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Abstract. Our business users have often been frustrated with clustering
results that do not suit their purpose; when trying to discover clusters of
product complaints, the algorithm may return clusters of product mod-
els instead. The fundamental issue is that complex text data can be
clustered in many different ways, and, really, it is optimistic to expect
relevant clusters from an unsupervised process, even with parameter
tinkering.

We studied this problem in an interactive context and developed an
effective solution that re-casts the problem formulation, radically differ-
ent from traditional or semi-supervised clustering. Given training labels
of some known classes, our method incrementally proposes complemen-
tary clusters. In tests on various business datasets, we consistently get
relevant results and at interactive time scales. This paper describes the
method and demonstrates its superior ability using publicly available
datasets. For automated evaluation, we devised a unique cluster evalua-
tion framework to match the business user’s utility.

Keywords: Semi-supervised clustering · Class discovery · Topic
detection

1 Introduction

Hewlett-Packard uses text mining techniques to help analyze customer surveys,
customer support logs, engineer repair notes, system logs, etc. [11] Though clus-
tering technologies are employed to discover important topics in the data, usually
only a small fraction of the proposed clusters are relevant. This is expected by
data mining practitioners, but can prove somewhat disappointing to business
users. The fundamental issue is that such complex text data can be clustered
in many different ways, and it is unlikely that an unsupervised algorithm stum-
bles upon the one that suits the user’s current intent. We have often found they
still fail to produce useful clusters even with repeated attempts at adjusting the
various parameters by data mining experts.

Furthermore, once some initial large clusters are recognized and dealt with,
the remaining data tends to produce decreasingly useful clusters. In fact, some-
times the removal of the known issues causes a shift to less relevant breakdowns
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of the data, e.g., by setting aside some clusters of known laptop issues (old bat-
teries or cracked displays), the remaining data may be more likely to cluster by
product type or geography—frustrating the intent of the user.

One may think that semi-supervised clustering algorithms would provide
the answer [2], but they do not. We explored using constrained clustering,
a form of semi-supervised learning with must-link and cannot-link con-
straints [3,26], but we found its results mostly useless for our purposes (see
Tables 1 and 2). Additionally, we considered constrained non-negative matrix
factorization (CNMF) methods [8,18]. We tested three implementations, but
found both their speed and their results unacceptable. (See the experiments
in Section 3.) Fundamentally, most semi-supervised techniques are designed to
improve classification, but instead we seek improved discovery of clusters by
leveraging the known categories as partial supervision.

Besides the troublingly poor results, we find that clustering solutions tend to
be slow.1 We tried the research software of a half-dozen different publications
that claimed to be ‘fast’—such as for clustering web search results instantly as
they are displayed—but none of them approached the speed needed for interac-
tive use on our text datasets with tens or hundreds of thousands of rows. Research
in semi-supervised clustering that involves pairwise constraints typically consid-
ers up to thousands of constraints. But once several hundred cases have been
labeled for each of a dozen known categories, we end up with millions of pairwise
constraints—not very scalable for interactive response times. Also, since cluster-
ing into too few clusters will mix different topics together, for our complex data we
need to generate many clusters, resulting in linear slowdown for most algorithms.
It is a poor interaction: the user waits and waits for the results, then hundreds of
clusters appear for the user to examine one by one, the fixed results oblivious to
the judgments the user makes as they peruse the voluminous output.

Clustering By Intent (CBI): By examining the practical needs of our inter-
active users, we reformulated the semi-supervised clustering problem as a sub-
stantially transformed data mining task with a distinct yet familiar character,
which we shall call Clustering By Intent : As the user incrementally explores the
dataset, they maintain a growing set of discovered, approved classes, each asso-
ciated with labeled training cases (typically tens to thousands).2 The user iter-
atively requests a cluster, which should be incrementally generated on demand
with quick response time. The user may (a) reject the cluster (either being irrel-
evant or perhaps too impure), (b) accept it as a new class, or (c) merge it into

1 Witness the large number of clustering publications with fast, efficient, or scalable in
their titles, attesting to the problem.

2 Terminology: Let us say that the underlying domain data consists of a set of
generally non-overlapping ground-truth topics with respect to the user’s current
intent, e.g., different failure modes, or else product types, or else geographies—not
all perspectives mixed together at once. The algorithm strives to return a cluster
(list of cases) with high purity—the precision of the cluster with respect to the
cluster’s main topic (the most common topic among its cases). The user creates a
class corresponding to one or more ground-truth topics of interest.
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Table 1. Illustrative Comparison of Methods, Clustering By Sport: semi-
supervised clustering of 28,166 Reuters news sports headlines, where the supervision
given is a single class containing 986 headlines having the word ‘baseball.’ We show the
first 18 outputs of each method, marking (✗) those that are repeats or not relevant. For
Constrained K-Means, we report largest clusters first, showing the most distinguishing
word of each cluster of documents. For CBI, we limited it to one word per cluster, but
the method is more general.

Clustering By Intent

soccer
cricket
tennis
rugby
golf
racing
skiing
athletics
basketball
hockey
cycling
boxing
nfl (football)
swimming
olympics
rallying
skating
motorcycling

Constrained K-Means [26]

soccer
cricket
✗uk
✗africa
✗first
union (rugby)
tennis
racing
nhl (hockey)
✗tennis
✗spain
✗france
✗sri (lanka)
golf
✗uk
✗cup
skiing
athletics

an existing class. The algorithm should be responsive to previous user actions,
including the most recent supervision.

A couple more points are in order. First, the purity of the returned cluster
matters greatly to the domain expert. It is easier to recognize a topic if the
cluster has high purity, ideally just a single topic. For our typical, complex text
domain data, determining the meaning and worth of a proposed cluster can take
the user awhile examining its cases. Thus, it is best to provide a manageable
list of cases that are most typical or central to the cluster, rather than return a
much larger set of cases that may include some other topics mixed in.3

Second, the size of the cluster topic matters to the user. Although the cluster
may be described by a small list of cases, the underlying topic that it informs
the user about may be large. We usually encounter complex datasets that have
a long-tailed distribution of topic sizes. Users ordinarily prefer to discover the
larger topics first, ideally working down the tail in order.4

For example, in the application of problem management one wants to discover
the most common customer problems in order to address them first or with more

3 It is useful to provide a symbolic description of the cluster as well, such as which
query terms form the cluster or which keywords are most associated.

4 In some business datasets, we have different priority considerations, but for the scope
of this paper, we will use the number of cases in the underlying topic.
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Table 2. Clustering the Same Data by Country Instead: Same as Table 1, but
here the supervision given to the competing algorithms is a single class containing the
5401 headlines with the word ‘UK.’

Clustering By Intent

usa
france
south (africa)
spain
germany
italy
netherlands
zealand
switzerland
republic (of china)
greece
portugal
japan
canada
austria
australian
indies
belgium

Constrained K-Means

✗soccer
✗division
✗tennis
africa
✗cup
✗tennis
✗nhl
✗union
spain
france
✗standings
✗baseball
✗cricket
✗cricket
✗golf
✗alpine
✗athletics
✗basketball

resources. The CBI task fits squarely with this application. Typically once many
topics have been discovered, the user would ideally follow it with a period of
active learning to expand the training set of the recently defined classes, and
finish with a process of machine learning quantification [10] to estimate the true
size or cost of each class.

The goal of the process is to gain insights from the dataset, and at no stage do
we expect to achieve full dataset clustering, as real-world datasets are often not
fully clusterable. We do, however, assume that the intent of the user is consistent
and does not change viewpoint during the process.

Of course, the user may enact a separate analysis on the same dataset with
a different perspective. We illustrate this briefly to show the major benefit of
clustering by intent. Given a dataset of 28,166 news headlines about sports (from
RCV1 [16]), we provide the supervision of a single class of 986 headlines con-
taining the word ‘baseball.’ With no background knowledge or stopword lists,
our CBI method (explained in section 2) iteratively generates the cluster queries
shown on the left in Table 1, while the results on the right are generated by the
well-known semi-supervised clustering method Constrained K-Means [26] using
normalized cosine-similarity as its measure.5 Alternatively, if the user instead
gives the supervision of a single class of the 5401 headlines containing ‘UK,’
then we get the results in Table 2. The contrast in the CBI outputs for the

5 We removed stopwords in order to assist Constrained K-Means, at the request of
the reviewers; the results are substantially unimproved. (We avoided removing the
common stopword ‘us’ to avoid masking the country ‘US’. The ideal algorithm should
not need tailored stopword lists in order to find the meaningful terms.)



24 G. Forman et al.

two intents is night and day, whereas the contrast between the two sets of Con-
strained K-Means results is weak, and not apparently aligned in any meaningful
way to the user’s supervision.

The contributions of this paper include: (a) Distinguishing the Clustering By
Intent data mining task—a new kind of semi-supervised learning. The super-
vision is given on the known classes and the goal is to discover large unknown
topics that are relevant to the user’s intent. (b) Detailing how CBI is different
from the many recognized data mining tasks—Section 4. (c) Offering a specific
CBI algorithm that excels for text domain datasets—Section 2. (d) Illustrating
the effectiveness and directability of the method on an intuitive example dataset.
(e) Providing a method of automated evaluation for this interactive task with-
out a person in the loop—Section 3.1. (f) Using this method to quantitatively
evaluate the algorithm and comparing it with other methods across a gamut of
conditions drawn from six publicly available datasets—Section 3. (g) Identifying
promising leads for future work—Section 5.

2 CBI Methods

The input to any Clustering By Intent method is a typical K-class training set T,
plus a set of unlabeled examples U. Not only should one expect that U contains
undiscovered classes, but also that some of these unlabeled examples belong to
the K known classes. In practical business use, this is particularly the case for
periodic analyses where additional unlabeled examples have accumulated for all
classes (known and unknown) since the training set was previously developed.
Notice that emerging, epidemic topics might have appeared in U since the pre-
vious analysis.

The output is an abstract sequence of clusters C0,1,... pulled by the user on
demand. A cluster consists of a list of cases of U, and, optionally, a query or
description of the topic being proposed. The user may volunteer or implicitly
generate feedback on the disposition of any cluster to improve ensuing results.
As soon as the training set T is changed, the algorithm retrains.

CBI: We begin by describing one of our leading CBI methods which is appropri-
ate for sparse datasets, such as those that consist of text features in the common
bag of words representation. (Note that categorical data fields can easily be
represented as sparse key=value binary features.) We begin by training a base
multi-class classifier that returns the confidence measure for each of its predic-
tions: the margin between the highest scoring class and the runner-up class.6 We
select the low confidence cases of U as our ‘residual’ set R. The purpose is to
avoid cases that are likely to belong to known classes.

Next, when a cluster is demanded, we select cases of the residual R accord-
ing to the algorithm in Table 3, which also returns a descriptive query. After
each cluster is returned, we remove its cases and query terms from R. The

6 In the rare and short-lived circumstance when only a single class is known, a one-class
classifier or a Positive-Unlabeled learner would be appropriate [17].
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Table 3. CBI cluster & query construction algorithm

1: INPUT: training set T, residual set R from classifier, target cluster size
2: selected cases C = residual set of cases R
3: query = empty list
4: loop
5: term = highest scoring term wrt C and T (see text)
6: C’ = cases of C containing term
7: if |C’| < target cluster size then
8: RETURN: C, query
9: end if

10: C = C’
11: query += term
12: end loop

algorithm iteratively appends terms to a conjunctive query until the resulting
set would be below our target cluster size (25). At each iteration, we select the
term with highest divergence with respect to C and the training set T. Here
we have experimented with a variety of functions, including information gain,
chi-squared, bi-normal separation, etc., with some variation. For this paper, we
simply use the precision of the term in separating C from false positives matches
in T, with a minimum floor of false positives (50).

We have tested various methods for selecting the residual. The experiments
section shows results using three separate classifiers: Multinomial Naive Bayes
(NB), Regularized Least Squares (RLS), and, as an upper-bound comparison,
an oracle classifier (Oracle), which selects all the cases of the unknown topics.

KMeans: For each of these three classifiers independently, we also run the resid-
ual through Mini-Batch K-Means (K-Means++ initialization, batch size 400,
K=10) [24], returning the clusters largest first. This represents a commonplace
workflow: as one recognizes and removes known cases, he or she clusters the remain-
der to see what else can be found. We also try clustering the entire dataset, which
may excel if the data has a propensity to cluster according to the hidden topics.

CNMF: Finally, we tried three different implementations of semi-supervised
clustering via Constrained Non-negative Matrix Factorization [8,18]. The exper-
iments show only the best of these.

After illustrating the weak results of Constrained K-Means [3,26] in the intro-
duction and having faced its scalability problems on our larger datasets, we
exclude it from the experiments. We have tried a panoply of ideas, but there is
space to show only some representatives. Testing other ideas is left as an exercise
for the reader. Our implementation leverages the scikit-learn package [22].
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3 Experiments

There would be no laws and no cricket [without] substantial agreement
about what sort of thing cricket ought to be—if, for example, one party
thought of it as a species of steeplechase, while another considered it to
be something in the nature of a ritual dance. . . -Dorothy Sayers

Clustering studies ordinarily measure the effectiveness of a method by how
well its clusters align with hidden ground-truth class labels in a benchmark
dataset, such as by the average purity of its generated clusters. This is philosoph-
ically problematic where one dataset may have multiple perspectives of hidden
class labels, such as by sports or by countries in our illustration.s7 Against which
standard should an unsupervised clustering output be judged? Given the hidden
standard, it makes more sense to grade semi-supervised algorithms, where some
ground-truth labels are revealed to impart the desired breakdown.

Existing studies evaluate the set of produced clusters in entirety. What could
be wrong with that? It has long been recognized in information retrieval research
that it is useful for the objective function to mirror the practical point that a
user will need to review the results sequentially. They care much more about
the first results than the latter. For this reason, CBI changes the perspective to
judging results sequentially. The algorithm must produce a sequence of clusters,
not an (unordered) set as traditional methods. Within a single cluster, the user
will typically make their judgment about the proposal after reviewing a limited
number of cases. Finally, once a topic has been discovered by the user, no credit
is awarded for providing additional clusters on the same topic.

Research studies in semi-supervised clustering select training examples at
random. Their goal has been to see how much better the clustering results would
be if the user would provide just a bit of guidance, preferably applied uniformly.
But in our intended use case, our goal is to discover new clusters that are relevant
to the current intent. Thus, in CBI the training labels should be drawn from a
limited set of classes and credit should not be awarded for returning clusters
about the known classes. Furthermore, although we appreciate that obtaining
labeled data can be costly in practice, there should be no assumption on the
part of the method that the number of labeled cases will be small (it can be easy
enough to gather many similar training cases in some domains using a simple
binary classifier).

For these reasons and others, we developed a new experiment protocol suited
for evaluating CBI tasks. In fact, an important part of the work was to establish
an evaluation framework and a credible performance objective measurement in
order to then develop and test a wide variety of ideas.

3.1 Experiment Protocol

Our experiment protocol for evaluating CBI methods is shown in Table 4. Note
that, since popular topics are easy to discover, we assume the K known classes
7 For a real, publicly available example, the MULAN dataset repository [25] has a

EUR-Lex dataset that has multiple distinct perspectives of labels [19].
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Table 4. CBI Experiment Protocol

1: for all benchmark dataset D with each case labeled with a ground-truth topic do
2: for # of known classes K = 2, . . . , 10 (taking largest topics first) do
3: for labeled fraction P = 25%, . . . , 100% do
4: for all 100 random seeds do
5: labeled = randomly select P% of each of the K known classes
6: unlabeled = all unselected cases including all unknown dataset topics
7: for all method M do
8: Train M on (labeled,unlabeled)
9: Get the first two cluster outputs of M on the unlabeled data

10: Return the better score of the two clusters, scoring each cluster C as:
11: score = purity(C.mode)2 × topic size(C.mode) / topic size(largest)
12: end for
13: end for
14: end for
15: end for
16: end for

should always correspond to the K largest topics in the dataset, which is often
so skewed that one can hardly fail to notice the first couple (see last column of
Table 5). Note that the random sampling of labels is a only within each of the K
known classes; no labels or class definitions are provided about the remainder of
the dataset, not even the number of classes that might be expected. To vary the
amount of supervision, one can vary both the number of known classes K as well
as the percentage P of each topic’s cases that are labeled. In our experiments,
we vary one parameter while we hold the other fixed, and vice versa. We use the
best score of only the first two clusters output, because we suppose the user is
likely to change the training set in some way, and the model would be retrained
before producing more outputs.

When it comes to assigning a score to a proposed cluster C, it depends
on both size and purity factors. We first determine the cluster’s most common
represented ground-truth class, C.mode. The topic size of the cluster is the
number of cases in the ground-truth topic C.mode; note that this is not the size
of the cluster C itself. The final score should be directly proportional to the
C.mode’s topic size, as this is often proportional to real cost. Exceptionally, if
C.mode represents a class that is already known in the training set, we give zero
credit, in order to align scoring with our purpose of discovering new topics.

The purity of a proposed cluster C is evaluated by dividing the number of
cases in C.mode by the size of the cluster. We have found that cluster purity
matters to the user in a super-linear way: a cluster with, say, 50% purity is less
than 50% likely to be understood by the user. Thus, the final score for a cluster
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Table 5. Datasets. The last column characterizes the class skew by showing what
percent of the dataset falls in the two largest classes.

Dataset Rows Features Classes K=2
eurlex-codes 16173 5000 20 53%
eurlex-subjects 5418 5000 113 26%
new3 9558 26832 44 13%
fbis 2463 2000 17 36%
re1 (Reuters) 1657 3758 25 42%
wap (web pages) 1560 8460 20 34%

is its purity squared times the topic size of its mode, normalized by the size of
the largest unknown topic available to be found (so that finding it achieves 100%
credit, rather than have the best possible score shrink as we increase K).

Table 5 shows the six benchmark datasets we use from the text classification
domain. The last column characterizes the class skew of each dataset by showing
the percent of the rows in the two largest classes. (We verified that the largest
classes do not represent a catch-all ‘none of the above’ class.) The first two
datasets are different breakdowns of the EUR-Lex8 dataset of legal documents:
the first by directory codes, the second by subject matter.9 The remaining four
text datasets have been used and described in a variety of other publications
(e.g. [10]) and we have provided them in ARFF format at the WEKA dataset
repository.10

For the first three datasets with >5000 rows, the methods select the residual
as the 10% lowest confidence unlabeled cases. But for the three datasets with
<2500 rows, 10% returns too few cases to mine. For example, dataset re1 has
1657 rows and at K=2 already 42% of the dataset is in known classes. So, the true
residual is the remaining 961 rows, and that is divided among the 15 remaining
classes to be discovered. Selecting just 10% residual at P=75% yields fewer
than 150 cases (distributed among all 17 classes)—not enough data. Thus, for
the three small datasets, the methods use a threshold of 50%. (Our non-public
business datasets usually have tens or hundreds of thousands of rows.)

Figure 1 shows (left) the head of the class distribution for each dataset, and
(right) the classifyability of each respective class, as characterized by the F-
measure of a NB classifier trying to discriminate that class vs. all others under
4-fold cross-validation. Whereas it is common knowledge that more training
examples generally improve classification accuracy for a given class, clearly the
difficulty of each individual class can have a larger effect.

8 http://mulan.sourceforge.net/datasets-mlc.html
9 In order to fit our experiment harness and reuse classification libraries equipped only

for single-label datasets, we simply discarded any rows that actually had multiple
labels (thus the number of cases differs).

10 http://www.cs.waikato.ac.nz/ml/weka/datasets.html
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Fig. 1. Dataset characteristics. (left) Class size distribution, shown for the 17 largest
classes of each dataset. (right) Classifiability of each class, respectively, as characterized
by F-measure of one-vs-all classification by NB classifier under 4-fold cross-validation.

3.2 Results

We begin by comparing the average performance objective (§3.1) of the various
methods as we vary the number of known classes K. We hold the percentage of
training for each known class at P=75%; for K=2, this results in a supervision
level of 10–40% of the dataset. Increasing K provides more training supervi-
sion which might benefit the classifier’s accuracy, but concomitantly increasing
K removes the largest classes from the remaining topics to be found, making
the task harder. For different classes, the inherent classification difficulty and
clusterability varies, of course. (Refer to Figure 1.) Thus, we expect substantial
variation as we change K, not a diagonal trend.

Figure 2 shows the results. We see the semi-supervised method CNMF con-
sistently gave poor results for this task (and this is the best of three implementa-
tions). Generally we see CBI methods (black) exceeded KMeans methods (blue),
sometimes with the exception of KMeans in combination with the Oracle classi-
fier, which is unachievable in practice. The Oracle classifier (×) did not always
lead to the best performance. The classifiers may sometimes do a better job
of isolating an interesting and cohesive subset of cases from which to discover
a topic. Each of the two classifiers showed many situations where it substan-
tially exceeded the other. In practice one can use cross-validation to select the
best model for plain classification tasks, but the lack of training labels for the
unknown topics would thwart cross-validation for the CBI objective.

To quantitatively summarize the results across the different datasets and
values of K, we computed the average rank of each method, as shown in Figure 3.
The red bar indicates those that are not statistically significantly different from
the best ranked method, CBI-Oracle, according to the Friedman and Nemenyi
tests at alpha=0.05, as prescribed by Demšar [9]. If we were to exclude the two
Oracle methods for being impossible in practice, the two CBI methods are better
than statistically significantly better than all other methods by a statistically
significant margin.

Next we vary the percentage P of training labels provided for each known
class, while we fix the number of known classes at K=4. Figure 4 shows these
results. They have less variation than the previous results, because the known
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Fig. 2. Performance of all methods on each dataset as we vary the number of known
classes K, fixing P=75% for training.



Clustering by Intent 31

Fig. 3. Average rank and statistically significance differences. The red bar indicates
that CBI-RLS is not statistically significantly worse than the oracle, and is significantly
better than the state-of-the-art semi-supervised methods.

classes and unknown topics to be discovered are stable across the x-axis in each
graph.

In contrast to learning curve studies in classification, it is most striking that
increased supervision did not consistently lead to better performance for the CBI
objective, though it often helped somewhat (even for CNMF). Labeling more
cases removes them from the unlabeled set, reducing the risk for all methods
of accidentally proposing a class that is already known. Separately we validated
that, as the training level increases, the classifiers showed increasing precision in
selecting a residual subset.11

Thus, clearly classifier accuracy is not the overriding priority for this task.
Case in point, the Oracle returns a perfect residual regardless of training set, yet
this does not ultimately lead to the best performance; the size and makeup of
the training set affects the CBI method substantially and non-linearly. Increasing
supervision benefits CBI-NB for datasets eurlex-subjects, fbis, re1, and wap.

Some of our CNMF results took 5–20 minutes to compute, and RLS classifier
training for K=10 took minutes sometimes. This paper focuses on introducing
the CBI task and on satisfying the performance objective; not on speed. That
said, the CBI process ultimately needs to be put into an interactive loop in
applications. For the most part we have not concerned ourselves with fast imple-
mentations, but we have prototyped a fast version of a text-based CBI method
which clustered 40,000 rows of text data in under 100 ms—clearly suitable for
interactive time scales. The CBI algorithm is linear in the number of documents
and the number of frequent terms.

11 Note that this is a different objective than their classification accuracy on the known
classes, which is of little interest to us in this paper.
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4 Related Work

The field of topic detection has similar goals to CBI: automatically finding new
topically related material in streams of data [1]. The streams may be news feeds
or Twitter streams [6]. Given their temporal impermanence, the clustering is
expected to succeed without supervision, as it does well for Google News. In
these domains, news articles are often copied verbatim and so they cluster very
neatly. By contrast, CBI targets complex data that cannot be decomposed into
user-relevant clusters without some guidance about the user’s intent.

Semi-Supervised Learning (SSL) is a broad area, most of which augments
labeled training sets with unlabeled data in order to improve the accuracy of
classification [7,27]. The minority of research that focuses on semi-supervised
clustering is described only somewhat differently: augmenting the unlabeled data
with some few labels or, more typically, must-link and cannot-link pairwise
constraints in order to improve the clustering. Examples include Constrained K-
Means [3,26] and Constrained Non-negative Matrix Factorization [8,18]. Even
so, researchers measure the clustering quality by its conformance to the (mostly)
hidden ground-truth labels, e.g. classification accuracy, so it ends up being much
like the SSL research for classification (e.g. [8]). Furthermore, the accepted exper-
iment methodology uses random sampling to select the supervision. This leads
to a high likelihood of covering most large classes, which have the greatest effect
on the performance measurement. Thus, supervision is given for all the clusters
that should be found, but in CBI we only have supervision for the clusters we
already know about and not on the unknown clusters that need to be discovered.

Thus, none of this work is like our CBI framework, which might be said to
use extremely ‘skewed’ supervision and does not hinge upon overall classifica-
tion accuracy. Under CBI, the clustering algorithm gets no credit for returning
clusters on classes that have training examples—this is the domain of classifiers
(which can probably perform the job better). As we have seen, if the supervi-
sion is focused on only a few known classes, it does not seem to help CNMF or
Constrained K-Means to adopt the perspective of the user’s intent.

One-class classification, outlier detection, anomaly detection and novelty
detection aim to recognize abnormal data points, generally with the assump-
tion that they are rare events and not available in quantity at training time [23].
These methods are considered successful by recognizing individual test cases that
are highly unusual; they do not attempt to cluster such cases into meaningful
subgroups, as CBI.

Similarly, there are a variety of works in novel class discovery that attempt
to seek individual cases that may stem from unknown classes [4,13,20]. These
methods generally interact with a user via active learning and assume that the
user can recognize a novel class when presented with an individual anomalous
case. Thus, they evaluate their work as a learning curve showing the number
of novel classes encountered over time. By contrast, in CBI there are generally
many unknown classes, mostly very small ones in the long tail, and the goal is to
find the larger ones. Further, we have the need to present a collection of similar
cases to communicate the topic to the user.
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The area of subgroup discovery sounds entirely appropriate to our goals,
but it is actually an unsupervised task that attempts to find rules of interest
associated with a feature of a dataset [14,15]. Gamberger et al. even use the title
‘expert-guided subgroup discovery’, but by this they mean ‘the decision of which
subgroups will be selected to form the final solution is left to the expert’ [12].
Contrast set mining and emerging pattern mining are variants that seek rules
that find significant differences in databases, such as old and new datasets [21].
None of these methods take in the multi-class supervised data of CBI, although
perhaps it would be interesting future work to see whether they could be adapted
to produce useful results for CBI tasks.

Finally, there is the idea of meta-clustering, which takes many different unsu-
pervised clustering results and produces clusters of them which the user can
select among [5]. Ideally one could imagine that different meta-clusters would
correspond to different user intents. We have not tried it, but without supervi-
sion it seems unlikely to produce results nearly as relevant as CBI, even if the
user could determine the most appropriate meta-cluster.

As we mentioned earlier, the area of PU Learning—learning from positive
labeled cases and unlabeled cases, some of which may actually be positives—may
be pertinent in the classification stage of CBI at first when the user has only
identified a single class. PU Learning addresses binary classification problems,
and sometimes considered streams that may have concept drift over time [17],
which is ultimately also an issue of concern for the real-world business user.

5 Conclusions and Future Work

We have labored—and made our internal business users to labor—under poor
clustering results for years when seeking to discover new clusters relevant to a
particular purpose. We found semi-supervised clustering methods intellectually
promising, but, unfortunately, we saw little benefit in practice. By stepping back
from our assumptions and recasting the task substantially, we have been able to
crack a variety of business datasets, and with a natural user-interaction that is
quick. This paper elucidates the task, a suitable method, and its evaluation with
a novel protocol devised to work easily with any publicly available multi-class
benchmark dataset.

We expect future work in this area to compare additional methods, improve
on these results, relax assumptions, and remove limitations. In particular, though
our focus has been on the text domain, this could be broadened. In order to per-
form model selection and tuning in practice, future work could develop a form
of cross-validation for CBI tasks—a challenge, having no labels available for the
long tail. Next, although in this paper the value of discovering a topic was posited
to be proportional to its size, in some datasets, we have a cost indicator associ-
ated with each case—such as parts and labor costs to resolve each case. In these
settings, the total cost of the topic is a more appropriate indicator of value than
simply the number of cases in the topic. Cost quantification techniques [10] could
also be applied to prioritize probabilistic cluster definitions. Finally, future work
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may add emerging topics and/or concept drift to the evaluation with methods
to handle them.

Lastly, a philosophical remark. While classification excels at the ‘more like
this’ task, and clustering could be said to excel at the ‘find various topics’ task,
CBI provides a qualitatively new capability: ‘find topics different from those,
yet alike in some important way.’ Even so, it has no higher level concept of how
those things are alike. For example, in the sports illustration of Table 1, we know
these are sports, but there is no runtime representation of this meta-information.
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