

Uniwersytet Śląski

University of Silesia

https://opus.us.edu.pl

Publikacja / Publication Perturbation Mappings in Polynomiography,
Gdawiec Krzysztof

DOI wersji wydawcy / Published version DOI http://dx.doi.org/10.1007/978-3-319-23437-3_42
Adres publikacji w Repozytorium URL /
Publication address in Repository https://opus.us.edu.pl/info/article/USLe006eb8a2095442090bb8b227c0d40ef/

Data opublikowania w Repozytorium /
Deposited in Repository on Feb 6, 2024

Rodzaj licencji / Type of licence

Cytuj tę wersję / Cite this version Perturbation Mappings in Polynomiography, vol. 7, Gdawiec Krzysztof:
2015, pp. 499-506, DOI:10.1007/978-3-319-23437-3_42

Title: Perturbation Mappings in Polynomiography

Author: Krzysztof Gdawiec

Citation style: Gdawiec Krzysztof. (2015). Perturbation Mappings in
Polynomiography. W: A. Gruca, A. Brachman, S. Kozielski, T. Czachórski
(red.) "Man-machine interactions 4 : 4th International Conference on Man-
Machine Interactions, ICMMI 2015 Kocierz Pass, Poland, October 6-9, 2015.
Pt. 7" (S. 499-506). Cham : Springer International Publishing, doi: 10.1007/978-
3-319-23437-3_42

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

4-
19

Perturbation Mappings in Polynomiography

Krzysztof Gdawiec

Institute of Computer Science, University of Silesia
Bȩdzińska 39, 41-200, Sosnowiec, Poland

kgdawiec@ux2.math.us.edu.pl

Abstract. In the paper, a modification of rendering algorithm of poly-
nomiograph is presented. Polynomiography is a method of visualization
of complex polynomial root finding process and it has applications among
other things in aesthetic pattern generation. The proposed modification
is based on a perturbation mapping, which is added in the iteration
process of the root finding method. The use of the perturbation map-
ping alters the shape of the polynomiograph, obtaining in this way new
and diverse patterns. The results from the paper can further enrich the
functionality of the existing polynomiography software.

Keywords: polynomiography, perturbation, aesthetic pattern, computer
art

1 Introduction

Today, one of the aims in computer aided design is to develop methods that
make the artistic design and pattern generation much easier. Usually the most
work during a design stage is carried out by a designer manually. Especially, in
the cases in which the graphic design should contain some unique unrepeatable
artistic features. Therefore, it is highly useful to develop an automatic method
for aesthetic patterns generation. In the literature we can find many different
methods, e.g., method based on Iterated Function Systems [13], method for
creating stone-like decorations using marbling [11]. A very interesting method
is polynomiography [7]. It is based on the root finding methods of polynomials
with complex coefficients.

In this paper we present a modification of the standard rendering algorithm
used in polynomiography. The modification is based on the use of perturbation
mapping before the use of root finding method in the standard algorithm. The
perturbation mapping disturbs the process of finding the roots of polynomial
thereby obtaining new and diverse patterns comparing to the standard poly-
nomiography.

The paper is organized as follows. In Sec. 2 we introduce some basic infor-
mation about polynomiography and a standard algorithm for rendering poly-
nomiographs. Then, in Sec. 3 we present perturbation mapping and its use
in the polynomiography for obtaining new patterns. Some examples of poly-
nomiographs obtained with the proposed modifications are presented in Sec. 4.
Finally, in Sec. 5 we give some concluding remarks.

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

4-
19

2 Polynomiography

The notion of polynomiography appeared in the literature about 2000 and was
introduced by Kalantari. Polynomiography is defined as the art and science of
visualization in approximation of the zeros of complex polynomials, via fractal
and non-fractal images created using the mathematical convergence properties
of iteration functions [6]. Single image created using the mentioned methods is
called polynomiograph.

In polynomiography the main element is the root finding method. Many
different root finding methods exist in the literature, e.g., Newton method [6],
Traub-Ostrowski method [1], Harmonic Mean Newton’s method [1], Steffensen
method [10], and also we can find families of root finding method, e.g., Basic
Family [6], Parametric Basic Family [6], Euler-Schröder Family [6], Jarratt Fam-
ily [2]. Let us recall two root finding methods, that will be used in the examples
presented in Sec. 4.

Let us consider a polynomial p ∈ C[Z], deg p ≥ 2 of the form:

p(z) = anz
n + an−1z

n−1 + . . .+ a1z + a0. (1)

The Newton root finding method is given by the following formula:

N(z) = z − p(z)

p′(z)
, (2)

and Halley root finding method by the formula:

H(z) = z − 2p′(z)p(z)

2p′(z)2 − p′′(z)p(z)
. (3)

To render a single polynomiograph we can use Algorithm 1. It is a basic
rendering algorithm. In the literature we can find other methods of rendering
polynomiographs, which are based on the ideas taken from the Mandelbrot and
Julia set rendering algorithms [4]. Moreover, we can replace the Picard iteration
used in the algorithm with other iteration methods [5], e.g., Mann, Ishikawa,
Noor. In the algorithm we use the so-called iteration colouring, i.e., colour is
determined according to the number of iteration in which we have left the while
loop. Other colouring methods exist in the literature, e.g., basins of attraction,
mixed colouring [6].

3 Perturbation Mappings in Polynomiography

In Algorithm 1 for any z0 we can treat the sequence {z0, z1, z2, . . .} as the orbit of
z0. For different starting points z0 using the same root finding method we obtain
different orbits. So, if we change some point in the orbit of a given starting point,
then the orbit changes starting from the altered point. In this way we can obtain
alternation of the polynomiographs shape.

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

4-
19

Algorithm 1: Rendering of polynomiograph

Input: p ∈ C[Z], deg p ≥ 2 – polynomial, A ⊂ C – area, M – number of
iterations, ε – accuracy, R : C→ C – root finding method, colours[0..k]
– colourmap.

Output: Polynomiograph for the area A.

1 for z0 ∈ A do
2 i = 0
3 while i ≤M do
4 zi+1 = R(zi)
5 if |zi+1 − zi| < ε then
6 break

7 i = i+ 1

8 Print z0 with colours[i] colour

Let us modify line 4 in Algorithm 1 in a following way:

zi+1 = (R ◦ ρ)(zi, i+ 1) = R(ρ(zi, i+ 1)), (4)

where ρ : C × IN → C is a mapping. Moreover, we modify the convergence test
in line 5 in a following way:

|zi+1 − ρ(zi, i+ 1)| < ε. (5)

The mapping ρ is called perturbation mapping and its aim is to alter (per-
turb) the orbit during the iteration process. Because we can alter the orbit in
very different ways, so we do not make any assumptions about the perturbation
mapping. Let us notice that when ρ(z, i) = z for all z ∈ C and i ∈ IN, then
(4) and (5) reduce to the standard iteration and convergence test used in the
polynomiography.

The simplest perturbation mapping that alters the orbit is addition of a fixed
complex number v, i.e.,

ρv(z, i) = z + v. (6)

The value of v cannot be arbitrary, because we will lose the convergence of the
root finding method and the resulting polynomiograph will be a rectangle filled
with one colour. From the conducted research it turns out that the value v is
highly dependent on ε. The modulus of v can be greater than ε only by a small
value. Taking into account this observation it is very comfortable to represent v
in the trigonometric form:

v = rε(cos θ + i sin θ), (7)

where r ∈ [0, 1.1] and θ ∈ [0, 2π).

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

4-
19

Another example of perturbation mapping is mapping that uses different
values of v in subsequent iterations, e.g.,

ρm(z, i) =


z + v1, if i mod m = 0,

z + v2, if i mod m = 1,

. . .

z + vm, if i mod m = m− 1,

(8)

where m ∈ IN and v1, v2, . . . , vm ∈ C.
The examples of perturbation mappings presented so far are all deterministic.

It is tempting to use randomness to obtain random patterns. But it turns out
that the polynomiographs generated using random value of v in each iteration
does not give a random pattern. We obtain a very similar noisy patterns, so their
appearance is not aesthetic. Instead of using pure randomness we can use the
random number generator of computer graphics [8], i.e., a noise function.

Besides the use of perturbation mapping we can also take combination of
the standard iteration and the perturbed one. Let ρ be a given perturbation
mapping and R a root finding method. We define new iteration process in the
following way:

zi+1 = αR(zi) + (1− α)R(ρ(zi, i+ 1)), (9)

where α ∈ C. Let us notice that for α = 1 iteration (9) reduces to the standard
iteration used in the polynomiography, and for α = 0 it reduces to (4). So the
combined iteration process is more general than the iteration with perturbation
mapping.

Algorithm 2 presents method for rendering polynomiograph using the com-
bined iteration process.

Algorithm 2: Rendering of polynomiograph with combined iteration

Input: p ∈ C[Z], deg p ≥ 2 – polynomial, A ⊂ C – area, M – number of
iterations, ε – accuracy, R : C→ C – root finding method,
ρ : C× IN→ C – perturbation mapping, α ∈ C – parameter,
colours[0..k] – colourmap.

Output: Polynomiograph for the area A.

1 for z0 ∈ A do
2 i = 0
3 while i ≤M do
4 w = ρ(zi, i+ 1)
5 zi+1 = αR(zi) + (1− α)R(w)
6 if |zi+1 − w| < ε then
7 break

8 i = i+ 1

9 Print z0 with colours[i] colour

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

4-
19

4 Examples

In this section, we present some examples of polynomiographs obtained using
the proposed modifications from Sec. 3. To visually compare the obtained pat-
terns with the originals ones we start by presenting the patterns obtained with
the standard rendering algorithm (Algorithm 1). The patterns are presented in
Fig. 1, and the parameters used to generate them were the following:

(a) p(z) = z3 − 1, A = [−1.5, 1.5]2, M = 15, ε = 0.001, Newton’s root finding
method,

(b) p(z) = z5 + z, A = [−2.0, 2.0]2, M = 15, ε = 0.001, Halley’s root finding
method,

(c) p(z) = z3 − 3z + 3, A = [−2.5, 2.5]2, M = 20, ε = 0.001, Newton’s root
finding method.

(a) (b)

(c)

Fig. 1. Polynomiographs generated with the standard rendering algorithm.

The first example presents the use of perturbation mapping with the addition
of a fixed complex number (6). The parameters to generate the polynomiographs
were the same as in Fig. 1(a), and the complex numbers used in the perturbation
mapping had modulus equal to ε and their arguments were the following: (a)

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

4-
19

θ = 0.00, (b) θ = 0.22, (c) θ = 0.50, (d) θ = 0.99. The obtained polynomiographs
are presented in Fig. 2.

(a) (b)

(c) (d)

Fig. 2. Polynomiographs obtained using the perturbation mapping (6) – different ar-
guments.

The second example presents the influence of the modulus of the fixed com-
plex number used in the perturbation mapping on the polynomiograph. The
parameters to generate the polynomiographs were the same as in Fig. 1(a), and
the complex numbers used in the perturbation mapping had argument equal to
0.6π and their moduli were the following: (a) 0.6ε, (b) 0.9ε, (c) 1.0ε, (d) 1.1ε.
The obtained polynomiographs are presented in Fig. 3.

The next example presents the use of perturbation mapping given by (8).
The parameters to generate the polynomiographs were the same as in Fig. 1(b),
and the parameters of the complex numbers used in the perturbation mapping
were the following:

(a) {
r = 0.95, θ = 0.6π, if i mod 2 = 0,

r = 1.1, θ = 1.5π, if i mod 2 = 1,
(10)

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

4-
19

(a) (b)

(c) (d)

Fig. 3. Polynomiographs obtained using the perturbation mapping (6) – different mod-
uli.

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

4-
19

(b) {
r = 1.1, θ = 1.5π, if i mod 2 = 0,

r = 0.95, θ = 0.6π, if i mod 2 = 1,
(11)

(c) 
r = 1.1, θ = 1.62π, if i mod 3 = 0,

r = 0.5, θ = 0.98π, if i mod 3 = 1,

r = 1.0, θ = 0.20π, if i mod 3 = 2,

(12)

(d) 
r = 1.0, θ = 1.62π, if i mod 3 = 0,

r = 1.0, θ = 0.49π, if i mod 3 = 1,

r = 1.01, θ = 0.2π, if i mod 3 = 2.

(13)

The obtained polynomiographs are presented in Fig. 4.

(a) (b)

(c) (d)

Fig. 4. Polynomiographs obtained using the perturbation mapping (8).

The last example presents the use of combined iteration process (9). The
parameters to generate the polynomiographs were the same as in Fig. 1(c), the

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

4-
19

perturbation mapping was given by (6) with v = ε(cosπ+i sinπ), and the values
of α were the following: (a) −300 + 10i, (b) −10, (c) 100, (d) 200. The obtained
polynomiographs are presented in Fig. 5.

(a) (b)

(c) (d)

Fig. 5. Polynomiographs obtained using the combined iteration process (9).

5 Conclusions

In this paper, we presented a modification of the standard rendering algorithm
for polynomiographs. The modification was based on the use of a perturbation
mapping. The mapping was added in the iteration process of the root finding
method in two ways. In the first method we used the perturbation mapping
before the root finding method, and in the second method we used combination
of the original root finding method and its perturbed version. Moreover, the
convergence test of the algorithm was modified. The presented examples show
that using the proposed methods we are able to obtain very interesting and
diverse patterns, that differ from the original patterns obtained with the standard
polynomiography.

In our further work we will try to extend the results of the paper by using
the q-system numbers [9] and bicomplex numbers [12] instead of the complex

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

4-
19

numbers. Moreover, we will try to bring the perturbation mappings into the
quaternion Newton method [3] and to develop an algorithm of visualization of
the quaternionic root finding process in 3D.

References

1. Ardelean, G.: A Comparison Between Iterative Methods by Using the Basins of
Attraction. Applied Mathematics and Computation 218(1), 88-95 (2011)

2. Chun, C., Neta, B., Kim, S.: On Jarratt’s Family of Optimal Fourth-Order Itera-
tive Methods and Their Dynamics. Fractals 22(4), 1450013 (2014)

3. Falcão, M.I.: Newton Method in the Context of Quaternion Analysis. Applied
Mathematics and Computation 236, 458-470 (2014)

4. Gdawiec, K.: Mandelbrot- and Julia-like Rendering of Polynomiographs. In:
Chmielewski, L.J., et al. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 25-32. Springer
International Publishing (2014)

5. Gdawiec, K., Kotarski, W., Lisowska, A.: Polynomiography Based on the Non-
standard Newton-like Root Finding Methods. Abstract and Applied Analysis, vol.
2015, Article ID 797594, 19 pages (2015)

6. Kalantari, B.: Polynomial Root-Finding and Polynomiography. World Scientific,
Singapore (2009)

7. Kalantari, B.: Two and Three-dimensional Art Inspired by Polynomiography. In:
Proceedings of Bridges, Banff, Canada, pp. 321-328 (2005)

8. Lagae, A., Lefebvre, S., Cook, R., De Rose, T., Drettakis, G., Ebert, D., Lewis,
J., Perlin, K., Zwicker, M.: State of the Art in Procedural Noise Functions. In:
Hauser, H., Reinhard, E. (eds.) EG’10: Proceedings of State of the Art Reports,
Norrköping, Sweden, pp. 1-19 (2010)

9. Levin, M.: Discontinuous and Alternate Q-System Fractals. Computer & Graphics
18(6), 873-884 (1994)

10. Liu, X.-D., Zhang, J.-H., Li, Z.-J., Zhang, J.-X.: Generalized Secant Methods and
Their Fractal Patterns. Fractals 17(2), 211-215 (2009)

11. Lu, S., Jaffer, A., Jin, X., Zhao, H., Mao, X.: Mathematical Marbling. IEEE
Computer Graphics and Applications 32(6), 26-35 (2012)

12. Wang, X.-Y., Song, W.-J.: The Generalized M-J Sets for Bicomplex Numbers.
Nonlinear Dynamics 72(1-2), 17-26 (2013)

13. Wannarumon, S., Bohez, E.L.J., Annanon, K.: Aesthetic Evolutionary Algorithm
for Fractal-based User-centered Jewelry Design. Artificial Intelligence for Engi-
neering Design, Analysis and Manufacturing 22(1), 19-39 (2008)

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

4-
19

