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Abstract. Planning experiments is a crucial step in successful inves-
tigations, which can greatly bene�t from computational modeling ap-
proaches. Here we consider the problem of designing informative experi-
ments for elucidating the dynamics of biological networks. Our approach
extends previously proposed methodologies to the important case where
the structure of the network is also uncertain. We demonstrate our ap-
proach on a benchmark scenario in plant biology, the circadian clock
network of Arabidopsis thaliana, and discuss the di�erent value of three
types of commonly used experiments in terms of aiding the reconstruc-
tion of the unknown network.

1 Introduction

The execution of experiments to test a hypothesis is the essence of the scienti�c
method. In the �eld of systems biology we are interested in testing and validating
our hypotheses and predictions biochemical processes in living organisms, and
our hypotheses are usually encoded in mathematical models which can adopt a
variety of formalism. Modern biochemical experiments can be very complex and
are often costly in both researcher time and other resources. For this reason,
it is important to minimize the number of experiments while maximizing their
information content.

Experimental design is the branch of statistics and operations research which
is concerned with maximizing the information content of novel experiments.
From a statistical point of view, the utility criterion for evaluating an experiment
is a function of the probabilistic model chosen to represent the data-generating
process. Depending on the objective of the experiment, the selection criterion
can be either maximize the information content of an experiment in order to
estimate a set of parameters, (estimation criterion) or improve the prediction
qualities of a �tted model (prediction criterion).

In this paper we use a Bayesian approach to experimental design for dynam-
ical models of biological systems. We restrict our attention to gene regulatory
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Fig. 1: Basic illustration of our experimental design approach. After a set of observations
the distribution over the learnt system (blurred arrows) is used to draw samples of the
experimental outcomes given an intervention (uncertainty over the outcomes is also
represented by blurred functions). The aim is to choose the experiment that reduces
the uncertainty over the learnt system (represented by the system with well de�ned
arrows in the �gure).

network (GRN) models, where the systems dynamics are generated by mutual
interactions between genes which can modulate each others rate of expression;
these models encompass a large fraction of the systems biology literature, and
hence experimental design methods for this class of systems are of considerable
interest. Dynamical systems such as ordinary di�erential equations (ODE) are
widespread techniques for modeling GRNs. Previous work has considered exper-
imental design and model selection techniques for non-linear ODE- based models
of biological processes.

Liepe et al. [5] employ an approach based on mutual information which could
be evaluated using Monte-Carlo simulations. This method is computationally
intensive and crucially requires prior knowledge over the model components and
their interactions: the structure and functional form of the equations de�ning
the models is assumed known, and all the uncertainty is in the parametrisation.
In reality, most models in systems biology are subject to considerable structural
uncertainty, and clarifying the structure of interactions is the primary goal of
systems biology experiments.

In this work we extend the Bayesian experimental design approach to models
with structural uncertainty, formalized as hierarchical Bayesian models. We de-
rive a Bayesian experimental design score for quantifying the information gain
o�ered by di�erent experiments. The abstract view of the method is shown on
Figure 1. We start by using some preliminary data (in the form of observed
oscillatory expression levels) to learn a (posterior) probability distribution over
a linear approximation of the system. Experimental interventions can be simu-
lated by constraining some components of the model to �xed values (the speci�c
details of how we model interventions are given later), obtaining predictions of



the gene expression levels of all the other components given the experimental
intervention (in the �gure, the blurred lines represent uncertainty over the ex-
perimental outcomes). These enable us to quantify the information content of
an intervention.

We illustrate our approach on a benchmark systems biology problem, the
circadian clock of the Arabidopsis thaliana model plant [9]. We consider three
classes of possible experiments: alterations to the light-dark input provided
to the plant, direct measurements of regulatory links via chromatin immuno-
precipitation (ChIP), and gene knock-outs. These commonly performed experi-
ments are very di�erent in terms of costs, and our preliminary results on their
relative informativeness could be useful for practitioners.

2 Methods

Classical approaches to statistical experimental design have been primarily devel-
oped for linear regression models. Let an experiment q be given an experimental
design Φq (usually a set of covariates and a model that accounts for the vari-
ables of the experiment) and parameters θ (which determine how each of these
covariates determines the measured output of the experiment), and denote the
experimental observations for experiment q as yq. The experimental outputs are
assumed to be a linear combination of the covariates such that

yq = Φqθ + ε (1)

where ε is zero-mean Gaussian noise with variance σ2. The probability of the
observed outcomes given a set of parameters θ is known as likelihood function

(it is a function of the parameters); we will denote it as

p (yq|Φq, θ) = N
(
yq − Φqθ, σ2

)
(2)

The Fisher information matrix (FIM) quanti�es how much a small change
in the parameters θ is expected to a�ect the likelihood of the observations;
mathematically, the FIM is de�ned as

Ii,j(θ) = Ep(yq|Φq,θ)

[
∂p (yq|Φq, θ)

∂θi

∂p (yq|Φq, θ)
∂θj

]
(3)

where Eq denotes expectation under the distribution q.
The FIM encodes interaction between the observed and the experimental

covariates. The most common experimental design objective seeks to select a
design Φq in order to attain the maximum FIM according to some ordering.
For estimation purposes, the optimality criteria depends on the choice of matrix
function from which to evaluate the information matrix. The most popular is
the D-optimal criterion or maximize det (I (θ) /n). This criterion minimizes the
volume of the con�dence ellipsoid of the estimates [4]. A good review of D-
optimal design and related criteria can be consulted in [10].



In order to accommodate further uncertainties about experimental covari-
ates and model mis-speci�cation, a di�erent kind of statistical tools is needed.
Bayesian methods employ a prior distribution over the parameters p (θ) to incor-
porate uncertainty in a principled way. This is incorporated with observations
to compute the posterior distribution by applying Bayes rule which is

p (θ|yq, Φq) =
p (yq|θ, Φq) p (θ)

p (yq)
. (4)

The denominator in eq. 4 is computed by integrating the likelihood over the
prior distribution. Bayesian experimental design seeks to leverage prior infor-
mation about the parameter distribution by averaging over the posterior distri-
bution of the unobserved data samples [2]. For this, we employ the concept of
Mutual information. In this context we can view the mutual information between
θ and yq as the reduction in uncertainty about θ that results from observing yq

[7] . Then, the Bayesian counterpart to D-optimal design maximizes the Mutual
information between the parameters distribution and the experimental outcomes
[2].

2.1 Bayesian experimental design.

In his seminal work, Lindley [6] sets experimental design in a decision-theory
framework. First he states that the previous knowledge over a system is encoded
in the prior probability of its model parameters. The knowledge about parame-
ters θ obtained after an experiment, given the observations yq and experimental
conditions ξq will be contained in the posterior distribution p (θ|yq, ξq). Thus
the information gained after an experiment can be expressed in terms of the
expected KL-divergence between both distributions over the distribution of the
observations

I (θ; yq) =
�
KL (p (θ|yq) ‖p (θ) ) p (yq) dyq.

Thus the utility of an experiment q with conditions ξq(which we will denote
by U (θ; yq; ξq) ) is obtained by solving

U (θ; yq; ξq) =
� �

log
p (θ|yq, ξq)

p (θ)
p (θ,yq|ξq) dθdyq. (5)

This utility function gives rise to what is known as Bayesian D-optimal design [2].
In order to choose the best experimental design, the objective is to maximize
the value of the utility function U (θ, yq, ξq) over the set of parameters and
(unobserved) responses. Unlike classic optimal design, we aim at leveraging prior
information encoded in the prior distribution of the parameters.

Whereas these ideas were introduced in the linear regression case, extending
to di�erent scenarios is conceptually trivial; however, the computational simpli-
�cations a�orded by linear models are then lost, giving rise to an analytically
intractable problem. Liepe et al. [5] employ the same utility criteria over a set of
parameters for a nonlinear system of di�erential equations and then proceed to



compute the utility function by Monte Carlo simulation. This requires at each
step to simulate the experimental outcomes by solving the system, a procedure
which may incur in severe computational overhead depending of the model size
and parameters. Furthermore, the model structure is assumed �xed; introducing
uncertainty in the model structure would add a further dimension to the already
complex computational problem, ruling out all but the simplest problems.

In this work, we take the complementary approach of catering for structural
uncertainty in the models, while simplifying the dynamics by assuming linearity
and time invariance (LTI models). We approach the problem by adopting a prob-
abilistic linear model of the frequency spectrum of the gene expression levels. In
the case of oscillating networks, this linear model can o�er a reasonable approxi-
mation to the system dynamics, and has been shown to be e�ective in capturing
structural uncertainty in a network inference scenario [11]. The advantage of the
LTI approximation is that sampling from the experimental outcomes �reduces�
to sampling from a Multivariate Normal conditioned on a subset of variables,
con�ning the need for Monte Carlo simulation to integrating out the structural
uncertainty.

2.2 Frequency-domain model of gene expression levels.

We brie�y review now the LTI approach to modelling GRN dynamics taken in
[11]. We start by representing the LTI equations in frequency domain through
the Discrete Fourier Transform (DFT). Under certain conditions the DFT is a
discrete sample of the Fourier spectrum of the signal, see [8]. With this approx-
imation we derive a matrix equation for the linearized network dynamics, this
matrix equation is

Ẋq = XqAT + UqCT . (6)

Here, matrix Xq is the matrix whose columns represent the DFT coe�cients
(spectrum) of the expression level samples of a set of N genes for an experiment
q. Analogously, Uq will represent the DFT of the system inputs. We denote by
Ẋq the time derivative of the spectra, which can be computed by the matrix
product DX, being D a derivative operator. The DSS model presented in [11]
proposes a Gaussian likelihood regression model for estimating coe�cients A
and C by the distribution of the residues Qq = Ẋq −XqAT −UqCT such that

p (Qq|σD) = N
(
Ẋq −

[
Xq Uq

] [AT

CT

]
, σ2
D

)
.

In order to estimate the parameters {A,C}, a sparsity inducing prior is
set over these parameters. This prior is a spike and slab distribution of the form
presented in [3]: intuitively, this is a mixture distribution where parameters (LTI
coe�cients) can either be sampled from a distribution concentrated at zero (the
spike) or a broad distribution (the slab). Thus, conditioning on data, spike and
slab models carry out automatic feature selection by assigning the value zero to
irrelevant features (in our case interaction coe�cients between non-interacting
genes).



This prior encodes the network topology through an adjacency matrix H
within a Hierarchical Bayesian model. We call this model the DFT- Spike and
slab (DSS) model of gene expression. The precise details of the model, as well as
Bayesian algorithms for network inference within this framework, are provided
in [11]. For the purposes of experimental design, it is su�cient to state that
this framework provides us with a methodology to recast GRN dynamics in
a (Bayesian) regression framework, where the (DFT projection) of the signal
derivative is regressed upon the (DFT projection) of the signal. The Hierarchical
Bayesian model then provides a structured prior distribution to capture the
uncertainty over the underlying networks.

2.3 Experimental design for estimating parameters of a DSS model

Having speci�ed the DSS family of models, we now discuss in detail the experi-
mental design techniques for three classes of experiments. The starting point is
a prior distribution over LTI coe�cients, which in itself could be (and, generally,
is) the posterior distribution from some previous experiments. The crucial prob-
lems are two, how can an experimental perturbation be encoded mathematically
within the model? how can we compute the utility score for a perturbation?

The answer to these questions depends on the speci�c perturbation consid-
ered; here we focus on three commonly employed experiments. The �rst type are
changes in the external input to the system, the U matrix in eq. (6). We denote
this class of experiments as photo-period experiments, since in the case study of
A. thaliana the input matrix represents the light inputs to the circadian clock.
The second type are mutagenic experiments, where a single gene is removed
from the system (knock-out). The third type are observation experiments, where
presence/ absence of one or more edges is observed directly through experiments
such as Chromatin Immunoprecipitation (ChIP) or any a�nity-binding detec-
tion methods.

Notice that observation experiments are somewhat di�erent from the other
types, as they do not constitute a perturbation of the system; for this reason,
in the following we describe experimental design methodologies for observation
experiments separately.

Photo-period experiments and knock-out experiments In the DSS set-
ting, we frame experimental design for photo-period and knock-out settings as
choosing the best experiment q de�ned as interventions in matrix [XqUq] that
maximizes the information gain over the parameters B = [A,C] of the linear
dynamical model of equation 6. An intervention consists of setting a column of
Uq or Xq to a known value ξq (zero in case of knock-out experiments or the fre-
quency spectrum for a light signal in the case of photo-period experiments). We
will denote the intervened element as column(s) Xq

i and the rest of the columns
as Xq

\i.

The utility function of eq. 5 can be computed by calculating the KL-divergence
between the current distribution of the LTI-coe�cients (either prior distribution



or posterior distribution of a previous experiment) and the posterior distribu-
tion over said parameters after performing the desired experiment. This implies
that we have to be able to compute the expected value of the next experiment's
observations, in order to compute the mutual information and thus the utility
of the next experiment. Explicitly this utility function is

U (B; Xq; ξq) =
� �

p
(
Xq
\i,B|X

q
i = ξq

)
log

p
(
B|Xq

\i,X
q
i = ξq

)
p (B)

dXqdB

the prior (current knowledge) p (B) doesn't depend on the next, simulated exper-
iment (we simulate using the current knowledge), as such, the selection criteria
can be stated in terms of the numerator as the integral

� �
p
(
Xq
\i,B|X

q
i = ξq

)
log p

(
B|Xq

\i,X
q
i = ξq

)
dXqdB (7)

The conditional distribution p
(
B|Xq

\i,X
q
i = ξq

)
as derived in [11] is a result

of a Linear regression model with Gaussian likelihood. As such the conditional
over the coe�cients B can be obtained by factorizing, and is

log p (B|Xq, ξq) ∝ log
[
det
(
σ−2
D Σ−1

)−1/2
]
− 1

2σ2
D

(
−2η̄TB̄ + B̄TΣ−1B̄

)
(8)

with the terms

η̄ = vec

(∑
q

[
Xq Uq

]T
Ẋq

)
; Σ−1 = I⊗

(∑
q

[
Xq Uq

]T [Xq Uq

])
.

We evaluate equation (7) through Monte Carlo simulation by drawing a sam-
ple from the joint distribution

p
(
Xq
\i,B|X

q
i = ξq

)
= p

(
X\i

q|B,Xq
i = ξq

)
p (B) (9)

The Monte Carlo algorithm will consist of integrating UDSS (η̄,Σ,B)DSS over
both random variables

1
S1

S1∑
s1=1

(
1
S2

S2∑
s2=1

log p
(
B(s1)|Xq(s2)

\i ,Xq
i = ξq

))
(10)

we draw a sample B(s1) from p (B), then we evaluate eq. 8 by drawing samples

Xq(s2)
\i from the conditional distribution term of eq. 9. We derive the conditional

distribution p
(
X\i

q|B,Xq
i = ξq

)
from the Gaussian likelihood of the regression

model in [11] by using the Kronecker product and the vectorization operator. We
apply the technique of completing the square[1], so we can get the distribution
over the frequency spectra, from which we can draw samples as it is a Gaussian
of the form



p
(
Xq|B, σ2

)
∼ N

(
η, Λ−1

)
(11)

with Λ = 1
σ2

(
I⊗D−AT ⊗ I

)T (
I⊗D−AT ⊗ I

)
and

η = −Λ−1
(
I⊗D−AT ⊗ I

)T
ŪC.

Experiments for observing interactions As a complement to the previous
scores, we wished to account for an additional source of information, direct
observations over DNA-protein interactions. A result of this kind of experiment
can be viewed as an observation over element hij of matrix H

Here the observed gene expression spectra are considered a �xed set Xq.
Having these observations, we aim at choosing which link hij possess the highest
mutual information for learning parameters B. This can be represented in terms
of the conditional mutual information, which is a function of two conditional
entropies such that I (B;hij |Xq) = H (B|Xq)−H (B|Xq, hij).

The conditional entropy is not a function of the selected link, so its compu-
tation is not necessary for discriminating between links. Then we introduce the
utility function Uh equal to the negative conditional entropy of variable B given
the gene expressions Xq and the observed link hij

Uh (B,Xq, hij) =
∑

γ∈{0,1}

p (hij = γ)
�
p (B|Xq, hij = γ) log p (B|Xq, hij = γ) dB

where p (B|Xq, hij = γ) is the posterior distribution over B given a �xed
value for link hij (either 0 or 1).

We evaluate the integral by drawing samples from the conditional posterior
p (B|Xq, hij = γ), for γ ∈ {0, 1}, and evaluating log p (B|Xq, hij = γ). We inte-
grate by Monte Carlo method, with samples s3 and s4 drawn from the posterior
distribution p (B|Xq, hij = γ). As such the utility criterion is

Uh (B; Xq;hij) =

∑S3
s3=1 log p(B(s3)|Xq,hij=0)

2S3

+

∑S4
s3=1 log p(B(s4)|Xq,hij=1)

2S4

(12)

2.4 A. thaliana circadian clock model

In [9] we observe a state of the art model of the A. thaliana circadian clock net-
work. It consists of the transcription factors LHY/CCA1 LHY (LATE ELON-
GATED HYPOCOTYL) and CCA1 (CIRCADIAN CLOCK ASSOCIATED 1),
these execute an activating interaction with the transcriptional co-regulators
PRR9, PRR7 and PRR5/NI (PSEUDO-RESPONSE Regulators 9, 7, 5/night
inhibitor) which at the same time are interlocked in a negative feedback loop
with LHY/CCA1. This feedback loop is thought to be the responsible for peak
activity of day-time components.

On the other hand we have the evening loop, thought to be driven by EC
(Evening complex), composed by the binding of ELF3 (EARLY FLOWERING



3), ELF4 (EARLY FLOWERING 4) and the GARP transcription LUX (LUX
ARRHYTHMO) which controls LHY expression by a double negative connection
[9]. A graphical representation of the model is shown in Figure 2.

Fig. 2: Circadian clock model for A. thaliana, as shown in [9]. Transcriptional elements
LHY, PRR579, GI, TOC1, LUX, ELF4 and ELF3 are assumed observed. While the
expression levels of the Evening Complex (EC) is unobserved, along with other post-
transcriptional interactions involving ZTL and COP1.

3 Results.

We simulate the A. thaliana circadian clock model, we selected and sub sampled
the simulated data in order to get 12 samples over one light/dark cycle for a Wild
Type population. We ran DSS and collected 10000 samples of the joint posterior
over the model parameters. We executed DSS using standard parameters as in
[11] and evaluated the mutual information criterion 10, we draw 1000 samples,
thus setting parameter S1 = 1000. We draw 100 samples for each gene expression
level at each step, thus setting parameter S2 = 100.

First, we chose photo-periods of 6/18, 8/16, 18,6 and 20/24, we computed
the DFT of a {-1,1} light input (ξq) and added it to the spectra matrix. Thus
drawing samples from the conditional distribution p

(
Xq|B, σ2,U = ξq

)
.

Then we selected a set of knock out mutants commonly seen in experimen-
tal settings. In this way knock-out mutants ∆LHY, ∆LHY-GI, ∆LHY-TOC1
and ∆PRR7-PRR9 were simulated by conditioning the rest of the gene spec-
tra given that the intervened genes have a constant spectrum of zero, that is

p
(
Xq
\i|B, σ

2,Xq
i = 0

)
.

In �gure 3 we present the results of evaluating eq. 10 for these two set of
experiments. The boxes go from the 25th to the 75th percentiles and the red bar
indicates the median score. It shows photo-period experiments having a median
score between 220 and 225, while the knock-out mutants show less median values
ranging from 210 to 217. It is of interest that the lowest information gain looks
to be accredited to the ∆LHY-TOC1 double mutant, being these two genes
the main drivers of circadian oscillations. This may be due to the nature of the
mutual information criterion, as it accounts for the reduction in uncertainty over
the estimation of parameters. It seems plausible that the disruption of these two



Fig. 3: Box plot for the evaluation of the DSS criterion, higher score means higher
mutual information between experimental design and experimental outcomes. From
left to right, photo periods of 6/18, 8/16, 18/6 and 20/4. Then knockout Mutants
∆LHY, ∆LHY-GI, ∆LHY-TOC1 and ∆PRR7-PRR9.

components alters clock behavior enough that parameter inference is less reliable,
as the score suggests that the uncertainty over the model behaviour grows. This
may be in fact another source of information about the importance of these two
clock components.

Complementary, we computed the conditional mutual information for Chip
experiments according to eq. 12. First we simulated Wild-type gene expression
levels for 12 samples over a 24 hour period, using the same procedure as in the
previous paragraph. Then, we selected a set of candidate links to observe, these
include those known to be part of the true network, and those involving the
EC components. Each one of these links was set to their possible values (one
and zero), and the posterior distribution calculated for each case, this implies
running DSS twice for each studied link with standard parameters as proposed
in [11].

We show the resulting scores in �gure 4. In this scatter plot, regulators are
shown in the x axis, and the scores are presented through colored dots. Each
dot is labeled according to the putative regulation tested (the regulators target
is marked by a ->). Here we observe that the regulating interactions involving
the elements of the EC complex (LUX, ELF4 and ELF3 ) as regulators show
the lest information. This is not surprising as model assumptions are that the
EC complex is the transcription factor involved in the evening regulation, and
its e�ects even though essential, are not directly observable through its compo-
nents. On the other hand we �nd that the most useful information seems to be
related to the elucidation of the role of the light input over LHY and specially
GI, with the highest score of 437, above of the mean value of 432.7. Another
interesting interactions include that for LHY its most useful observation would
be its regulation of TOC1, correspondingly, LHY would be the most informative
interaction to observe for TOC1. As stated earlier, the interaction between these
two components is the main driver of the morning oscillator.



Taking in account these two complimentary criteria, some decisions about the
utility of the experiments can be made. In these case, it seems to points towards
light-related experiments, as the expected mutual information for all the photo-
period experiments seems to be on par. This at the same time could be validated
by the fact that light-input nodes of the network seem to be the most informative
in �rst instances. Finally the LHY-TOC1 double mutant score suggest that the
behaviour of the system under these circumstances is more uncertain, insight
that may result useful for the researcher and thus an interesting experiment to
execute.
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Fig. 4: Scatter plot of the conditional mutual information scores for observations over
some edges. Each score is labeled with the represented interaction. The regulating
interactions are symbolized by a �->� as �->targets�, with the regulator being the label
on the x axis tick. From left to right we have regulators LHY, PRR9, PRR7, PRR5,
TOC1, LUX, GI, ELF3, ELF4 and photo-regulation in case of light inputs.

4 Conclusions

We have presented a methodology for Bayesian experimental design in biological
dynamical systems with structural uncertainty. Experimental design is a branch
of classical computational statistics which is gaining increasing attention in sys-
tems biology, due to inherent complexity and uncertainty of biological systems.
Adapting classical methods to modern systems biology is problematic, as sources
of uncertainty are ubiquitous in systems biology data, leading to computation-
ally intractable problems and/ or predictions with large associated uncertainty.
In general, handling both parametric and structural uncertainty in nonlinear sys-
tems is highly problematic. Earlier work such as [5] chose to focus on non-linear



systems without structural uncertainty. However, in many biological systems,
such as oscillatory systems, it may be preferable to approximate the system dy-
namics to gain computational savings which will enable structural uncertainty
to be considered in experimental design. Our results on the A. thaliana clock
model show that this approach can be fruitful, highlighting potentially large
di�erences in information content for di�erent classes of experiments, and for
di�erent individual experiments in each class. These results are potentially pre-
cious for practitioners, whose prime preoccupation is often the prioritisation of
experiments in the face of technical and resource limitations.

There are several directions along which the approach could be further de-
veloped. A simple, but potentially useful, extension would be to modify the
utility function by explicitly accounting for the di�erent costs of di�erent exper-
iments. It would also be of interest to develop strategies for planning multiple
experiments, as the information gain is generally a non-linear function on the
space of possible experiments. While the same approach can be easily deployed
for small sets of experiments, the general issue of multiple experimental design
yields a very challenging discrete optimisation problem. We envisage that ideas
from reinforcement learning could be e�ective in this scenario.
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