Skip to main content

Estimation of the Joint Spectral Radius

  • Conference paper
  • First Online:
Man–Machine Interactions 4

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 391))

Abstract

The joint spectral radius of a set of matrices is a generalization of the concept of spectral radius of a matrix. Such notation has many applications in the computer science, and more generally in applied mathematics. It has been used, for example in graph theory, control theory, capacity of codes, continuity of wavelets, overlap-free words, trackable graphs. It is impossible to provide analytic formulae for this quantity and therefore any estimation are highly desired. The main result of this paper is to provide an estimation of the joint spectral radius in the terms of matrices norms and spectral radii.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babiarz, A., Czornik, A., Niezabitowski, M.: On the number of upper Bohl exponents for diagonal discrete time-varying linear system. J. Math. Anal. Appl. 429(1), 337–353 (2015)

    Article  MathSciNet  Google Scholar 

  2. Barabanov, N.: Lyapunov indicators of discrete inclusions. Autom. Remote Control 49, 152–157 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Berstel, J.: Growth of repetition-free words-a review. Theor. Comput. Sci. 340(2), 280–290 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blondel, V., Canterini, V.: Undecidable problems for probabilistic automata of fixed dimension. Theory Comput. Syst. 36(3), 231–245 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blondel, V., Jungers, R., Protasov, V.: On the complexity of computing the capacity of codes that avoid forbidden difference patterns. IEEE Trans. Inf. Theory 52(11), 5122–5127 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blondel, V., Tsitsiklis, J.: Boundedness of all products of a pair of matrices is undecidable. Syst. Control Lett. 41(2), 135–140 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brayton, R., Tong, C.: Constructive stability and asymptotic stability of dynamical systems. IEEE Trans. Circuits Syst. 27(11), 1121–1130 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brooks, R., Friedlander, D., Koch, J., Phoha, S.: Tracking multiple targets with selforganizing distributed ground sensors. J. Parallel Distrib. Comput. 64(7), 874–884 (2004)

    Article  Google Scholar 

  9. Collela, D., Heil, D.: Characterization of scaling functions: continuous solutions. SIAM J. Matrix Anal. Appl. 15, 496–518 (1994)

    Article  MathSciNet  Google Scholar 

  10. Crespi, V., Cybenko, G., Jiang, G.: The theory of trackability with applications to sensor networks. ACM Trans. Sens. Netw. 4(3), 1–42 (2008)

    Article  Google Scholar 

  11. Czornik, A.: The relations between the senior upper general exponent and the upper Bohl exponents. In: MMAR 2014, pp. 897–902. Miedzyzdroje, Poland (2014)

    Google Scholar 

  12. Czornik, A., Jurgas, P.: Falseness of the finiteness property of the spectral subradius. Int. J. Appl. Math. Comput. Sci. 17(2), 173–178 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Czornik, A., Jurgas, P.: Set of possible values of maximal Lyapunov exponents of discrete time-varying linear system. Automatica 44(2), 580–583 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Czornik, A., Klamka, J., Niezabitowski, M.: About the number of the lower Bohl exponents of diagonal discrete linear time-varying systems. In: ICCA 2014, pp. 461–466. Taichung, China (2014)

    Google Scholar 

  15. Czornik, A., Nawrat, A., Niezabitowski, M.: On the Lyapunov exponents of a class of the second order discrete time linear systems with bounded perturbations. Dyn. Syst. Int. J. 28(4), 473–483 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Czornik, A., Nawrat, A., Niezabitowski, M.: On the stability of lyapunov exponents of discrete linear systems. In: ECC 2013, pp. 2210–2213. Zurich, Switzerland (2013)

    Google Scholar 

  17. Czornik, A., Niezabitowski, M.: Lyapunov exponents for systems with unbounded coefficients. Dyn. Syst. Int. J. 28(2), 140–153 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Czornik, A., Niezabitowski, M.: Lyapunov exponents for systems with unbounded coefficients. Dyn. Syst. Int. J. 28(2), 299–299 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Czornik, A., Niezabitowski, M.: On the spectrum of discrete time-varying linear systems. Nonlinear Anal. Hybrid Syst. 9, 27–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Czornik, A.: On the generalized spectral subradius. Linear Algebra Appl. 407, 242–248 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Czornik, A., Niezabitowski, M.: Alternative formulae for lower general exponent of discrete linear time-varying systems. J. Frankl. Inst. 352(1), 399–419 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Daubechies, I., Lagarias, J.: Sets of matrices all infinite products of which converge. Linear Algebra Appl. 161, 227–263 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Daubechies, I., Lagarias, J.: Two-scale difference equations ii. local regularity, infinite products of matrices and fractals. SIAM J. Math. Anal. 23(4), 1031–1079 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Derfel, G., Dyn, N., Levin, D.: Generalized refinement equations and subdivision processes. J. Approx. Theory 80(2), 272–297 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Desoer, C.: Slowly varying discrete system \({\rm {xi}}+1={\rm {aixi}}\). Electron. Lett. 6(11), 339–340 (1970)

    Google Scholar 

  27. Gripenberg, G.: Computing the joint spectral radius. Linear Algebra Appl. 234, 43–60 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Guglielmi, N., Wirth, F., Zennaro, M.: Complex polytope extremality results for families of matrices. SIAM J. Matrix Anal. Appl. 27(3), 721–743 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Guglielmi, N., Zennaro, M.: Finding extremal complex polytope norms for families of real matrices. SIAM J. Matrix Anal. Appl. 31(2), 602–620 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Guglielmi, N., Zennaro, M.: An algorithm for finding extremal polytope norms of matrix families. Linear Algebra Appl. 428(10), 2265–2282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gurvits, L.: Stability of discrete linear inclusion. Linear Algebra Appl. 231, 47–85 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jungers, R., Protasov, V.: Weak stability of switching dynamical systems and fast computation of the p-radius of matrices. In: CDC 2010, pp. 7328–7333. Atlanta, USA (2010)

    Google Scholar 

  33. Jungers, R., Protasov, V., Blondel, V.: Computing the growth of the number of overlap-free words with spectra of matrices. In: Laber, E., Bornstein, C., Nogueira, L., Faria, L. (eds.) LATIN 2008: Theoretical Informatics. LNCS, vol. 4957, pp. 84–93. Springer, Berlin (2008)

    Chapter  Google Scholar 

  34. Khalil, H.: Nonlinear Systems. Prentice Hall, New York (2001)

    Google Scholar 

  35. Kozyakin, V.: Algebraic unsolvability of problem of absolute stability of desynchronized systems. Avtomatika i Telemekhanika 51(6), 754–759 (1990)

    MathSciNet  MATH  Google Scholar 

  36. Kozyakin, V.: Iterative building of barabanov norms and computation of the joint spectral radius for matrix sets. Discrete Contin. Dyn. Syst. Ser. B 14(1), 143–158 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lagarias, J., Wang, Y.: The finiteness conjecture for the generalized spectral radius of a set of matrices. Linear Algebra Appl. 214, 17–42 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Clarendon Press, New York (1995)

    Google Scholar 

  39. Lima, R., Rahibe, M.: Exact Lyapunov exponent for infinite products of random matrices. J. Phys. Math. Gen. 27(10), 3427–3437 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  41. Maesumi, M.: Optimal norms and the computation of joint spectral radius of matrices. Linear Algebra Appl. 428(10), 2324–2338 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Molchanov, A., Pyatnitskiy, Y.: Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Syst. Control Lett. 13(1), 59–64 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  43. Niezabitowski, M.: About the properties of the upper Bohl exponents of diagonal discrete linear time-varying systems. In: MMAR 2014, pp. 880–884. Miedzyzdroje, Poland (2014)

    Google Scholar 

  44. Niezabitowski, M.: On the Bohl and general exponents of the discrete time-varying linear system. In: Sivasundaram, S (ed.) ICNPAA 2014, vol. 1637, pp. 744–749 (2014)

    Google Scholar 

  45. Parrilo, P., Jadbabaie, A.: Approximation of the joint spectral radius using sum of squares. Linear Algebra Appl. 428(10), 2385–2402 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Protasov, V.: The joint spectral radius and invariant sets of linear operators. Fundamental’naya i Prikladnaya Matematika 2(1), 205–231 (1996)

    MathSciNet  MATH  Google Scholar 

  47. Protasov, V.: Asymptotic behaviour of the partition function. Matematicheskii Sbornik 191(3), 65–98 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Protasov, V.: Refinement equations with nonnegative coefficients. J. Fourier Anal. Appl. 6(1), 55–78 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Protasov, V.: The geometric approach for computing the joint spectral radius. In: CDC-ECC 2005, pp. 3001–3006. Seville, Spain (2005)

    Google Scholar 

  50. Protasov, V., Jungers, R., Blondel, V.: Joint spectral characteristics of matrices: a conic programming approach. SIAM J. Matrix Anal. Appl. 31(4), 2146–2162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Protasov, V.: On the asymptotics of the binary partition function. Matematicheskie Zametki 76(1), 151–156 (2004)

    Article  MathSciNet  Google Scholar 

  52. Rota, G., Strang, G.: A note on the joint spectral radius. Proc. Neth. Acad. 22, 379–381 (1960)

    MathSciNet  Google Scholar 

  53. Tsitsiklis, J., Blondel, V.: The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate. Math. Control Signals Syst. 10(1), 31–40 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wirth, F.: The generalized spectral radius and extremal norms. Linear Algebra Appl. 342, 17–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research presented here were done by the authors as parts of the projects funded by the National Science Centre granted according to decisions DEC-2012/07/B/ST7/01404, DEC-2012/05/B/ST7/00065 and DEC-2012/07/N/ST7/03236, respectively. The calculations were performed with the use of IT infrastructure of GeCONiI Upper Silesian Centre for Computational Science and Engineering (NCBiR grant no POIG.02.03.01-24-099/13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Czornik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Czornik, A., Jurgaś, P., Niezabitowski, M. (2016). Estimation of the Joint Spectral Radius. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds) Man–Machine Interactions 4. Advances in Intelligent Systems and Computing, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-23437-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23437-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23436-6

  • Online ISBN: 978-3-319-23437-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics