Skip to main content

Computable Extensions of Advanced Fractional Kinetic Equation and a Class of Levy-Type Probabilities

  • Conference paper
  • First Online:
Man–Machine Interactions 4

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 391))

  • 903 Accesses

Abstract

In recent year’s fractional kinetic equation are studied due to their usefulness and importance in mathematical physics, especially in astrophysical problems. In Astrophysics kinetic equations designate a system of differential equations, describing the rate of change of chemical composition of a star for each species in terms of the reaction rates for destruction and production of that species. Methods for modeling processes of destruction and production of stars have been developed for bio-chemical reactions and their unstable equilibrium states and for chemical reaction networks with unstable states, oscillations and hysteresis.The aim of present paper is to find the solution of generalized fractional order kinetic equation, using a new special function. The results obtained here is moderately universal in nature. Special cases, relating to the Mittag-Leffler function is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, R.P.: A propos d’une note de m. pierre humbert. C. R. Acad. Sci. Paris 236(21), 2031–2032 (1953)

    MATH  MathSciNet  Google Scholar 

  2. Ali, M.: Fractional calculus operators and their applications in science and engineering. Ph.D. thesis, Jiwaji University Gwalior (2014)

    Google Scholar 

  3. Chaurasia, V.B.L., Pandey, S.C.: Computable extensions of generalized fractional kinetic equations in astrophysics. Res. Astron. Astrophys. 10(1), 22–32 (2010)

    Article  Google Scholar 

  4. Feller, W.: An Introduction to Probability Theory and its Applications. Wiley, New York (1971)

    MATH  Google Scholar 

  5. Haubold, H., Mathai, A.: The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 273(1–4), 53–63 (2000)

    Article  MATH  Google Scholar 

  6. Lorenzo, C.F., Hartley, T.T.: Generalized functions for the functional calculus. Technical Report NASA/TP-1999-209424/REV1, NASA (1999)

    Google Scholar 

  7. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  8. Mittag-Leffler, G.: Sur la nouvelle fonction E\(\alpha \) (x). C. R. Acad. Sci. Paris 137, 554–558 (1903)

    Google Scholar 

  9. Mittag-Leffler, G.M.: Sur la representation analytique d’une branche uniforme d’une fonction monogene. Acta Mathematica 29, 101–181 (1905)

    Article  MATH  MathSciNet  Google Scholar 

  10. Montroll, E.W., Shlesinger, M.F.: On 1/f noise and other distributions with long tails. Proc. Natl. Acad. Sci. 79(10), 3380–3383 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nigmatullin, R.: The realization of the generalized transfer equation in a medium with fractal geometry. Physica Status Solidi (b) 133(1), 425–430 (1986)

    Article  MathSciNet  Google Scholar 

  12. Nonnenmacher, T.: Fractal scaling mechanisms in biomembranes. Eur. Biophys. J. 16(6), 375–379 (1989)

    Article  Google Scholar 

  13. Nonnenmacher, T.: Fractional integral and differential equations for a class of levy-type probability densities. J. Phys. A: Math. Gen. 23(14), L697S (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nonnenmacher, T., Nonnenmacher, D.: Towards the formulation of a nonlinear fractional extended irreversible thermodynamics. Acta Physica Hungarica 66(1–4), 145–154 (1989)

    MathSciNet  Google Scholar 

  15. Oldhman, K., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)

    Google Scholar 

  16. Perdang, J.: Lecture Notes in Stellar Stability. Part I and II. Instito di Astronomia, Padov (1976)

    Google Scholar 

  17. Saxena, R., Mathai, A., Haubold, H.: On generalized fractional kinetic equations. Phys. A: Stat. Mech. Appl. 344(3), 657–664 (2004)

    Article  MathSciNet  Google Scholar 

  18. Schneider, W.: Stable distributions: fox function representation and generalization. In: Albeverio, S., Casati, G., Merlini, D. (eds.) Stochastic Processes in Classical and Quantum Systems. LNP, vol. 262, pp. 497–511. Springer, Berlin (1986)

    Chapter  Google Scholar 

  19. Seshadri, V., West, B.J.: Fractal dimensionality of lévy processes. Proc. Natl. Acad. Sci. 79(14), 4501 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sharma, K.: On application of fractional differential operator to the K4 function. Boletim da Sociedade Paranaense de Matem\(\breve{{\rm {G}}}\)tica 1(30), 91–97 (2012)

    Google Scholar 

  21. Sharma, M., Ali, M.F., Jain, R.: Advanced generalized fractional kinetic equation in astrophysics. Prog. Fract. Differ. Appl. 1(1), 65–71 (2015)

    Google Scholar 

  22. West, B.J., Bhargava, V., Goldberger, A.: Beyond the principle of similitude: renormalization in the bronchial tree. J. Appl. Physiol. 60(3), 1089–1097 (1986)

    Google Scholar 

  23. Wyss, W.: The fractional diffusion equation. J. Math. Phys. 27(11), 2782–2785 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sharma, M. (2016). Computable Extensions of Advanced Fractional Kinetic Equation and a Class of Levy-Type Probabilities. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds) Man–Machine Interactions 4. Advances in Intelligent Systems and Computing, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-23437-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23437-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23436-6

  • Online ISBN: 978-3-319-23437-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics