Skip to main content

Integrative Construction of Gene Signatures Based on Fusion of Expression and Ontology Information

  • Conference paper
  • First Online:
Man–Machine Interactions 4

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 391))

  • 911 Accesses

Abstract

Gene signatures are lists of genes used for summarizing high-throughput gene expression profiling experiments. Various routines for obtaining and analyzing gene signatures in molecular biology studies exist, including statistical testing with false discovery corrections and annotations by gene ontology keywords. Despite the presence of well established routines there are still challenges in efficient application of gene signatures, which include gene signature instability, problems in defining optimal sizes and possible unreliability of inference results. Therefore there are continuous attempts towards improving algorithms for constructing meaningful gene signatures. In this paper we are introducing a methodology for constructing gene signatures, based on the fusion of information coming from statistical tests for differential gene expression analysis and resulting from statistical tests for GO terms enrichment analysis. On the basis of the DNA microarray datasets we are demonstrating that the proposed algorithm for fusion of expression and ontology information leads to improvement of the composition of gene signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexa, A., Rahnenführer, J.: Gene set enrichment analysis with topGO (2009). http://rgm.ogalab.net/RGM-files/R_BC/download/topGO/inst/doc/topGO.pdf

  2. Alexa, A., Rahnenführer, J., Lengauer, T.: Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22(13), 1600–1607 (2006)

    Article  Google Scholar 

  3. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene Ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)

    Article  Google Scholar 

  4. Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., et al.: NCBI GEO: archive for functional genomics data sets update. Nucleic Acids Res. 41(D1), D991–D995 (2013)

    Article  Google Scholar 

  5. Bérard, S., Tichit, L., Herrmann, C.: ClusterInspector: a tool to visualize ontology-based relationships between biological entities. Actes des Journées Ouvertes Biologie Informatique Mathématiques, pp. 447–457. Lyon (2005)

    Google Scholar 

  6. Bielen, A., Perryman, L., Box, G.M., Valenti, M.,de Haven Brandon, A., Martins, V., Jury, A., Popov, S., Gowan, S., Jeay, S., et al.: Enhanced efficacy of IGF1R inhibition in pediatric glioblastoma by combinatorial targeting of PDGFR\(\alpha \)/\(\beta \). Mol. Cancer Ther. 10(8), 1407–1418 (2011)

    Google Scholar 

  7. Camon, E., Magrane, M., Barrell, D., Lee, V., Dimmer, E., Maslen, J., Binns, D., Harte, N., Lopez, R., Apweiler, R.: The gene ontology annotation (goa) database: sharing knowledge in uniprot with gene ontology. Nucleic Acids Res. 32(suppl 1), D262–D266 (2004)

    Article  Google Scholar 

  8. Dai, M., Wang, P., Boyd, A.D., Kostov, G., Athey, B., Jones, E.G., Bunney, W.E., Myers, R.M., Speed, T.P., Akil, H., et al.: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 33(20), e175–e175 (2005)

    Google Scholar 

  9. Davis, C.A., Gerick, F., Hintermair, V., Friedel, C.C., Fundel, K., Küffner, R., Zimmer, R.: Reliable gene signatures for microarray classification: assessment of stability and performance. Bioinformatics 22(19), 2356–2363 (2006)

    Article  Google Scholar 

  10. Figueroa, M.E., Wouters, B.J., Skrabanek, L., Glass, J., Li, Y., Erpelinck-Verschueren, C.A., Langerak, A.W., Lowenberg, B., Fazzari, M., Greally, J.M., et al.: Genome-wide epigenetic analysis delineates a biologically distinct immature acute leukemia with myeloid/T-lymphoid features. Blood 113(12), 2795 (2009)

    Article  Google Scholar 

  11. Galperin, M.Y., Rigden, D.J., Fernández-Suárez, X.M.: The 2015 nucleic acids research database issue and molecular biology database collection. Nucleic Acids Res. 43(D1), D1–D5 (2015)

    Article  Google Scholar 

  12. Grossmann, S., Bauer, S., Robinson, P.N., Vingron, M.: Improved detection of overrepresentation of Gene-Ontology annotations with parent-child analysis. Bioinformatics 23(22), 3024–3031 (2007)

    Article  Google Scholar 

  13. Grzmil, M., Morin, P., Lino, M.M., Merlo, A., Frank, S., Wang, Y., Moncayo, G., Hemmings, B.A.: MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-\(\beta \) signaling pathway in human glioblastoma. Cancer Res. 71(6), 2392–2402 (2011)

    Article  Google Scholar 

  14. Homma, T., Fukushima, T., Vaccarella, S., Yonekawa, Y., Di Patre, P.L., Franceschi, S., Ohgaki, H.: Correlation among pathology, genotype, and patient outcomes in glioblastoma. J. Neuropathol. Exp. Neurol. 65(9), 846–854 (2006)

    Article  Google Scholar 

  15. Hunter, S., Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Binns, D., Bork, P., Das, U., Daugherty, L., Duquenne, L., et al.: InterPro: the integrative protein signature database. Nucleic Acids Res. 37(suppl 1), D211–D215 (2009)

    Article  Google Scholar 

  16. Hutter, J.J.: Childhood leukemia. Pediatr. Rev. 31(6), 234–241 (2010)

    Article  Google Scholar 

  17. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., et al.: KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36(suppl 1), D480–D484 (2008)

    Google Scholar 

  18. Krupp, M., Itzel, T., Maass, T., Hildebrandt, A., Galle, P.R., Teufel, A.: Cell LineNavigator: a workbench for cancer cell line analysis. Nucleic Acids Res. 41(D1), D942–D948 (2013)

    Article  Google Scholar 

  19. Liu, Z., Yao, Z., Li, C., Lu, Y., Gao, C.: Gene expression profiling in human high-grade astrocytomas. Comp. Funct. Genomics (2011)

    Google Scholar 

  20. Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavenee, W.K., Burger, P.C., Jouvet, A., Scheithauer, B.W., Kleihues, P.: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114(2), 97–109 (2007)

    Article  Google Scholar 

  21. Nat. Biotechnol. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the sequencing quality control consortium. 32(9), 903–914 (2014)

    Google Scholar 

  22. Nucleic Acids Res. The universal protein resource (UniProt) in 2010. 38(suppl 1), D142–D148 (2010)

    Google Scholar 

  23. Ohgaki, H., Kleihues, P.: The definition of primary and secondary glioblastoma. Clin. Cancer Res. 19(4), 764–772 (2013)

    Article  Google Scholar 

  24. Sandberg, R., Larsson, O.: Improved precision and accuracy for microarrays using updated probe set definitions. BMC Bioinform. 8(1), 48 (2007)

    Article  Google Scholar 

  25. Stewart, B.W., Wild, C.P.: World cancer report 2014. IARC Press, International Agency for Research on Cancer, Geneva (2008)

    Google Scholar 

  26. Vardiman, J.W., Thiele, J., Arber, D.A., Brunning, R.D., Borowitz, M.J., Porwit, A., Harris, N.L., Le Beau, M.M., Hellström-Lindberg, E., Tefferi, A., et al.: The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114(5), 937–951 (2009)

    Article  Google Scholar 

  27. Wang, C., Gong, B., Bushel, P.R., Thierry-Mieg, J., Thierry-Mieg, D., Xu, J., Fang, H., Hong, H., Shen, J., Su, Z., et al.: The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nat. Biotechnol. 32(9), 926–932 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Pawel P. Labaj and Anna Papiez for helpful discussions. The work was financially supported by SUT - BKM/525/RAU-2/2014. Calculations were carried out using the infrastructure supported by POIG.02.03.01-24-099/13 grant: GeCONiI - Upper-Silesian Center for Scientific Computation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Łabaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Łabaj, W., Polanski, A. (2016). Integrative Construction of Gene Signatures Based on Fusion of Expression and Ontology Information. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds) Man–Machine Interactions 4. Advances in Intelligent Systems and Computing, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-23437-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23437-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23436-6

  • Online ISBN: 978-3-319-23437-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics