity for some subset Z ofM.

Write D for the set of relations R inM such that ̂̂B ∪ {R} satisfies distributivity.

We then check for every pair of relationsR,S inD if ̂B̂ ∪ {R,S} satisfies distributivity.
If this is the case, then we say R has d-relation to S. Fortunately, the result shows that
there are precisely two disjoint subsets X and Y (which form a partition ofD) such that
each relation R in X (Y , respectively) has d-relation to every other relation in X (Y ,
respectively), but has no d-relation to any relation in Y (X , respectively). Moreover,
̂̂B ∪ X and ̂̂B ∪ Y are both distributive subalgebras ofM. It is clear that these are the
only maximal distributive subalgebras ofM.

In the following, we list the maximal distributive subalgebras of PA and IA and refer
to [15, Appendix B] for those of RCC5 and RCC8.

PA. The closure of basic relations of PA contains 4 non-empty relations

B̂PA = {<,>,=, ?}. (10)

One of the maximal distributive subalgebras contains 6 non-empty relations

<,>,=, ?,≤,≥, (11)

which is exactly the subclass CPA of convex PA relations; the other contains 5 non-
empty relations

<,>,=, ?, 6=, (12)

which is exactly the subclass SPA identified in [2].

IA. The closure of basic IA relations, B̂IA, contains 29 non-empty relations (see Ta-
ble 3). Our computation shows that IA has two maximal distributive subalgebra, one
contains additional 53 non-empty relations, shown in Table 4, which is exactly the sub-
class CIA of convex IA relations; the other contains additional 52 non-empty relations,
shown in Table 5, which is exactly the subclass SIA identified in [2].

4.2 Maximal Distributive Subalgebras of CRA

The procedure to compute the maximal distributive subalgebras of CRA is similar to
the procedure for PA, IA, RCC5 and RCC8, but with some differences.

First, we compute B̂, and then check by a program if ̂̂B ∪ Z satisfies distributivity
for some subset Z of CRA.

Write D for the set of relations R in CRA such that ̂̂B ∪ {R} satisfies distributivity.

There are 8 different subalgebras in the set of subalgebras { ̂̂B ∪ {R} : R ∈ D}. We
call these 8 distributive subalgebras the seed subalgebras. Among these, only 4 are not
contained in any other ones. We call these the candidate subalgebras. We then verify
the following three facts:
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Table 3: The closure of basic IA relations, BIA, contains 29 non-empty relations.
eq d oi f
fi d o s
f d di o oi s si f fi eq
f fi eq bi
si bi oi mi
s bi di oi mi si
s si eq bi d oi mi f
mi bi d di o oi mi s si f fi eq
m b
oi b o m
o b di o m fi
di b d o m s
di oi si b d di o oi m s si f fi eq
di o fi b bi d di o oi m mi s si f fi eq
d

Table 4: Additional relations contained in CIA.
fi eq di fi d di o oi mi s si f fi eq
f eq di si d di o oi m s si f fi eq
si eq di si fi eq d di o oi m mi s si f fi eq
s eq di oi si f fi eq bi mi
oi f di oi mi si bi oi mi f
oi si di oi mi si f fi eq bi oi mi si
oi si f eq di o s si fi eq bi oi mi si f eq
oi mi di o m fi bi di oi mi si f fi eq
oi mi f di o m s si fi eq bi d oi mi s si f eq
oi mi si d f bi d di o oi m mi s si f fi eq
oi mi si f eq d s b m
o fi d s f eq b o m fi
o s d oi s si f eq b o m s
o s fi eq d oi mi f b o m s fi eq
o m d oi mi s si f eq b di o m s si fi eq
o m fi d o s f fi eq b d o m s f fi eq
o m s d o m s b d di o oi m mi s si f fi eq
o m s fi eq d o m s f fi eq
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Table 5: Additional relations contained in SIA.
f fi bi d di o oi s si b d di o oi m s si
s si bi d di o oi s si f fi eq b bi d di o oi
di oi bi d di o oi mi b bi d di o oi f fi
di o bi d di o oi mi f fi b bi d di o oi s si
d oi bi d di o oi mi s si b bi d di o oi s si f fi eq
d o b o b bi d di o oi mi
d di o oi b di o b bi d di o oi mi f fi
d di o oi f fi b di o fi b bi d di o oi mi s si
d di o oi s si b di o m b bi d di o oi mi s si f fi eq
bi oi b d o b bi d di o oi m
bi di oi b d o s b bi d di o oi m f fi
bi di oi si b d o m b bi d di o oi m s si
bi di oi mi b d di o oi b bi d di o oi m s si f fi eq
bi d oi b d di o oi f fi b bi d di o oi m mi
bi d oi f b d di o oi s si b bi d di o oi m mi f fi
bi d oi mi b d di o oi s si f fi eq b bi d di o oi m mi s si
bi d di o oi b d di o oi m
bi d di o oi f fi b d di o oi m f fi

1. For any pair of different candidate subalgebras Si and Sj , we have Ŝi ∪ Sj is not
distributive.

2. For any pair of non-candidate subalgebras Si and Sj , we have Ŝi ∪ Sj is either a
candidate subalgebra or not distributive.

3. For any pair of subalgebras Si and Sj s.t. Si is a candidate subalgebra, Sj is a
non-candidate subalgebra, and Sj 6⊆ Si, we have Ŝi ∪ Sj is not distributive.

Based upon the above facts, we show that the four candidate subalgebras are the only
maximal distributive subalgebras of CRA.

To prove the maximality, suppose S is one of the four candidate subalgebras. Let
R be a relation in CRA which is not in S. Then ̂S ∪ {R} is not distributive. This is

because, by the above facts either ̂̂B ∪ {R} is not distributive or ̂̂B ∪ {R} is one of the

8 subalgebras and ̂B̂ ∪ {R} ∪ S is not distributive.
To prove there are no other maximal distributive subalgebras, suppose S ′ is a dis-

tributive subalgebra that is not a subset of any of the four candidate subalgebras. S ′
must contain at least two relations in D, say R1 and R2. By the above facts, we know

the closure of the union of ̂B̂ ∪ {R1} and ̂B̂ ∪ {R2} is either not distributive or one
of the four maximal distributive subalgebra. If it is the latter case, then S ′ would be
either not distributive or a superset of one of the four maximal distributive subalgebras.
Note that the latter situation cannot happen as it contradicts the maximality of the four
maximal distributive subalgebras.

Interestingly, these four maximal distributive subalgebras of CRA correspond ex-
actly to the Cartesian products of the maximal distributive subalgebras of PA, viz.
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CPA ⊗CPA, CPA ⊗SPA,SPA ⊗CPA,SPA ⊗SPA, where we interpret in a natural way a
CRA relation e.g. {NW,N} as {<,=} ⊗ {>}.

4.3 Maximal Distributive Subalgebras of RA

Unlike the other small calculi we have discussed, RA has a large number (169) of
basic relations, resulting a total of 2169 relations in it. It becomes infeasible to exploit
the former brute-force procedure to compute the maximal distributive subalgebras of
RA. However, noting that the maximal distributive subalgebras of CRA are exactly the
Cartesian products of the two maximal distributive subalgebras of PA, we conjecture
that a similar situation happens to RA. This is indeed true.

Theorem 3. RA has exactly four maximal distributive subalgebras, which are the Carte-
sian products of the two maximal distributive subalgebras of IA.

Proof. For convenience, we write D1 and D2 for the maximal distributive subalgebras
CIA and SIA. It is straightforward to show that their Cartesian products Di ⊗ Dj (1 ≤
i, j ≤ 2) are all distributive subalgebras of RA.

In order to show the maximality of Di ⊗ Dj , suppose R 6∈ Di ⊗ Dj . We show
that the subalgebra ̂{R} ∪ Di ⊗Dj is not distributive. Let Rx = {α ∈ BIA | ∃β ∈
BIA s.t. (α, β) ∈ R} and define Ry similarly. Note that R is always contained in Rx ⊗
Ry . There are two cases.

Case 1.R ( Rx⊗Ry . Then there exist α0 ∈ Rx and β0 ∈ Ry s.t. α0⊗β0 6∈ R. Let
S = {α0}⊗ ? and T = ?⊗{β0}. Note that B̂RA is strictly contained in Di⊗Dj . Thus
S, T ∈ ̂{R} ∪ Di ⊗Dj . It is easy to see that R ∩ S 6= ∅, R ∩ T 6= ∅, and S ∩ T 6= ∅,
but R∩S ∩T = ∅. By Theorem 1, this implies that ̂{R} ∪ Di ⊗Dj is not distributive.

Case 2. R = Rx ⊗ Ry . Then we have either Rx 6∈ Di or Ry 6∈ Dj . Take Rx 6∈
Di as an example. Then ̂{Rx} ∪ Di is not distributive. This implies that there exist
R0, S0, T0 ∈ ̂{Rx} ∪ Di which do not satisfy Helly’s condition (8). Note that R0 ⊗ ?,
S0⊗?, and T0⊗? are all in ̂{R} ∪ Di ⊗Dj . However, the three relationsR0⊗?, S0⊗?,
and T0 ⊗ ? do not satisfy (8), which means that ̂{R} ∪ Di ⊗Dj is not distributive.

The above proves the maximality of Di ⊗ Dj . To show the uniqueness, suppose S
is a distributive subalgebra. We show S is a subset of Di ⊗Dj for some i, j.

First, we show for every R ∈ S we have R = Rx ⊗ Ry . Suppose not. Then there
exist α ∈ Rx and β ∈ Ry s.t. α ⊗ β 6∈ R. Similar to the proof of the maximality,
we know both {α} ⊗ ? and ? ⊗ {β} are in B̂ and, hence, in S . The three relations
R, {α} ⊗ ?, ?⊗ {β}, however, do not satisfy Helly’s condition (8).

Next, we show that S is a subset of Di ⊗ Dj for some i, j. Write Sx = {Rx :
R ∈ S} and Sy = {Ry : R ∈ S}. We assert that Sx and Sy are both distributive
subalgebras of IA. We first note that if R = Rx ⊗ Ry ∈ S, then both Rx ⊗ ? and
? ⊗ Ry are in S. This is because, for instance, {eq} ⊗ ? is a relation in B̂RA ⊆ S and
(Rx⊗Ry)� ({eq}⊗?) = Rx⊗?. It is easy to check that {Rx⊗? : Rx⊗Ry ∈ S} is a
distributive subalgebra which is contained in S. Now, it is clear that Sx is a distributive
subalgebra of IA and, hence, contained in eitherD1 orD2. The same conclusion applies
to Sy . Therefore, S is a subset of Di ⊗Dj for some i, j. ut
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The above proof also applies to CRA.

5 Partial Path Consistency and Variable Elimination

In this section, we present two nice properties of distributive subalgebras, which will
play an important role in reasoning with large sparse constraint networks.

5.1 Variable Elimination

In [30], Zhang and Marisetti proposed a novel variable elimination method for solv-
ing (classical and finite) connected row convex (CRC) constraints [8]. The idea is to
eliminate the variables one by one until a trivial problem is reached. Although very
simple, the algorithm is able to make use of the sparsity of the problem instances and
performs very well. One key property of CRC constraints is that any strong path con-
sistent CRC constraint network is globally consistent. Recall that a similar property has
been identified in our Theorem 2 for constraint networks over a distributive subalgebra.
The following theorem shows that the same variable elimination method also applies to
constraint networks over a distributive subalgebra,

Theorem 4. LetM be a qualitative calculus that satisfies (6) and (7). Suppose N =
{viRijvj | 1 ≤ i, j ≤ n} is a network over a distributive subalgebra S of M and
V = {v1, ..., vn}. If Rij ⊆ Rin � Rnj for every 1 ≤ i, j < n, then N−n is consistent
only if N is consistent, where N−n is the restriction of N to {v1, ..., vn−1}.

Proof. Suppose {δij : 1 ≤ i, j < n} is a consistent scenario ofN−n. First, write Ti for
Rn,i and let T̂i =

⋂n−1
j=1 Tj � δji. We only need to show T̂j ⊆ T̂i � δij . Note

T̂i � δij = (

n−1⋂
j=1

Tj′ � δj′i) � δij =
n−1⋂
j′=1

(Tj′ � δj′i � δji) ⊇
n−1⋂
j′=1

Tj′ � δj′j = T̂j .

Second, we show T̂i is not empty. To this end, by Helly’s condition (8), we only
need to show Tj � δji ∩ Tj′ � δj′i 6= ∅ for any j 6= j′. Using the cycle law twice, we
have

Tj � δji ∩ Tj′ � δj′i 6= ∅ iff Tj′ � δj′i � δij ∩ Tj 6= ∅
iff Tj′

−1 � Tj ∩ δj′i � δij 6= ∅
iff Rj′n �Rnj ∩ δj′i � δij 6= ∅.

Because δj′j ⊆ Rj′n �Rnj and δj′j ⊆ δj′i � δij , we have Rj′n �Rnj ∩ δj′i � δij 6= ∅,
hence Tj � δji ∩ Tj′ � δj′i 6= ∅. ut

By the previous theorem, we can directly devise an efficient variable elimination al-
gorithm for constraint networks over a distributive subalgebra. At each step, we choose
the node for deleting which has the smallest degree. In particular, we can simply remove
all nodes with degree 1 from the constraint network without affecting its consistency.
This is especially useful for efficient reasoning with large sparse constraint networks.
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5.2 Partial Path Consistency

Another efficient method for solving sparse constraint networks is the partial path con-
sistency (PPC) algorithm proposed by Bliek and Sam-Haroud [4]. The idea is to enforce
path consistency (PC) on sparse graphs by triangulating instead of completing them.
The authors demonstrated that, as far as CRC constraints are concerned, the pruning
capacity of PC on triangulated graphs and their completion are identical on the com-
mon edges. Recently, PPC has also been extended to qualitative spatial and temporal
constraint solving [6,23], where the authors proved that any PPC constraint network
over a maximal tractable subclass of IA or RCC8 is always consistent. However, for
constraint networks over these subclasses, the pruning capacity of PC on triangulated
graphs and their completion may be not identical on the common edges. In this sec-
tion, we show that the answer is affirmative for constraint networks over distributive
subalgebras.

We first recall several basic notions related to PPC introduced in [4].
An undirected graph G = (V,E) is triangulated or chordal if every cycle of length

greater than 3 has a chord, i.e. an edge connecting two non-consecutive vertices of the
cycle. For each v ∈ V , the adjacency set Adj(v), is defined as {w ∈ V : {v, w} ∈ E}.
A vertex v is simplicial ifAdj(v) is complete. Every chordal graph has a simplicial ver-
tex. Moreover, after removing a simplicial vertex and its incident edges from the graph,
a chordal graph remains chordal. The order in which simplicial vertices are successively
removed is called a perfect elimination order.

Lemma 3 ([4]). If G = (V,E) is an incomplete chordal graph, then one can add a
missing edge (u,w) with u,w ∈ V such that

– the graph G′ = (V,E ∪ {{u,w}}) is chordal graph; and
– the graph induced by X = {x|{u, x}, {x,w} ∈ E} is complete.

For a constraint network N = {viRijvj : 1 ≤ i, j ≤ n} over V = {v1, ..., vn},
the constraint graph of N is the undirected graph G(N ) = (V,E(N )), for which
we have {vi, vj} ∈ E(N ) iff Rij 6= ?. Given a constraint network N and a graph
G = (V,E), we say N is partial path consistent w.r.t. G iff for any 1 ≤ i, j, k ≤ n
with {vi, vj}, {vj , vk}, {vi, vk} ∈ E we have Rik ⊆ Rij �Rjk [6].

The following result was first proved for RCC8 in [24]. The proof given there is
also applicable to other calculi. We here give a slightly different proof which does not
use the weakly global consistency result.

Theorem 5. LetM be a qualitative calculus that satisfies (6) and (7). Suppose N =
{viRijvj | 1 ≤ i, j ≤ n} is a network over a distributive subalgebra S of M and
V = {v1, ..., vn}. Assume in addition that G = (V,E) is a chordal graph such that
E(N ) ⊆ E. Then enforcing partial path consistency on G is equivalent to enforcing
path consistency on the completion of G, in the sense that the relations computed for
the constraints in G are identical.

Proof. The proof is similar to the one given for CRC constraints [4, Theorem 3]. Sup-
pose we have a chordal graph G = (V,E) such that G(N ) ⊆ G andN is PPC w.r.t. G.
We will add to G the missing edges one by one until the graph is complete. To prove
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the theorem, we show that the relations of the constraints can be computed from the
existing ones so that each intermediate graph, including the complete graph, is path
consistent.

In the following we assume the order v1, . . . , vn is a perfect elimination order of
chordal graph G. Denote Si = {vn−i+1, . . . , vn}, Gi = G(Si) (the induced subgraph
of G by Si), and Fi = {vk ∈ N(vn−i) : k > n − i}, where N(vn−i) = {vj :
{vj , vn−i} ∈ E}.

We add the missing edges one by one to G in the following manner:

1. choose the largest i such that Gi is complete;
2. choose vertices vn−i, vj in G;
3. label the edge {vn−i, vj} (and resp. its reverse) with

Rn−i,j =
⋂

vk∈Fi

Rn−i,k �Rk,j .

After adding one edge, we prove G′, the resulting graph, is still path consistent.
First, we show the added label is non-empty. To show this, by Theorem 1, we need

only showRn−i,k �Rk,j ∩Rn−i,k′ �Rk′,j 6= ∅ for any vk 6= vk′ ∈ Fi. Such a pairwise
intersection is not empty because, by the cycle law of relation algebra, we have

Rn−i,k �Rk,j ∩Rn−i,k′ �Rk′,j 6= ∅ iff Rk,n−i �Rn−i,k′ ∩Rk,j �Rj,k′ 6= ∅.

Since G(Fi ∪ {vn−i}) and Gi are complete and path consistent, we have Rk,k′ ⊆
Rk,n−i�Rn−i,k′ andRk,k′ ⊆ Rk,j�Rj,k′ . This showsRk,n−i�Rn−i,k′∩Rk,j�Rj,k′ 6=
∅ and, hence, Rn−i,k �Rk,j ∩Rn−i,k′ �Rk′,j 6= ∅.

We then need to show the constraint network is path consistent for the three paths
〈n− i, j, k′〉, 〈n− i, k′, j〉, and 〈k′, n− i, j〉.

For 〈n − i, j, k′〉, note that, for any k ∈ Fi, we have Rn−i,k′ ⊆ Rn−i,k � Rk,k′ ⊆
Rn−i,k �Rk,j �Rj,k′ . Therefore, we have Rn−i,k′ ⊆

⋂
k∈Fi

Rn−i,k �Rk,j �Rj,k′ . By
distributivity, we know Rn−i,k′ ⊆ (

⋂
k∈Fi

Rn−i,k �Rk,j) �Rj,k′ = Rn−i,j �Rk,j .
For 〈n− i, k′, j〉, by the construction of Rn−i,j , we have Rn−i,j ⊆ Rn−i,k′ �Rk′,j .
For 〈k′, n − i, j〉, we need to show Rk′,j ⊆ Rk′,n−i � Rn−i,j . Note Rn−i,j =⋂

vk∈Fi
Rn−i,k � Rk,j . By distributivity, it is sufficient to show, for each k ∈ Fi,

Rk′,j ⊆ Rk′,n−i � Rn−i,k � Rk,j . Because G(Fi ∪ {vn−i}) is complete and PC,
Rk′,k ⊆ Rk′,n−i � Rn−i,k. Moreover, because G(Fi ∪ {vj}) is complete and PC by
construction and induction, Rk′,j ⊆ Rk′,k �Rk,j ⊆ Rk′,n−i �Rn−i,k �Rk,j .

Thus, after adding a missing edge, the resulting graph remains path-consistent. At
last we will get the complete graph, which is equivalent to the completion of G. Note
that the label of every edge in G is not changed. This finishes the proof. ut

6 Further Discussion

In this section we discuss the relation of distributive subalgebras with conceptual neigh-
bourhood graphs (CNGs) [13] and star distributivity [20] of classical CSPs.
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6.1 Distributive Subalgebras and Conceptual Neighbourhood Graph

As we have seen, the classes of convex IA and RCC8 relations are maximal distributive
subalgebras of IA and RCC8 respectively. For IA, Ligozat [17] characterises the convex
relations by using the CNG of IA [13] (shown in Table 1 (ii)). An IA relation is convex
if it is an “interval” [α, β] containing all the relations between its two endpoint relations
α, β in the CNG. The subclass of convex IA relations is exactly the maximal distributive
subalgebra CIA.

Similar idea applies to PA and RCC5 directly. For PA, the CNG is shown in the
left of Figure 6. From the CNG of PA, we observe the “convex” relations correspond
to relations in CPA = {<,=, >,≤,≥}, one of the maximal distributive subalgebras of
PA. For RCC5, the CNG is shown in the middle of Figure 6. The subclass of convex
RCC5 relations is precisely the maximal distributive subalgebra D5

14 specified in [15].

   DR PO

PP

1PP−

EQ
DC EC PO

EQ

NTPPi TPPi' PO'

TPP'

NTPPTPP

TPPi

Fig. 6: CNG of PA, RCC5, and RCC8

The CNG of CRA is constructed by using the CNG of PA. For example, note that <
and = are conceptual neighbours in the CNG of PA, and NW is defined as x < x′ and
y > y′ and N is defined as x = x′ and y > y′. Then N and NW should be conceptual
neighbours in CRA. The complete CNG of CRA is given in [18] and the subclass of
convex CRA relations corresponds to the maximal distributive subalgebra that is the
Cartesian product of CPA and itself. Like CRA, the CNG of RA is constructed by using
the CNG of IA. The subclass of convex RA relations [3] is the maximal distributive
subalgebra that is the Cartesian product of CIA and itself.

For RCC8, the situation is a little different. We need to revise the CNG by intro-
ducing three imaginary relations TPP′,TPP−1

′
and PO′ (see Figure 6, right). After

this modification, Chandra and Pujari [5] identified the class of convex RCC8 relations,
which is precisely the maximal distributive subalgebra D8

41 specified in [15].
A natural question arises as, “Can we obtain each maximal distributive subalge-

bra by designing an appropriate CNG?” The answer seems negative as the maximal
distributive subalgebra SPA contains 6= but does not contain either ≤ or ≥.

6.2 Relation with Classical CSPs

For finite domain CSPs, Montanari observed properties similar to the distributivity in
this paper. In [20], Montanari defined two different concept related to distributivity. One
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is a distributive set of relations w.r.t. set Xk and the other is star-distributive constraint
network. The second concept is very similar to our notion of distributivity, except that
it only requires the relations to form a closure w.r.t. the network. A constraint network
over a distributive subalgebra is always star-distributive, but it is not clear whether a
star-distributive network is always over a distributive subalgebra.

As we have seen, relations in a distributive subalgebra exhibit convexity in Helly’s
sense. In finite CSP, row convex constraints [27] and (the more general) tree convex
constraints [29] enjoy a similar property, which is specified w.r.t. the “rows” or “images”
of the constraints rather than the constraints themselves. The relationsR,S, T below are
all CRC constraints. Moreover, we have R � (S ∩ T ) 6= R �S ∩R � T and R∩S 6= ∅,
R ∩ T 6= ∅, S ∩ T 6= ∅ but R ∩ S ∩ T = ∅. This shows that CRC constraints are not
always distributive and do not always satisfy Helly’s condition (8).

 1 0 0
1 1 0
0 0 1

  1 1 1
0 0 1
0 0 1

  0 0 1
1 1 1
0 1 0

  0 0 1
0 0 1
0 0 0

  0 0 1
1 1 1
0 0 0


R S T R � (S ∩ T ) R � S ∩R � T

7 Conclusion

In this paper, we gave a detailed discussion of the important concept of distributive
subalgebra proposed in a recent work [15]. We proved that distributive subalgebras are
exactly subalgebras which are Helly in our sense and found all maximal distributive
subalgebras for PA, IA, RCC5/8, CRA, and RA. We also proposed two nice properties
of distributive subalgebras which will be used for efficient reasoning of large sparse
constraint networks. Future work will implement and empirically evaluate and compare
these two methods by using real datasets.

Appendix

Here we give a detailed proof of Theorem 2.

Theorem 2. Let M be a qualitative calculus that satisfies (6) and (7). Suppose S is
a distributive subalgebra ofM. Then every path consistent network over S is weakly
globally consistent and minimal.

Proof. We first note that, sinceM satisfies (6), any three relations inM have the cycle
law property (5) (see e.g. [10]), and by Theorem 1 any distributive subalgebra S ofM
is Helly and hence satisfies (9).

Suppose Γ = {viRijvj : 1 ≤ i, j ≤ n} is a path consistent network over S. Write
Vk = {v1, v2, . . . , vk} and W k+1

t = Vt ∪ {vk+1} for 1 ≤ k < n and 1 ≤ t ≤ k. Let
∆Vk

= {viδijvj : vi, vj ∈ Vk} be a consistent scenario of Γ↓Vk
= {viRijvj : vi, vj ∈

Vk} (see Figure 7).
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1v kv
1,kR

1,tR ,t kR… …
tv

(a) Γ↓Vk

kv
1,kδ

1,tδ ,t kδ
1v … …

tv

(b) ∆Vk

Fig. 7: Illustration of Γ↓Vk
and ∆Vk

in the proof.

We show ∆Vk
can be extended to a consistent scenario ∆Vk+1

of Γ↓Vk+1
. Note that

any path consistent basic network overM is consistent by (7).
Let R̂k+1,i =

⋂k
j=1(Rk+1,j � δj,i) for i = 1, . . . , k. It is easy to see R̂k+1,i ⊆

Rk+1,i. Our idea is as follows:

Step 1. Choose an arbitrary basic relation δk+1,1 in R̂k+1,1.
Step 2. Extend a consistent scenario ∆Wk+1

t
to a consistent scenario ∆Wk+1

t+1
by choos-

ing a certain basic relation δk+1,t+1 in R̂k+1,t+1, together with the constraints
{viδi,t+1vt+1|1 ≤ i ≤ t} in ∆Vk

. See Figure 8 for illustration of ∆Wk+1
t

and
∆Wk+1

t+1
.

Step 3. Repeat Step 2 for 1 ≤ t ≤ k−1 until a consistent scenario∆Vk+1
of Γ↓Vk+1

=
Γ↓Wk+1

k
is obtained.

1v 2v

1,2kδ +

tv

1kv +

1,1kδ + 1,k tδ +
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Fig. 8: Illustration of ∆Wk+1
t

and ∆Wk+1
t+1

in the proof.

To show Step 1 can be achieved, we prove that R̂k+1,i =
⋂k

j=1(Rk+1,j � δj,i) 6= ∅
for all 1 ≤ i ≤ k. By applying the cycle law (see (5)), for 1 ≤ j, j′ ≤ k we have

(Rk+1,j � δji) ∩ (Rk+1,j′ � δj′i) 6= ∅ iff ((Rk+1,j′ � δj′i) � δij) ∩Rk+1,j 6= ∅
iff (Rj′,k+1 �Rk+1,j) ∩ (δj′i � δij) 6= ∅.
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Since Γ is path consistent and the partial scenario ∆Vk
is also path consistent, we have

δj′j ⊆ Rj′,j ⊆ Rj′,k+1 �Rk+1,j and δj′j ⊆ δj′i � δij . Therefore (Rj′,k+1 �Rk+1,j) ∩
(δj′i � δij) 6= ∅ and hence (Rk+1,j � δji)∩ (Rk+1,j′ � δj′i) 6= ∅ for any 1 ≤ j, j′ ≤ k.
Note S is Helly by Proposition 1, we know R̂k+1,i =

⋂k
j=1(Rk+1,j � δj,i) 6= ∅ for all

1 ≤ i ≤ k.
To show Step 2 can be achieved, we only need to find a basic relation δk+1,t+1 in

R̂k+1,t+1 such that∆Wk+1
t
∪{vk+1δk+1,t+1vt+1} is path consistent, for t = 1, . . . , k−

1.
With the following statements, we can show the existence of such δk+1,t+1.

Statement 1. δk+1,i � δi,t+1 ∩ R̂k+1,t+1 6= ∅ for any 1 ≤ i ≤ t.
Statement 2. δk+1,i � δi,t+1 ∩ δk+1,j � δj,t+1 6= ∅ for any 1 ≤ i, j ≤ t.

In fact, from the above statements and that S is Helly, we know (
⋂t

i=1(δk+1,i�δi,t+1))∩
R̂k+1,t+1 6= ∅. Thus, there exists a δk+1,t+1 in R̂k+1,t+1 such that

(

t⋂
i=1

(δk+1,i � δi,t+1)) ∩ δk+1,t+1 6= ∅. (13)

To show this δk+1,t+1 actually extends ∆Wk+1
t

, we also need to prove that ∆Wk+1
t
∪

{viδi,t+1vt+1 : 1 ≤ i ≤ t} ∪ {vk+1δk+1,t+1vt+1} is path consistent. Note we only
need to show δk+1,t+1 ⊆ δk+1,i � δi,t+1 for any 1 ≤ i ≤ t, because ∆Wk+1

t
and

∆Vt+1(⊆ ∆Vk
) are both path consistent. This will be true if (13) is true. Therefore, in

the following, we show the two statements above are actually true.
For Statement 1, note

(

k⋂
j=1

(Rk+1,j � δj,t+1)) � δt+1,i =

k⋂
j=1

(Rk+1,j � δj,t+1 � δt+1,i)

⊇
k⋂

j=1

(Rk+1,j � δji).

Then R̂k+1,t+1 � δt+1,i ⊇ R̂k+1,i ⊇ δk+1,i 6= ∅, that is δk+1,i ∩ (R̂k+1,t+1 � δt+1,i) 6=
∅. By cycle law, we have (δk+1,i � δi,t+1) ∩ R̂k+1,t+1 6= ∅ for any 1 ≤ i ≤ t.

For Statement 2, for any 1 ≤ i, j ≤ t we have

(δk+1,i � δi,t+1) ∩ (δk+1,j � δj,t+1) 6= ∅ iff (δi,k+1 � δk+1,j � δi,t+1) ∩ δj,t+1 6= ∅
iff (δi,k+1 � δk+1,j) ∩ (δi,t+1 � δt+1,j) 6= ∅.

Because ∆Wk+1
t

is a (path) consistent scenario, we have δij ⊆ δi,k+1 � δk+1,j for
1 ≤ i, j ≤ t. Note ∆Vt+1

(⊆ ∆Vk
) is also a (path) consistent scenario, we have δij ⊆

δi,t+1 � δt+1,j . Then (δi,k+1 � δk+1,j) ∩ (δi,t+1 � δt+1,j) ⊇ δij 6= ∅ for 1 ≤ i, j ≤ t,
and hence (δk+1,i � δi,t+1) ∩ (δk+1,j � δj,t+1) 6= ∅. ut



22 Zhiguo Long and Sanjiang Li

References

1. James F. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843, 1983.

2. Nouhad Amaneddine and Jean-François Condotta. From path-consistency to global consis-
tency in temporal qualitative constraint networks. In AIMSA, pages 152–161, 2012.

3. Philippe Balbiani, Jean-François Condotta, and Luis Fariñas del Cerro. A new tractable
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