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Abstract. The assessment of the quality of volunteered geographic in-
formation (VGI) is cornerstone to understand the fitness for purpose
of datasets in many application domains. While most analyses focus on
geometric and positional quality, only sporadic attention has been de-
voted to the interpretation of the data, i.e., the communication process
through which consumers try to reconstruct the meaning of information
intended by its producers. Interpretability is a notoriously ephemeral,
culturally rooted, and context-dependent property of the data that con-
cerns the conceptual quality of the vocabularies, schemas, ontologies, and
documentation used to describe and annotate the geographic features
of interest. To operationalize conceptual quality in VGI, we propose a
multi-faceted framework that includes accuracy, granularity, complete-
ness, consistency, compliance, and richness, proposing proxy measures
for each dimension. The application of the framework is illustrated in a
case study on a European sample of OpenStreetMap, focused specifically
on conceptual compliance.

Keywords: data quality, interpretability, conceptual quality, volunteered
geographic information

1 Introduction

The importance of data quality has been noted since the disciplinary inception of
geographic information science (GIScience) [13]. The quality of geographic infor-
mation has been framed along the spatial, temporal, and thematic dimension, in
terms of accuracy, precision (or resolution), consistency, and completeness [32].
Because any discussion on data quality assumes the presence of a producer who
encodes some information and a consumer who has to interpret it and use it,
the conceptual quality of the data is crucial to enable the semantic decoding of
data. For example, a dataset can contain highly accurate geometries, but if the
description of the entities and their attributes is not clear, articulate, rich, and
complete enough, the value of the data for consumers will be severely curtailed.

Spatial Information Theory (COSIT), Lecture Notes in Computer Science, 2015, in press



2 Ballatore and Zipf

In past decades, the assurance of conceptual quality was facilitated by the
fact that both producers and consumers tended to belong to professional circles,
and shared to some degree a semantic ground, i.e., the conceptualization of
the domain and its entities, and a common vocabulary to describe them. The
advent of volunteered geographic information (VGI), with its less centralized
production models, leads to a novel state of a↵airs, with important consequences
for conceptual quality. In VGI, di↵erent actors generate data for a variety of
purposes, interpreting and consuming data produced from other actors. These
processes of informal and loosely constrained prosumption [10] usually result
in data with higher heterogeneity and fragmentation than traditional datasets,
creating new, unforeseen barriers to data interpretation. Despite the growth
of interest in VGI in both academia and industry, recurring issues make the
application of traditional approaches to data quality problematic. For instance,
a crowdsourced set of points of interest might possess su�cient quality to enrich
spatial social media, but could fail to capture the changes in businesses in rural
areas studied by economists.

The problem of quality assessment is intimately linked to the quantification
of several orthogonal or correlated dimensions. In fact, it is impossible to state
anything about data quality without well-defined criteria to measure it. To date,
many researchers have tackled the issue of quality in VGI [19, 20, 14, 23, 5]. Un-
like the expert-controlled data generated by government agencies, crowdsourced
resources do not come with systematic documentation about their production
protocols, biases, and shortcomings [11]. In this sense, the context of VGI is
open to many questions concerning conceptual quality, some of which are also
relevant to traditional datasets, while others are novel and specific. In VGI, the
data is often characterized by loose application of standards and a lack of thor-
ough documentation. The traditional distinction between schema and records in
databases does not always hold. Contributors produce data and then re-define
and update its schema in an open process, which leads to uneven conceptualiza-
tions. In this sense, another peculiar di�culty lies in the associations between
classes and instances—or, alternatively, universals and individuals.

How, then, is it possible to operationalize the conceptual quality of VGI,
taking into account semantic aspects in the data that are so central to its pro-
duction? To answer this question, it is important to take an ecological viewpoint
on the environments in which VGI producers and consumers operate. Rather
than designing the data production as a deterministic process with clear inputs
and outputs, in VGI diverse actors use a combination of natural language, data
sources, schemas, vocabularies, and software tools to generate the data they are
interested in, through many feedback loops. In a semiotic sense, contributors
need to develop shared conceptualizations that constrain the intended meaning
of the symbols to enable the interpretation of the data, enabling the data as
a medium for communication [22]. While the centrality of documentation and
semantics is often acknowledged by researchers [e.g., 2], conceptual quality has
not yet been reduced to tractable measures and deployed within the relevant
communities. E↵ective conceptual quality assessment techniques would benefit
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project owners, contributors, as well as end users, informing the production,
evaluation, and consumption of data sources.

To fill this gap, in this article we present a conceptual quality framework that
can be adapted and applied to any VGI source, tapping indirect and intrinsic
proxy measures. The framework moves a first step towards the operationaliza-
tion of the following di�cult questions: Is the schema appropriate to describe
the domain? How current and clear is the documentation? Is there consensus
and consistency in the terms used in the data? Is the data prone to foster diver-
gent interpretations? Are the descriptions of classes su�ciently detailed? What
are missing elements that need to be described? To what degree are the users
interpreting the terms correctly? How intuitive are the terms for the users? Is
the data internally coherent? What geographic areas present di↵erences in con-
ceptual quality and why? Does the data conform to an external reference or
standard? Is there conformance within specific groups of contributors or within
geographic areas?

The remainder of this article is organized as follows. Section 2 surveys the
literature on geographic information quality, focusing particularly on VGI. Sec-
tion 3 illustrates the core ideas of our framework and proposes formal measures
to operationalize it. Subsequently, Section 4 reports on a case study in which
we illustrate the applicability of the framework on OpenStreetMap, a prominent
example of VGI. Finally, Section 5 draws conclusions and indicates directions
for future research.

2 Related work

This quality framework for VGI lies at the intersection of several research areas,
including GIScience, conceptual modeling, and ontology engineering. This sec-
tion provides an overview of the notions of quality discussed in these inter-related
disciplines.

Geographic information quality. Because all geographic information is produced
through measurement with some level of uncertainty, the debate on quality has
been central to geography and GIScience for a long time [17, 27, 21]. As pointed
out by Goodchild and Li [14], broad consensus was established in the 1980s along
five dimensions: positional accuracy, attribute accuracy, logical consistency, com-
pleteness, and lineage (p. 111), embedded in the US Spatial Data Transfer Stan-
dard (SDTS).3 A pioneering theoretical discussion about the semantic dimension
of geographic information quality was provided by Salgé [26]. Assuming that any
description of reality is inevitably a reduction to a model, Salgé defined semantic
accuracy as the “quality with which geographical objects are described in accor-
dance with the selected model,” as well as the “pertinence of the meaning of the
geographical object rather than to the geometrical representation” (p. 139).

In practical terms, producers can enforce minimum quality standards in their
data collection process, and consumers can assess the quality of a dataset through

3
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metadata standards [32]. Improvements in web technologies have tightened the
feedback loop between consumers and producers, providing mechanisms to im-
prove quality in a targeted way based on users’ needs. In the early 2000s, aspects
of quality were defined in the International Organisation for Standards (ISO)
19113:2002 for quality principles, and in ISO 19114:2003 for quality evaluation
procedures, then superseded by ISO 19157:2013.4 While progress in theorization
and standardization of data quality has been made, particularly in the context of
public agencies, many challenges remain to be met. As Hunter et al. [21] pointed
out, the communication, visualization, and description of data quality and its
application to decision making are far from having satisfactory solutions for the
many actors involved.

Conceptual and ontological quality. Conceptual modeling and ontology engineer-
ing are concerned with the quality of models, schemas, and ontologies [4]. The
operationalization of such conceptual dimension of quality o↵ers an important
tool to facilitate the adoption, correct interpretation, and re-use of conceptual-
izations by practitioners. Agent-based approaches have been proposed to model
the correctness of spatial information [12]. In recent years, applied ontologists
have designed formal semantic approaches to assess the quality of an ontology,
epitomized by the OntoClean method [15]. Other approaches are grounded in
semiotics: Tartir et al. [30] outlined a triangular model where quality can be as-
sessed in the mappings between the real world and the schema, between the real
world and the data, and between the schema and data. In their formulation, met-
rics for schema quality include dimensions such as relationship, attribute, and
inheritance richness, while instance metrics should reflect connectivity, cohesion,
and readability of the data.

Along similar lines, Burton-Jones et al. [8] defined ontological quality from
four facets: syntactic quality (richness of lexicon and correctness); semantic
quality (interpretability, consistency and clarity); pragmatic quality (compre-
hensiveness, accuracy and relevance); and social quality (authoritativeness and
history). An overall indicator of quality is obtained with a linear combination
of these four dimensions. In the context of conceptual modeling, Cherfi et al.
[9] defined a framework for conceptual quality, outlining metrics applicable to
entity-relationship schemas, and to UML diagrams. While these methods in-
form the foundations of our framework, they are hard to apply directly to the
semantically weak folksonomies and tagging models used in VGI [28, 31].

Quality in VGI and OpenStreetMap. The emergence of VGI deeply re-configured
the geographic information landscape, raising immediate concerns about quality
assurance [20]. Analogously to Wikipedia, crowdsourced geographic information
can be often of higher quality than authoritative sources, but shows considerable
spatial and temporal variability, and is a↵ected by gender and socio-economic
contribution inequalities [29]. Vandalism in open mapping platforms has also
been identified as a multi-faceted, complex challenge for VGI [1]. More gener-
ally, VGI communities have several strategies to ensure data quality [14]. These

4
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include crowdsourcing, based on the assumption that more people working on
the same area will tend to result in higher quality [19], social approaches that
rely on surveillance and control, and geographic approaches that exploit knowl-
edge from geography to detect unlikely or impossible configurations in the data.
The quality of OpenStreetMap (OSM), one of the leading VGI projects, has
been studied along di↵erent lines of investigation. Several studies compared a
sample from the OSM vector dataset against the corresponding data from more
traditional and authoritative sources [18, 33], showing high variability in the
data quality, and identifying several geographical divides, particularly between
rural and urban areas, and natural and man-made features.

The conceptual and semantic dimension of the data presents many specific
challenges to ensuring quality. OSM has a lightweight semantic model that re-
lies primarily on user-defined tags [2]. While the positional accuracy of features
can be measured with standardized methods, the annotation process has no sta-
ble ground truth, as it is rooted in alternative conceptualizations of geographic
world. Problems identified in OSM semantic set up are the flexibility of the
tagging process and the lack of a strict mechanism for checking semantic com-
pliance, even for core elements of the data, often resulting in tag wars [24, 23].
In the project’s forum and mailing lists, contributors often debate data quality,
pointing out a strong need for “consistency in tagging, editor improvements,
better documentation, better training materials.”5

To date, the most substantial attempt at quantifying quality in OSM has been
carried out by Barron et al. [5]. Their iOSMAnalyzer tool generates a range of
intrinsic quality indicators, focusing on the spatio-temporal evolution of the data,
including geometric and thematic quality. The framework adopts a fitness-for-
purpose perspective, grouping indicators by application area, such as geocoding,
routing, and point of interest (POI) search. Despite its comprehensiveness, this
framework is narrowly focused on OSM, and could not be easily applied to other
datasets. Moreover, the semantic aspects of the vector data are discussed only
tangentially. Our proposed quality framework, outlined in the next section, aims
at overcoming these limitations.

3 A framework for VGI conceptual quality

To establish a framework to operationalize the conceptual quality of VGI, we
analyze and revise each dimension of data quality, comparing it with traditional
views on geographic information quality and proposing indirect indicators. In
VGI, heterogeneous communities produce information for a variety of purposes,
relying on a combination of tools, vocabularies, and data sources [3]. The main
purpose of this framework is to enable the measurement of conceptual quality of
a VGI dataset. Understanding what information producers meant to express in
their data is a crucial, and yet ephemeral aspect of spatial information quality
[22]. In traditional database theory, the quality of a database includes the quality

5
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of its conceptual schema, metadata description, and provenance of data [6]. Sim-
ilarly, in VGI, conceptual quality should answer questions about the conceptual
schema and its relations with the data. Conceptual quality is intimately inter-
twined with interpretability, the fundamental communication problem between
the data creators and consumers.

In the context of VGI, we frame the production and consumption of in-
formation semiotically as the interaction of semantic agents in an information
community. Hence, we refer to symbols (e.g., words, icons, or images) pointing
to concepts, psychological models used by semantic agents to produce and inter-
pret information about domain entities, called referents. The mappings between
symbols and concepts is dynamic, and are established through social agreements
[3]. To clarify our notion of interpretability, we distinguish between interpretabil-
ity of the data format (i.e., file formats, formal languages, conceptual schemas),
and the interpretability of the domain content (i.e., the concepts prior to their
encoding into data).

The semantic gulf. The role of conceptual quality is essential to overcome the
semantic gulf that exists between producers and consumers. As shown in Figure
1, agent A describes a concept in his/her worldview with the symbol ‘mountain’
and encodes it into a dataset D. Because of cultural, linguistic, and individual
variations, when agent B interprets and decodes the symbol S, his/her interpre-
tation (⇥B) overlaps with that of agent A (⇥A) only to some degree. Following
the notion of intended models by Guarino et al. [16], we refer to the overlap be-
tween the interpretations of symbol S for the two users (⇥A\⇥B). This overlap
is an indicator of the quality of D in the sense that the highest quality would
result in equivalent interpretations (⇥A ⌘ ⇥B). By contrast, the lowest quality
leads to totally di↵erent interpretations of D (⇥A \⇥B = ;). As low conceptual
quality causes friction in the interpretation process, the operationalization of
conceptual quality is essential to improve the interpretability of the data.

Conceptual quality questions include: how can the meaning of a term be
assessed? To what degree is it possible to reconstruct the context and intentions
of the producers from the data? How many alternative interpretations exist
for a term? Does the compliance to external resources help the interpretation
of the data? Is the usage of a term widespread or is it unusual? How easily
can a consumer decode the terms? How clear are the constraints on terms?
How ambiguous are the terms? To what degree are the agents interpreting the
symbols correctly? How intuitive are the symbols for the agents? Are di↵erent
agents mapping the symbols to di↵erent concepts? Are the symbols internally
coherent?

Measuring conceptual quality. The measurement of conceptual quality can be
carried out through some form of psychological testing in a controlled environ-
ment, asking human subjects to perform tasks on a piece of information, and
measuring the cognitive load and other observable outcomes of the interpreta-
tion process. Less formally, ratings about the quality of resources can be collected
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Fig. 1. The semantic gulf

directly from users of an online platform, identifying issues in the conceptualiza-
tion. However, these approaches are impractical for large, decentralized projects
such as OSM. On the other hand, measures of conceptual quality can rely on a
number of indirect indicators, used as proxies to unobservable variables. For ex-
ample, in ontology engineering, a measure of interpretability has been designed
on the number of terms defined in external linguistic resources such as WordNet
[8]. This extrinsic approach relies on the interlinking of a resource, assuming
that connected resources are easier to interpret than isolated ones.

When measuring the conceptual quality of domain content, the documen-
tation of a given term is crucially important. Indicators for this dimension of
quality include the number of users who contributed to the definition, the sta-
bility of the definition over time, and the amount of discussions generated about
it. Measures of VGI interpretability should be applied not only to schemas, as
done traditionally in information systems [6], but also to the data itself, which
might di↵er considerably from the documentation in local contexts. From the
perspective of interpretability of data formats, di↵erent versions of the same
piece of information can be evaluated, comparing traditional GIS formats like
Esri’s shapefile, and semantically richer formats such as RDF. A complementary
issue lies in the interpretability of information about quality, which su↵ers from
lack of standardization and from technical complexity [21].

Formalization and symbols. To formalize the core ideas in the framework, we
adopt the following terminology, which we believe can describe the bulk of VGI.
A geographic feature ⌧ is an instance of a class C, and has a set A of attributes
a. Attributes have values. Feature ⌧ also has a geometric attribute g. Features
can be aggregated in a set F . Our framework operationalizes conceptual quality
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Dimension Sym. Purpose & indicators
Accuracy Iac Distance between conceptualization and domain knowledge. It

can be seen as the degree of correctness in the classification of
features ⌧ into classes C. Indicators: Number of features with
multiple classifications; number of contributors.

Granularity Igr Level of thematic description present in the data, moving from
very abstract to very specific concepts. Indicators: Depth of
classes in the class hierarchy (if applicable).

Completeness Icl Coverage in the conceptualization of the features of interest. A
distinction exists between class completeness and attribute
completeness. Indicators: Number of classes; number of
attributes

Consistency Icn Degree of homogeneity in the descriptions of geographic
features. Indicators: Number of features in a class described
with the same attributes; ratio between consistent features or
attributes to all others, weighted against the absolute number
of attributes.

Compliance Icm Degree of adherence of an attribute, a feature, or a set of
features to a given source S, ranging from non compliance to
full compliance. Indicators: Ratio between the number of
classes and attributes defined in an external source S and the
total number of classes and attributes.

Richness Iri Amount and variety of dimensions that are included in the
description of the real-world entity. Indicators: Number of
attributes describing a feature.

Table 1. Dimensions of conceptual quality for VGI

with indicators either at the feature level I(⌧), on a single ⌧ , or at the aggregate
level on a set of features I(F ).

For example, Lake Tahoe ⌧ belongs to class Clake, and has an attribute
aname whose value is set to “Lake Tahoe,” and a footprint g that is represented
as a polygon. A crucial di↵erence between VGI and the traditional geo-database
approach lies in the flexibility and instability of the schema definition. Rather
than a clear distinction between schema and records, VGI communities pro-
duce datasets and their schemas in an open-ended way. Classes, instances, and
their attributes tend to be fluid and mutable, rather than centrally defined and
controlled. The remainder of this section discusses the notion of interpretabil-
ity, followed by several complementary dimensions that need to be considered,
summarized in Table 1.

3.1 Conceptual accuracy

The notion of accuracy is central to the definition of geographic information
quality. Accuracy answers questions about the correctness of the information
with respect to a measurable phenomenon in the real world, for which there is a
true value can that in principle be assessed. Accuracy is perhaps the best under-
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stood dimension of quality [22]. Because of the strong spatiality of geographic
data, positional accuracy is a core preoccupation, complemented by temporal
accuracy (also known as currency) [27].

More relevant for conceptual accuracy, notions of thematic or attributional
accuracy indicate the degree of correctness of attribute values grounded in a
spatio-temporal region, typically in the context of classification, for example
indicating an area as industrial where it is in fact residential. Thematic informa-
tion relies on a conceptualization that defines salient domain entities, categories,
and their attributes. In this sense, conceptual accuracy concerns the distance be-
tween the concepts and the real world entities that they are supposed to describe
according to an observer. Low conceptual accuracy indicates that the instances
encountered by contributors are not intuitively or easily described with the se-
lected conceptualization, resulting in semantic noise.

The measurement of spatio-temporal accuracy relies on the assumption that
a true value can be obtained at a higher accuracy using appropriate measurement
techniques. This assumption cannot always be performed in thematic informa-
tion, and can clash with the multi-authored, choral nature of VGI. Conceptual
accuracy should answer several questions: To what degree are the classes and at-
tributes capturing the underlying domain knowledge? In the case of categorical
variables, are the categories reflecting the domain knowledge? Are there many
observations that do not fit the categories? How good is the agreement on the
classification of instances when performed by di↵erent actors?

For conceptual accuracy, the heterogeneity of VGI presents new and peculiar
challenges. Contributors describe the objects of interest using loosely defined
vocabularies that present high lexical and semantic variation [2]. The inconsis-
tencies in the attributional data makes the measurement of the global conceptual
accuracy very hard, prompting, again, local measures. New measures of accuracy
for VGI should include a social dimension that plays a huge role in the produc-
tion process. Intrinsic, local measures include that by Haklay et al. [19], who
suggested that the number of active users in an area shows a non-linear relation-
ship with positional accuracy. Along similar lines, Bishr and Kuhn [7] tapped
the social dimension in VGI by using trust as a proxy measure of quality.

Given a set of classes C, we define conceptual accuracy Iac as the degree of
correctness in the classification of features ⌧ into classes C. Although such an
assessment of classification accuracy needs some form of extrinsic ground truth
(i.e., a classification having higher accuracy), it is possible to devise indirect
indicators of conceptual accuracy Iac. The core impact of conceptual accuracy
occurs in the definition of the schema and the application of the schema on the
instances. When the classification of a feature is di�cult, contributors tend to
classify it in multiple, incompatible ways [23]. Hence, one indicator consists of
the number of features that have been classified in di↵erent ways at di↵erent
points in time:

Iac(F ) = 1� |9⌧ 2 F : ⌧ 2 C1 ^ ⌧ 2 C2|
|F | ; Iac 2 [0, 1] (1)
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High values of Iacindicate low level of negotiation in the classification of features.
While high Iac(F ) might indicate that too few people worked on a classification
to evaluate its quality, high Iac(F ) signals that the contributors did not encounter
problems in the classification of F .

3.2 Conceptual granularity

While accuracy generally concerns the distance between a measurement and the
true value, granularity answers questions about the precision of information, i.e.,
the repeatability of measurements, regardless of their true value [22]. Accuracy
and granularity are orthogonal: a piece of information can present high accuracy
and low granularity, and vice-versa. The term resolution is a synonym of gran-
ularity. The notion of scale is indeed related to granularity, as di↵erent scales
require higher or lower granularity. Geographic information quality standards
prominently include granularity as a fundamental element to evaluate fitness
for purpose. For example, satellite imagery can be described as having “10m
resolution.”

In VGI, the heterogeneity in the production process results in varying gran-
ularity. As observed for accuracy, the assessment of granularity loses meaning
when performed at the global level. Spatial granularity in VGI is bound by the
technical apparatus available to mappers (e.g., GPS sensors), and by the pre-
existing geospatial infrastructure, such as the quality of satellite imagery that
OSM contributors rely on to draw roads [18]. While the notion of granular-
ity is well understood at the spatial and temporal level, thematic information
presents deeper challenges. The notion of thematic resolution has been defined
as the precision of the scalar or nominal variables [32].

In an open process of negotiation, VGI contributors express quantitative and
qualitative measurements about a wide range of phenomena, usually based on
a loosely defined conceptualization. For this reason, the conceptual structure
of information is rather fluid, and its granularity is hard to assess. As in the
case of OSM, contributors define hierarchies of classes C and their attributes
to describe the concepts of interest, such as university, park, and river. Using
the categorization by Rosch [25], such taxonomical hierarchies span from the
superordinate level (e.g., built environment), to the basic level (e.g., house), and
to the subordinate level, which includes more specific concepts, rarely used in
day-to-day language (e.g., detached single-unit house).

Given a VGI dataset, conceptual granularity should answer questions about
the level of thematic description is present in the data, moving from very abstract
to very specific concepts. Are the objects described simply as buildings or are
they categorized in sub-types? Hence, for a feature ⌧ in class C, we want to
devise a measure that quantifies the thematic granularity in the data. Among
all classes defined in the data, how specific is C? To achieve this goal, measure
of level of generality of a term in a hierarchy. This approach is meaningful only
if the classes are organized in a subsumption hierarchy, which is not always the
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case. An indicator is the depth of a class C in the class hierarchy, for features ⌧ :

Igr(F ) =

|F |X

i=1

depth(C) : ⌧i 2 C ^ ⌧i 2 F ; Igr 2 [0,1) (2)

As concepts can be organized in alternative ways in a taxonomy, caution is
needed when comparing di↵erent datasets that adopt radically di↵erent ap-
proaches (such as OSM and the GeoNames gazetteer). The amount of details
included in the description is captured by conceptual richness (see Section 3.6).

3.3 Conceptual completeness

Geographic data can be evaluated in terms of the coverage of the entities of inter-
est in the real world. Given some mapping rules, completeness answers questions
about how many objects are included or missing from the dataset. Completeness
can be measured spatially (is the target space surveyed in its entirety?), tempo-
rally (how well is the target space covered at a given time?), and thematically
(are all relevant types of features included?) [32]. To be assessed, completeness
needs an external reference that can be used as ground truth, and for this reason
its measurement tends to be extrinsic.

Completeness in VGI is challenging as the mapping rules are either loosely
defined or left implicit. As in traditional datasets, VGI completeness can be
assessed extrinsically, using higher-quality data as ground truth [18]. In many
instances, such as in the case of disaster management, the ground truth does not
exist in the first place, and extrinsic measures might not be applicable. Therefore,
intrinsic measures appear as particularly valuable. For example, Barron et al. [5]
suggest that, if the growth of additions to the dataset is slowing down for a given
feature type, in spite of general growth, that might indicate high completeness.

Depending on the degree of openness and structure of a data collection pro-
cedure, contributors decide what they want to include in the data from the po-
tentially infinite knowledge about a geographic area. For this reason, conceptual
completeness concerns the coverage in the conceptualization of the features of
interest. Conceptual completeness can be further specialized in class complete-
ness (e.g., how many building types are present in the dataset) and attribute
completeness (e.g., how many streets have a name attribute).

To support the measurement of conceptual completeness in VGI, intrinsic
measures can use various social and semantic signals as indirect indicators of
completeness. Absolute and global completeness measures are doomed to be not
very meaningful for VGI, because of the non-parametric distribution of features
in the geographic space. By contrast, local and relative measures of complete-
ness should answers questions about completeness with respect to a given type
of features and attribute by comparing spatial, temporal, or thematic subsets.
As simple indicators Icl, we adopt the number of classes and the number of
attributes in a set of features:

Icl C(F ) = |C : ⌧ 2 F ^ ⌧ 2 C|; (3)

Icl A(F ) = |A : a 2 ⌧ ^ ⌧ 2 F |; Icl 2 [0,1)
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Geo-statistical approaches can support the formulation of intrinsic measures of
conceptual completeness based on these indicators. The automatic detection
of missing attributes is a proxy to attributional completeness, rooted in the
distribution of attributes over space, highlighting statistically anomalous regions.
A similar approach can be applied to class completeness, exploiting geographic
knowledge about an area to identify areas with unusually low number of classes
being instantiated. From a social dimension, collective or individual activity
patterns cannot be reliable indicators, but they might provide a crude proxy
indicators to conceptual completeness.

3.4 Conceptual consistency

For each piece of geographic information, many alternative representations are
possible. Conceptual consistency answers questions on the degree of homogeneity
in the descriptions of geographic features. Are a set of features described with the
same classes and attributes? Are synonyms used in the data? Are there multiple
names for the same features? Are there individual and regional variations in the
usage of terms or concepts? While in formal systems consistency usually refers
to logical contradictions, VGI rarely relies on highly formal languages, favoring
simple vocabularies, folksonomies, or tagging mechanisms.

Measures of consistency can focus on the use of classes and attributes in
the data, with the advantage that no knowledge about the conceptual schema
is needed. Given a set of features, pair-wise comparison can be used to iden-
tify clusters of features described similarly, both within the same spatial unit
and between di↵erent spatial units. The ratio between consistent features or at-
tributes to all others, weighted against the absolute number of attributes, can
be used as a simple indicator of consistency, applicable at di↵erent granularities.
As consistency is an intrinsic characteristic of the data, it is possible to devise
an indicator Icn based on a feature set F in class C containing attributes A:

Icn(F,C) =
|8(A⌧i , A⌧j ) : A⌧i ⌘ A⌧j ^ ⌧i, ⌧j 2 C|

|⌧ : ⌧ 2 C ^ ⌧ 2 F | ; Icn 2 [0, 1] (4)

High (low) values of Icn indicate that the description of class C tends to be
(in)consistent. This measure captures the homogeneity of attributes across dif-
ferent features. E↵ective measures of consistency are useful to identify commu-
nities that adopt di↵erent representational conventions and terms, going beyond
the global binary classification as correct or incorrect. The measures of consis-
tency are also useful to analyze consistency over time, and not only in space,
detecting regional trends.

3.5 Conceptual compliance

Compliance can be seen as an orthogonal dimension to consistency. Unlike con-
sistency, compliance is extrinsic, as it refers to an external resource, such as
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documentation, meta-data, standards, or guidelines. Conceptual compliance an-
swers questions about the degree of adherence of an attribute, a feature, or a
set of features to a given source S, ranging from non-compliance to full com-
pliance. In VGI, contributors rely on a combination of sources to produce the
data, intrinsically (using resources defined within the same project), and extrin-
sically (adopting external sources). Measuring conceptual compliance Icm would
increase the homogeneity of data, facilitating its interpretability. The quality of
these resources S, such as the readability and completeness of the documenta-
tion, is out of the scope of conceptual compliance.

VGI projects define formats, schemas, vocabularies, and conventions to be
used in the data, usually indicating a hierarchy of reference sources. For instance,
OSM indicates its wiki website as the most authoritative source of documenta-
tion, and other sources such as the map editors as less reliable and possibly non-
compliant. These pieces of documentation indicate at di↵erent levels of detail
how to describe buildings, what spatial and temporal reference systems should
be adopted, how street addresses should be encoded, etc. Indicators of concep-
tual compliance Icm can be applied to attributes a 2 A, to features ⌧ , or to sets
of features F , with respect to a given source S, such as a conceptual schema:

Icm(A,S) =
|A 2 S|
|A| ; Icm(F, S) =

|⌧ : ⌧ 2 F ^ ⌧ 2 S|
|F | ; Icm 2 [0, 1] (5)

These indicators enables the measurement of conceptual compliance, distinguish-
ing it from conceptual consistency. A set of features F can be consistent and non
compliant, and vice-versa. In projects like OSM, the detection of consistent and
non compliant subset of the data can also help contributors identify suspect
deficiencies in the documentation S.

3.6 Conceptual richness

A facet that is rarely mentioned in current quality frameworks concerns the
richness of the data. By conceptual richness, we mean the amount and variety
of dimensions that are included in the description of the real-world entity. For
example, a building can be described as a simple point or footprint in space, and
this description can be enriched by a unbounded set of observations about its
architecture, usage, materials, infrastructure, ownership, functions, history, etc.
A measure of richness Iri therefore needs to quantify the dimensions of a feature
⌧ , enabling comparison with other features (or sets of features).

Richness can concern either the conceptual schema or the data, bearing in
mind that in VGI the alignment between classes and instances cannot be taken
for granted. This facet of conceptual quality is orthogonal to conceptual com-
pleteness, in the sense that a dataset can possess high richness but low complete-
ness, and vice-versa. To measure richness of the conceptual schema, we can rely
on number of classes and attributes defined in a dataset. At the feature level,
richness Iri(⌧) can be quantified as the number of attributes. The richness of a
set of features F can be computed as the mean of number of attributes defined
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in the features:

Iri(⌧) = |a 2 ⌧ |; Iri(C) =

|C|X

n=1

|a 2 Cn|; Iri(F ) =

P|F |
n=1 Iri(⌧)

|F | (6)

These measures enable the comparison of di↵erent datasets and regions with
respect to their richness, highlighting disparities in the data as well as in the
conceptualization. However, the measurement of richness faces many challenges.
In heterogeneous datasets, di↵erent attributes can be describing the same di-
mensions inconsistently, making it challenging to distinguish between emergent
richness and noise. Moreover, the assumption that a higher number of attributes
leads to better conceptual quality does not always hold true, for example in the
case of machine-generated default attributes in OSM. In such cases, measures of
information content might be helpful.

4 A case study on conceptual compliance

To illustrate our quality framework, we choose the measurement of conceptual
compliance on real crowdsourced data as a case study. As a data source, we
selected OpenStreetMap (OSM), the collaborative mapping project. For reasons
of space, we focus on conceptual compliance Icm, one of the most critical dimen-
sions for OSM, leaving a more thorough and comprehensive evaluation of the
approach as future work. In OSM, geographic features are encoded in the form
of vector data, with geometries (points, polylines, and polygons) described with
attributes called tags (e.g., place=city, name=Berlin).

The intended meaning of the attributes are documented in the OSM Wiki
website,6 which hosts the definitions of the intended meaning and usage of tags.
As OSM contains a wide range of feature types, we restrict the analysis to road-
related features, described with the highway tag. The rationale for this choice
lies in the centrality of the road network in the project: producers and consumers
alike are particularly concerned about its quality for routing applications, where
conceptual compliance is particularly important.

OSM contributors choose the attributes to describe a feature based on a num-
ber of compliance sources S. The o�cial documentation is hosted on the OSM
Wiki website, but the map editing tools, such as JOSM and iD,7 are particularly
central to the tagging process. Hence, our case study aims at answering the fol-
lowing questions: How compliant is the road network with the attributes defined
in the OSM Wiki website? What is the compliance of data with respect to the
most popular map editing tools? What is the spatial variation in conceptual
compliance?

Selection of regions. To explore conceptual compliance, we identified a sample
of areas in Germany and the UK, which are expected to present geographic and

6
http://wiki.openstreetmap.org

7
http://wiki.openstreetmap.org/wiki/Comparison_of_editors
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Pop. Area Highway Wiki JSOM iD
Region (M) (km2 K) objects Icm Icm Icm
Germany

Upper Bavaria 4.47 17.5 59,531 0.92 0.96 0.88
Mecklenburg-West Pomerania 1.61 23.2 40,775 0.96 0.92 0.88

England

South East 8.64 19.1 13,796 0.92 0.9 0.92
North East 2.59 8.6 831 0.81 1 1

Average � � � 0.9 0.96 0.92
Table 2. The European regions included in the study, with estimated population, area
(source: freebase.com), OSM highway objects, conceptual compliance Icm for three
sources, and averages.

cultural variability in the European context. A densely populated and highly
developed region was selected for each country (respectively Upper Bavaria and
the South East region of England), contrasted with regions characterized by rel-
atively low population density and economic development (Mecklenburg-West
Pomerania and the North East of England). Because the size of administrative
units varies considerably between these countries in the Nomenclature of Ter-
ritorial Units for Statistics (NUTS), we selected regions from the NUTS2 for
Germany (Regierungsbezirk) and regions from NUTS1 for England, resulting in
comparable units, summarized in Table 4. These regions provide a small sample
of European OSM data with respect to population, size, and culture. The OSM
data was downloaded in January 2015.

In this study, we restricted the analysis to the objects tagged with at least
one highway tag. These tags are used to describe not only highways, as the name
would suggest, but all road-related information, which is of particular importance
to the OSM community and users.8 The selected regions are summarized in Table
4, including an estimate of the current population, area, and their total number
of highway objects in OSM.

Computation of conceptual compliance. After having extracted the OSM data,
we calculated the conceptual compliance Icm as defined in Section 3.5. The in-
dicator was computed at the aggregated level on the regions, as well as on a 10
km grid, in order to be able to observe the spatial variation at a higher gran-
ularity. As compliance sources S, we included the OSM Wiki website, and the
two most popular editors that have a set of predefined tags (JOSM and iD).
For each source, we consider compliant a tag that is explicitly defined and docu-
mented, and non-compliant all the others. A distinction was made between keys
that should only accept a set of values (highway=residential, highway=primary,
etc.), and open-value tags that accept any value (name=*, ref=*), relaxing the
compliance definition for the latter cases.

8
http://wiki.openstreetmap.org/wiki/Key:highway
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Results and discussion. The conceptual compliance for OSM Wiki website and
the two editors for each of the four regions is displayed in Table 4. The conceptual
compliance ranges from 0.81 to 1, for an average of 0.93, indicating that 7% of
tags are not compliant, and their interpretation is problematic. The compliance
average for the Wiki (0.9) is lower than for editors JOSM (0.96) and iD (0.92),
confirming the misalignment between the di↵erent sources of compliance that
OSM users complain about (see Section 2).

Non-compliant tags include for example highway=no and highway:historic=-
primary. Some tags appear to be deprecated (e.g., highway=byway), and their
status with respect to compliance is hard to assess. The conceptual compliance
was then calculated on a 10 km2 grid. Figure 2 shows choropleth maps of the four
selected regions, as well as the locations of the highway objects, highlighting the
high spatial variability of conceptual compliance. This simple measure already
enables contributors and users to quantify the amount of non-compliant tags,
and localize them spatially. This information can be used for fitness-for-purpose
by consumers, and for quality assurance by producers. Moreover, the incon-
gruities between the OSM Wiki website and the map editors can be identified
and resolved systematically with our approach.

5 Conclusions

In this paper, we outlined a multi-dimensional framework for the assessment
of conceptual quality, tailored for the context of VGI. Conceptual quality an-
swers questions about the quality of conceptualization and its relationship with
the data. This notion is strongly related to interpretability, the communication
problem between the data creators who encode information according to their
explicit and implicit knowledge, and consumers who need to interpret the data,
reconstructing its intended meaning. Conceptual quality is essential to facili-
tate the communication over the semantic gulf that separates producers and
consumers.

As conceptual quality is a complex, multi-faceted notion, six dimensions were
identified: accuracy, granularity, completeness, consistency, compliance, and rich-
ness. Each dimension of conceptual quality was defined as complementary to
traditional notions of quality developed in GIScience, proposing indicators to
compute it and operationalize it. As an initial illustration of the framework, we
explored a case study on four regions in Europe in OSM, focusing on the con-
ceptual compliance of the tags. The case study highlights the wide applicability
of conceptual quality to real data, and its potential to identify semantic and
modeling issues in VGI.

Operationalizing conceptual quality is essential to increase the usability of
VGI, adding a semantic facet to traditional notions of spatial, temporal, and
thematic quality. The current state of the framework has several limitations
that need addressing before deployment in realistic settings. The indicators de-
scribed in this article need to be applied to OSM and other datasets in order to
assess their strengths and weaknesses. Some dimensions of conceptual quality,
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b. Mecklenburg-West Pomerania 

Germany 

a. Upper Bavaria 

England 

c. South East d. North East 

10 km2 

Conceptual  
compliance 
with OSM Wiki 

Fig. 2. Conceptual compliance Icm with OSM Wiki on four European regions, calcu-
lated on a 10 km2 grid.



18 Ballatore and Zipf

such as conceptual granularity, will certainly prove harder than others to oper-
ationalize in di↵erent contexts. Without doubt, much empirical work is needed
to deploy the framework e↵ectively, with the goal of increasing the value and
interpretability of VGI.

The core future direction for this work involves the application of the six di-
mensions to di↵erent datasets, comparing and contrasting the results, and tailor-
ing more sophisticated and alternative indicators. For example, the relationship
between how many contributors work on a region and its conceptual complete-
ness needs further investigation [19]. A more mature version of the framework
will be implemented into actual tools for VGI contributors and users, particu-
larly for OSM. Conceptual quality, in its many empirically unexplored facets,
will play an important role in overcoming the barriers to the usage of data as
communication medium, mitigating the friction encountered when crossing the
semantic gulf.
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