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Abstract. Pervasive technology is changing the paradigm of healthcare,
by empowering users and families with the means for self-care and gen-
eral health management. However, this requires accurate algorithms for
information processing and pathology detection. Accordingly, this paper
presents a system for electrocardiography (ECG) pathology classifica-
tion, relying on a novel semi-supervised consensus clustering algorithm,
which finds a consensus partition among a set of baseline clusterings
that have been collected for the data under consideration. In contrast
to typical unsupervised scenarios, our solution allows exploiting partial
prior knowledge of a subset of data points. Our method is built upon
the evidence accumulation framework to efficaciously sidestep the clus-
ter correspondence problem. Computationally, the consensus partition
is sought by exploiting a result known as Baum-Eagon inequality in the
probability domain, which allows for a step-size-free optimization. Exper-
iments on standard benchmark datasets show the validity of our method
over the state-of-the-art. In the real world problem of ECG pathology
classification, the proposed method achieves comparable performance to
supervised learning methods using as few as 20% labeled data points.

Keywords: Electrocardiography · ECG · Semi-supervised learning ·
Consensus clustering · Evidence accumulation clustering

1 Introduction

Heart disease, or more formally cardiovascular disease (CVD), is the first cause
of death worldwide. An estimated 17.3 million people died from CVD in 2008,
representing 30% of all global deaths. Among these deaths, an estimated 7.3
million were due to coronary heart disease and 6.2 million were due to stroke. In
the US, about 0.6 million people die from heart disease every year (25% of the
deaths).
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These statistics trigger our work, which provides a semi-supervised Electro-
cardiography (ECG) pathology classification system that tries to mitigate the
aforementioned serious threats. The system builds upon the pervasive healthcare
framework, where devices are becoming more handy, user-friendly and com-
fortable for the user, focusing on usability and allowing continuous (or quasi-
continuous) monitoring of biosignals. The aim is to automatically classify ECG
data streams acquired by monitoring devices, giving alerts of abnormal situa-
tions. The use of the semi-supervised learning paradigm is motivated by the
existence of prior knowledge about classes in this domain, namely pathologies,
which can be gathered from annotated records of some patients, but a larger
number of records has no annotation, being this an expensive and time consum-
ing process. This large amount of unsupervised data carries important informa-
tion that a supervised learning approach would neglect, while being exploited
by a semi-supervised learning approach.

Several clustering algorithms have been proposed exploiting side-information
(e.g., [2,3,8,14,16]), using typically must-link and cannot-link constraints. Basu
et al. [2] proposed a method for actively picking must-link and cannot-link con-
straints by selecting the most informative examples from the training set. On the
other hand, Li et al. [16] presents a framework integrating consensus clustering
and semi-supervised learning from a nonnegative matrix factorization perspec-
tive, allowing the must-link and cannot-link constraints to be enforced within
the clustering algorithm. Gao et al. [14] proposed a framework that incorporates
the predictive power of multiple supervised and unsupervised models, deriving
a consensus label partition for a set of objects.

In this paper we propose a semi-supervised learning algorithm based on con-
sensus clustering, i.e. the problem of finding a consensus partition among a set
(or ensemble) of baseline clusterings that have been collected for some data under
consideration. Our method follows the Evidence Accumulation Clustering (EAC)
paradigm [12], which summarizes the information of the clustering ensemble into
a pairwise co-association matrix, where each entry corresponds to the number
of times a given pair of objects is placed in the same cluster. The advantage of
the pairwise voting mechanism is that it subsumes the problem of cluster cor-
respondence among partitions. Several algorithms for consensus clustering have
been proposed based on EAC [1,13,17,19,23]. In [23] the problem of extract-
ing a consensus partition is formulated as a matrix factorization problem, in a
similar fashion as [16]. In [18,19] the consensus partition is estimated through
a probabilistic model for the co-association matrix, while in [17] a generaliza-
tion of [23] is introduced to cope with partial observations of the co-association
matrix. In contrast to the typical unsupervised scenario, which is addressed by
the aforementioned works, our method allows to exploit partial knowledge of
the cluster assignment of a subset of data points to constrain the solution space
of the consensus partition. Computationally, the consensus partition is sought
by exploiting a result known as Baum-Eagon inequality [5] in the probability
domain, which allows for a step-size-free optimization.
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The rest of the paper is organized as follows: in Section 2, we describe the
application context of our algorithm, positioning it on the future workflow of
pervasive healthcare. In Section 3, the proposed algorithm is described. Section 4
is devoted to the experimental validation on standard benchmark datasets and
presents results for the real world problem of classifying pathologies in ECG.
Finally, in Section 5, we draw conclusions and outline future works.

2 ECG Pathology Classification

The use of Electrocardiography (ECG) as a diagnostic technique is a well estab-
lished medical practice rooted in the pioneering work by Einthonven in the end of
the 19th century. Clinical practice relies mainly on the widespread short-term (<
1 minute) 12-lead ECG for diagnosis and, in selected cases, on Holter monitors
(∼ 24 hour assessment), providing information for the diagnosis and preven-
tion of a wide array of cardiovascular disorders [7,9]. Nevertheless, the outreach
of ECG data acquisition and processing can still be significantly improved in
the context of a pervasive healthcare framework with the off-the-person ECG
paradigm [25]. The goal of off-the-person approaches is not to replace existing
data acquisition procedures, but to enhance and complement current practices
with a simplified sensor setup that can be transparently brought to the sub-
ject, in multiple aspects of his everyday life. This enables a more comprehensive
assessment of cardiovascular function, contributing to the development of pre-
ventive behaviors and methodologies. Also, it opens the door to many potential
applications, such as continuous monitoring, cardiac dysrhythmia detection, and
ECG biometrics [20,22], among others.

The commercial exploration of such concepts has already began, and one of
the most successful products is AliveCor1, a Heart monitor for mobile devices.
It consists on a 1-lead ECG acquisition system that can be installed on a mobile
device, which records the ECG using the hands of the user. The system enables
the detection of Atrial Fibrillation (AF), and upload of the recorded information
for expert revision.

(a) AliveCor Heart Monitor. (b) CardioID Keyboard.

Fig. 1. Examples of pervasive healthcare devices.

1 http://www.alivecor.com/

http://www.alivecor.com/
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This type of devices fits in the category of pervasive healthcare, where sen-
sors do not need to be with the person, but instead are embedded into every-
day use objects. A major advantage of this approach is the fact that the sensor
placement does not require a voluntary action from the user, unlike, for example,
wearable on-the-person devices, aligned with future medical trends [26]. Figure 1
illustrates two examples, the AliveCor Heart Monitor, and a keyboard with inte-
grated electrodes developed by CardioID2 that enables continuous ECG moni-
toring. These approaches produce enormous amounts of data. As an example, in
a typical acquisition setup, where the signal is sampled at a frequency of 1 KHz,
and with a resolution of 12 bits/sample, a total amount 5 MB of information is
acquired per hour, corresponding to 123 MB/day/person or 44 GB/year/person,
leading to a scenario where cloud computing is the most desirable approach.

Fig. 2. Global Architecture.

The global architecture of such a system is illustrated in Figure 2, where per-
vasive healthcare devices stream data to the cloud, and automatic classification
algorithms process the data. In this paper we focus on the classification algorithm
and propose a novel semi-supervised consensus clustering (SSCC) algorithm to
categorize the data.

3 Semi-Supervised Consensus Clustering (SSCC)

Consensus clustering is the problem of organizing a set of n data points
X = {x1, . . . ,xn} into groups, starting from the output of different cluster-
ing algorithms3 that have been run on X , or on sub-sampled versions thereof.
This set (a.k.a. ensemble) of clusterings is denoted by E = {φ1, . . . , φm}, where
each φu ∈ Ju → {1, . . . , ku} is a function encoding a partition of a subset of
data points indexed by Ju ⊆ I = {1, . . . , n} into ku clusters. Partitions not
comprising all data points, i.e. such that Ju � I, indicate clusterings of sub-
sampled versions of X . The use of sub-sampling is motivated, e.g. in the presence
of large-scale datasets, or to promote diversity in the ensemble [10].
2 http://www.cardio-id.pt/
3 Or different parametrizations of the same algorithm.

http://www.cardio-id.pt/
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As the name suggests, consensus clustering tries to find a good representative
for all clusterings in the ensemble E . Formally, we call consensus partition a
partition having minimum divergence from the other partitions in the ensemble:

φ� ∈ arg min
φ̂∈I→{1,...,k}

m∑

u=1

d(φ̂, φu) , (1)

where d(·, ·) is a divergence measure between partitions.
In this paper, we depart from a purely unsupervised approach in favor of a

semi-supervised perspective, by assuming partial knowledge of the cluster assign-
ments (a.k.a. labels) of a subset of data points. Accordingly, we denote by L ⊂ I
the indices of data points that are labeled, and by �i ∈ {1, . . . , k} the label given
to the ith data point, i ∈ L. We can then use this a prior knowledge to con-
strain the solution space of (1) to obtain a semi-supervised consensus clustering
formulation, i.e.

φ� ∈ arg min
φ̂∈I→{1,...,k}

m∑

u=1

d(φ̂, φu)

s.t. φ̂(i) = �i for all i ∈ L .

(2)

The same knowledge could in principle be exploited at the ensemble construction
phase. However, constraining the clusterings will lead to a drop of the ensemble’s
diversity, thus loosing one of the most desirable properties of an ensemble [15].
Moreover, there is a vast number of unsupervised clustering algorithms available
for the ensemble construction, and only a limited number of algorithms that
have been extended to include constraints.

In order to compare two clusterings, we face the so-called cluster correspon-
dence problem, i.e. two partitions are the same if we can turn one into the other
by a proper re-labeling of the clusters, and if two partitions are different, we
would like to measure their divergence under the best possible re-labeling. There
is however a way to sidestep the cluster correspondence problem, by adopting a
pairwise divergence measure like the following one:

d(φ̂, φu) =
∑

i,j∈Ju

[
1φ̂(i)=φ̂(j) − 1φu(i)=φu(j)

]2
, (3)

which counts the number of times two data points are clustered together in φ̂,
but not in φu, and vice versa. In (3), 1P denotes the indicator function for the
truth value of proposition P .

The objective function in (2) is related to the evidence accumulation frame-
work [12]. Indeed, it can be re-written in terms of the so-called co-association
matrix, which is defined as

Cij =

{
1
Nij

∑
u∈Uij

1φu(i)=φu(j) Nij > 0 ,

0 otherwise ,
(4)

where Uij ⊆ {1, . . . ,m} denotes the indices of those clusterings, where both data
points xi and xj have been clustered, i.e. Uij = {u ∈ {1, . . . ,m} : i, j ∈ Ju},
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and N is a matrix with entries Nij = |Uij | if i �= j, and 0 otherwise. The relation
with the co-association matrix is established as follows:

m∑

u=1

d(φ̂, φu) =
m∑

u=1

∑

i,j∈Ju

[
1φ̂(i)=φ̂(j) − 1φu(i)=φu(j)

]2

=
∑

i,j∈I

∑

u∈Uij

[
1φ̂(i)=φ̂(j) + 1φu(i)=φu(j) − 21φ̂(i)=φ̂(j)1φu(i)=φu(j)

]

=
∑

i,j∈I

⎡

⎣Nij1φ̂(i)=φ̂(j) +
∑

u∈Uij

1φu(i)=φu(j) − 21φ̂(i)=φ̂(j)

∑

u∈Uij

1φu(i)=φu(j)

⎤

⎦

=
∑

i,j∈I
Nij

[
1φ̂(i)=φ̂(j) + Cij − 21φ̂(i)=φ̂(j)Cij

]

=
∑

i,j∈I
Nij

[
1φ̂(i)=φ̂(j) − Cij

]2
+

∑

i,j∈I
NijCij(1 − Cij) . (5)

Note that the right-most term in (5) is regarded as a constant for the optimiza-
tion in (2), thus not affecting the minimizers.

With the objective of re-writing (2) in matrix form, we introduce a different,
but equivalent, representation of the consensus partition in terms of a matrix
Z = [z1, . . . ,zn] ∈ Sk×n

01 , where Sk×n
01 denotes the set of binary, left-stochastic

matrices. The equivalence follows from the fact that any φ ∈ I → {1, . . . ,m}
has a one-to-one corresponding matrix Z ∈ Sk×n

01 with (Zki = 1) ⇐⇒ (φ(i) = k).
Under this variable change, the term 1φ(i)=φ(j) becomes z�

i zj .
By exploiting the matrix representation and the relation in (5), the semi-

supervised consensus clustering formulation in (2) can be cast into the following
equivalent one (with omitted constant terms):

Z� ∈ arg min
Z∈Sk×n

01

‖C − Z�Z‖2N

s.t. Z�ii = 1 for all i ∈ L ,

(6)

where ‖ · ‖N is the Frobenious matrix norm weighted by N, i.e. ‖A‖N =√∑
ij NijA2ij . The optimization problem in (6) is non-convex and finding a global

solution is hard. For this reason we opt for a relaxed version of it with the binary-
valued matrix variable Z ∈ Sk×n

01 being replaced with real-valued one Y ∈ Sk×n,
where Sk×n denotes the set of real, left-stochastic, matrices, i.e. nonnegative
matrices with columns summing up to 1. The relaxed optimization problem
becomes

Y� ∈ arg min
Y∈Sk×n

‖C − Y�Y‖2N
s.t. Yki = 1k=�i for all (k, i) ∈ {1, . . . , k} × L .

(7)

Given a solution Y∗ we recover a putative solution φ� to (2) by taking φ�(i) ∈
arg maxk∈{1,...,k} Y

�
ki.
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In order to optimize (7) we follow an approach similar to [23,24] by making
use of a result known as Baum-Eagon inequality :

Theorem 1 (Baum-Eagon [5]). Let Y ∈ Sk×n and let f(Y) be a homogeneous 4

polynomial in the variables Yki with nonnegative coefficients. Define the mapping
Ŷ = M(Y) as follows:

Ŷki = Yki
∂

∂Yki
f(Y)

/ k∑

h=1

Yhi
∂

∂Yhi
f(Y) (8)

for all i ∈ {1, . . . , n} and k ∈ {1, . . . , k}. Then f(M(Y)) > f(Y) unless M(Y) = Y.
In other words, M is a growth transformation for the polynomial f .

The Baum-Eagon inequality is an effective tool for the maximization of polyno-
mial functions in probability domain. The idea is to rewrite (7) into a maximiza-
tion of a polynomial with nonnegative coefficients in a way to preserve Y� as the
optimal solution. By doing so, we can use the Baum-Eagon inequality to obtain
a step-size-free optimizer by re-iterating the update rule Yt+1 = M(Yt) starting
from a matrix Y0 ∈ Sk×n with positive entries. The theorem indeed guarantees
a strict increase of the objective at each step until a fixed-point is reached.

We can turn (7) into a maximization problem by changing the sign of the
objective function. However, the resulting function in Y will not be a polynomial
with nonnegative coefficients. Nevertheless, there is a trick that can be exploited
to transform the problem in the desired form. We will use the fact that En =
Y�EkY for any Y ∈ Sk×n, where En denotes a n × n matrix of ones:

−‖C − Y�Y‖2N = −‖Y�Y‖2N + 2〈C, Y�Y〉N + const

= ‖Y�EkY‖2N − ‖En‖2N︸ ︷︷ ︸
=0

−‖Y�Y‖2N + 2〈C, Y�Y〉N + const

= ‖Y�(Ek − I)Y‖2N + 2〈C, Y�Y〉N + const , (9)

where 〈A, B〉N =
∑

ij NijAijBij is a weighted matrix dot product, and I is a
properly-sized identity matrix. Note that in the derivation “const” represents
additive terms not depending on the variable Y, thus not affecting the optimiza-
tion results. We can now take the quantity in (9) (with constant terms omitted)
as the polynomial f with nonnegative coefficients to be maximized, i.e.

f(Y) = ‖Y�(Ek − I)Y‖2N + 2〈C, Y�Y〉N .

and maximizers of f(Y) on the feasible set of (7) will correspond to minimizers
of (7) as required.

The last thing to care about is that Theorem 1 assumes Y ∈ Sk×n, but
our feasible domain is a convex subset thereof, due to the integration of the
supervisions. Hence, it is not clear whether the theorem applies also to the
constrained setting we have. To show that the theorem actually does apply,
4 The same resultwasproven toholdalso in the case of non-homogeneouspolynomials [6].
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assume without loss of generality that the labeled data points are the last ones,
such that we can write Y = [Yu, Yl], where Yl is entirely specified with the label
information as Yl

ki = 1k=�i for all i ∈ L, while Yu ∈ Sk×(n−|L|) are variables
to be optimized. Since g(Yu) = f(Y) is a polynomial in Yu with nonnegative
coefficients, we can apply Theorem 1 to obtain a growth transformation for g,
and thus find a solution also to the constrained optimization problem in (7). In
practice, it is not necessary to compute g explicitly for the optimization, because
it is sufficient to avoid updating the labeled entries of Y during the computation
of the update rule based on f .

4 Experiments

In this section we validate the proposed algorithm (SSCC) both on standard
benchmark datasets and on a real world problem, namely the pathology classi-
fication of ECG data. In the architecture described in Figure 2, the raw ECG is
acquired and preprocessed to extract relevant features, which are then fed to the
algorithms to classify the pathologies. We adopt the feature extraction process
proposed in [4], which is described in Section 4.2.

4.1 Data Description

We evaluated the proposed algorithm in two different scenarios: using some
benchmark datasets from the UCI Machine Learning repository5, and using
the MIT-BIH (Massachusetts Institute of Technology - Beth Israel Hospital)
arrhythmia database [21].

In the first scenario, we used four benchmark datasets to validate our algo-
rithm, namely breast cancer, iris, wine and std yeast cell. The Breast cancer
dataset consists of 683 patterns having nine features belonging to two classes.
The Iris dataset consists of three species of Iris plants, characterized by four
features and 50 samples in each class. The Wine dataset consists of the results
of a chemical analysis of wines grown from the same region in Italy divided into
three classes with 178 patterns, and described by 13 features. The Std yeast cell is
composed by 384 genes over two cell cycles of yeast cell data, and is characterized
by 17 features and it has five classes.

The second scenario consists in classifying pathologies in ECGs from the
MIT-BIH arrhythmia database. Each record is approximately 30 minutes long
and has in total 48 two-channel Holter records. The upper signal is usually a
modified limb lead II and the lower signal is most often a modified lead V1. All
signals were digitized at a sample rate of 360 Hz. The database includes different
sets of annotations verified by more than one cardiologist: beats are identified
and labeled, and the beginning of all rhythms is indicated.

5 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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4.2 Feature Extraction

For the classification of pathologies in ECGs, we will focus on the discrimination
between normal sinus and the most common arrhythmia, atrial fibrillation (AF).
Only modified limb II records are used and each record is split according to
rhythm annotations (note that lead II and lead I, introduced in section 2, contain
information about the frontal plane, and can be used to detect atrial fibrillation).
Each record is segmented in windows of 60 seconds, leading to 98 AF segments
and 911 normal sinus rhythm segments. These segments are the objects that will
be classified. Two types of features are obtained: spectral features extracted using
the wavelet transform, and time domain features used to provide information
about heart rate characteristics.

The spectral features were obtained by the power spectral density (PSD) of
the wavelet decomposition of the signals. The decomposition of the signals are
performed up to the sixth level using the redundant discrete wavelet transform
[11], obtaining six detailed and one approximated set of coefficients. Afterwards,
the PSD of each set of wavelets coefficients was estimated using Welch’s method
[27], and the integral over the range [0, 55] Hz was computed, leading in total to
seven features per pattern.

Besides the spectral features we considered two additional time-domain fea-
tures: average of RR interval [7] and standard deviation of RR intervals.

4.3 Setup

We constructed the ensemble for the proposed methodology by performing 200
runs of k-means, with k uniformly chosen between

√
N/2 and

√
N (N is the

number of samples of the dataset), for the benchmark datasets, and between 2
and 20, for the MIT-BIH database. Since the labels of the points are only used
to extract the consensus partition, we present also the results of an unsupervised
consensus clustering method (PPC) [23].

We compared SSCC also against a semi-supervised consensus clustering
approach called Bipartite Graph-based Consensus Maximization (BGCM) [14],
which can be seen as a consensus method, where the ensemble is constructed
with supervised and unsupervised methods. In this paper we constructed in total
six partitions in the ensemble: three from supervised methods, namely k-nearest
neighbor, with k ∈ {1, 3, 5}, and three from an unsupervised method, the k-
means, with k equal to the true number of classes. Moreover, this algorithm
has two parameters, α and β, corresponding to the price paid from deviating
from the estimated labels of groups and observed labels of objects. We set those
parameters to 2 and 8, respectively.

In the MIT-BIH database, the classes are unbalanced, so we randomly
selected 98 out of the 911 normal sinus rhythm segments. Also, in order to
test the influence of the percentage of labeled points in each algorithm, we ran-
domly selected 5% of labeled points in each class and the remaining are unlabeled
points to be classified by the algorithms. This procedure was repeated 50 times,
and was also run with minimum 10% and maximum 60% labeled data points.
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Thus, we assessed the performance of each algorithm as an average error rate of
50 runs. The same scheme was applied to the benchmark datasets from the UCI
Machine Learning repository, creating datasets with balanced classes.

4.4 Validation of the Algorithm: Benchmark Datasets

Figure 3 presents the average error rates for the four benchmark datasets con-
sidered. For SSCC and BGCM, we only present the results for 10% and 20%
of labeled points, since as we increase the percentage of labeled points, there
is a decrease in error rates. PPC is an unsupervised approach, which means it
does not require any labeled points, thus the error remains constant when we
increased the percentage of labeled points.

PPCSSCC BGCM

20% LABELED POINTS10% LABELED POINTS

STD YEAST

WINE

IRIS

BREAST2,3%
2,0%

4,0%

23,7%
7,9%

33,1%

28,2%
26,7%

27,7%

42,3%
31,3%

62,6%

2,3%
1,8%

3,3%

23,7%
4,8%

28,3%

28,2%
22,5%

26,0%

42,3%
23,5%

54,3%

Fig. 3. Average error rates of 50 runs.

Notice that, for 10% of labeled points, SSCC achieves approximately 8% of
error rate for the Iris dataset, performing three or four times better than the
unsupervised version (which does not use any labeled points) and BGCM. That
difference is even more accentuated when we have 20% of labeled points, where
SSCC achieves less than 5% of error rate. The higher difference in error rates
between SSCC and the other two algorithms is also visible in the Std yeast
dataset, although a little less accentuated. In the remaining datasets, SSCC
is still the best algorithm, however it is only better 1% or 2% than PPC and
BGCM. Overall, the proposed methodology performs better than the other two
algorithms considered in these experiments.
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4.5 Application on Real Datasets: ECG MIT-BIH Database

Figure 4 presents the results of applying each algorithm to the MIT-BIH arrhyth-
mia dataset, when the percentage of labeled points are varying. As can be
observed by analyzing the figure, when the percentage of labeled points is of
only 5%, SSCC and PPC have similar performances (SSCC shows slightly bet-
ter results). On the other hand, BGCM has an error rate of approximately
17%, which is almost twice the error rate of SSCC. Moreover, as it could be
expected, when the percentage of labeled points increases, both semi-supervised
approaches show a significant improvement in the error rates, achieving around
3% of misclassified points when 60% of the dataset is labeled. In particular, when
30% or more points are labeled, the two semi-supervised approaches are quite
similar, on average. However, by carefully analyzing the standard deviation, it is
possible to conclude that BGCM has a more unstable behavior, since it presents
much higher standard deviation values in comparison with SSCC.

0%

5%

10%

15%

20%

25%

30%

5% 10% 15% 20% 30% 40% 50% 60%

SSCC
PPC
BGCM

Percentage of labeled points

Er
ro

r R
at

e

Fig. 4. Average error rates and standard deviation of 50 runs on the MIT-BIH arrhyth-
mia database.

In [4], a supervised study was conducted using this database, and using 75%
of data to train the classifier and 25% to test, the 1-nearest neighbor has an error
rate of 2.6% ± 1.1%, and an artificial neural network with 14 hidden neurons
has 3.0% ± 1.2%. The results presented in this study are quite comparable with
the supervised study, since with only 20% of labeled patterns, SSCC has an
error rate of 6.3%± 1.5%, and with 60% of labeled patterns, SSCC has achieved
3.0% ± 1.1%.

Unlike normal sinus rhythm, atrial fibrillation has an inherent irregular RR
interval, allowing for an easy visualization of the dataset. Accordingly, figure 5
presents the two time domain features considered in this study. The labeling
produced by each algorithm corresponds to one run out of the 50 runs, and for the
BGCM and SSCC, we are fixing the amount of labeled patterns at 10%. Notice
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that PPC incorrectly labeled the patterns in the frontier of both classes and the
normal patterns that are mixed in the atrial fibrillation class. In fact, that couple
of patterns that are mixed with the atrial fibrillation are incorrectly classified
by SSCC and, some of them, by BGCM. On the other hand, SSCC correctly
classified almost all the patterns in the frontier of both classes. The BGCM
algorithm incorrectly classified a large amount of normal sinus rhythm in the
lower left corner, due to k-means initialization. Notice that, for this algorithm,
the number of components k in k-means must be set to the true number of
classes, so that cloud of green points was assigned to atrial fibrillation. The blue
dot in the middle corresponds to a pattern with the true labeled known.
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(a) Ground truth labeling.
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(b) PPC labeling.
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(c) BGCM labeling.
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(d) SSCC labeling.

Fig. 5. Scatterplot of two features (average and standard deviation of RR intervals)
from the ECG MIT-BIH dataset, when we have 10% of labeled patterns. The blue dots
correspond to the normal sinus, the red ones to the atrial fibrillation, and the green
dots are the points incorrectly classified by each algorithm.

Moreover, the SSCC algorithm incorrectly classified a few patterns that are
closer to the atrial fibrillation class, the same patterns were identified by PPC.
Since those patterns are so close to the atrial fibrillation, it may be worth to
re-analyze those segments to ensure that they are in fact normal rhythms, and
do not correspond to abnormal patterns closely resembling normal ones.
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5 Conclusions

In real world problems it is unfeasible to ask experts to annotate all the available
data. This is particularly true for the real-world scenario addressed in this paper,
namely the automatic pathology classification of electrocardiographic (ECG)
signals, where the amount of annotated data is very small compared to the
amount of available data.

In this paper we proposed a semi-supervised consensus clustering algorithm,
which automatically allows to label the unknown objects using only a small
subset of known information. Our approach is based on the evidence accumula-
tion clustering, a consensus clustering paradigm that summarizes the ensemble
information into a co-association matrix. In contrast to the typical algorithms in
this context, which are unsupervised, we allowed the partial inclusion of labeled
information. Algorithmically, we have provided a simple iterative scheme based
on the Baum-Eagon inequality for the computation of the consensus partition.

We validated our approach on benchmark datasets from UCI Machine Learn-
ing repository, showing superior performance against another state-of-the-art
semi-supervised consensus clustering approach (BGCM), in every dataset that
we considered under different shares of supervision (10 and 20 %). We also con-
sidered the real-world application of automatic pathology classification of ECG
signals. Specifically, we considered the detection of atrial fibrillation. We have
used the MIT-BIH arrhytmia dataset, varying the percentage of labeled data.
The performance of the proposed algorithm was always better than BGCM and
achieved comparable performance with respect to supervised learning methods
using as few as 20% of labeled objects.

The proposed approach will be deployed by our industrial partner in a cloud-
based implementation, allowing ECG data acquired using pervasive healthcare
devices, such as the keyboard, to be automatically processed.

As future work, we are developing a scalable version of the algorithm, allowing
to tackle the large amount of data that is being produced in this context.
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