
Probabilistic Programming in Anglican

David Tolpin(B), Jan-Willem van de Meent, and Frank Wood

Department of Engineering Science, University of Oxford, Oxford, UK
{dtolpin,jwvdm,fwood}@robots.ox.ac.uk

Abstract. Anglican is a probabilistic programming system designed to
interoperate with Clojure and other JVM languages. We describe the
implementation of Anglican and illustrate how its design facilitates both
explorative and industrial use of probabilistic programming.

Keyword: Probabilistic programming

1 Introduction

For data science practitioners, statistical inference is typically but one step in
a more elaborate analysis workflow. The first stage of this work involves data
acquisition, pre-processing and cleaning. This is often followed by several iter-
ations of exploratory model design and testing of inference algorithms. Once a
sufficiently robust statistical model and corresponding inference algorithm have
been identified, analysis results must be post-processed, visualized, and in some
cases integrated into a wider production system.

Probabilistic programming systems [1–3,9] represent generative models as
programs written in a specialized language that provides syntax for the definition
and conditioning of random variables. The code for such models is generally
concise, modular, and easy to modify or extend. Typically inference can be
performed for any probabilistic program using one or more generic inference
techniques provided by the system backend, such as Metropolis-Hastings [3,8,
10], Hamiltonian Monte Carlo [7], expectation propagation [5], and extensions of
Sequential Monte Carlo [4,6,9] methods. Although these generic techniques are
not always as statistically efficient as techniques that take advantage of model-
specific optimizations, probabilistic programming makes it easier to optimize
models for a specific application in a manner that is efficient in terms of the
dimensionality of its latent variables.

While probabilistic programming systems shorten the iteration cycle in
exploratory model design, they typically lack basic functionality needed for data
I/O, pre-processing, and analysis and visualization of inference results. In this
demonstration, we describe the implementation of Anglican (http://bitbucket.
org/dtolpin/anglican/), a probabilistic programming language that tightly inte-
grates with Clojure (http://clojure.org/), a general-purpose programming lan-
guage that runs on the Java Virtual Machine (JVM). Both languages share a
common syntax, and can be invoked from each other. This allows Anglican pro-
grams to make use of a rich set of libraries written in both Clojure and Java.
Conversely Anglican allows intuitive and compact specification of models for
which inference may be performed as part of a larger Clojure project.
c© Springer International Publishing Switzerland 2015
A. Bifet et al. (Eds.): ECML PKDD 2015, Part III, LNAI 9286, pp. 308–311, 2015.
DOI: 10.1007/978-3-319-23461-8 36

http://bitbucket.org/dtolpin/anglican/
http://bitbucket.org/dtolpin/anglican/
http://clojure.org/


Probabilistic Programming in Anglican 309

2 Design Outline

An Anglican program, or query, is compiled into a Clojure function. When infer-
ence is performed with a provided algorithm, this produces a sequence of return
values, or predicts. Anglican shares a common syntax with Clojure; Clojure func-
tions can be called from Anglican code and vice versa. A simple program in
Anglican can look like the following code:

1 (defquery models
2 "chooses a distribution which describes the data"
3 (let [;; Model -- randomly choose a distribution and parameters
4 dist (sample (categorical [[uniform-discrete 1]
5 [uniform-continuous 1]
6 [normal 1]
7 [gamma 1]]))
8 a (sample (gamma 1 1)) b (sample (gamma 1 1))
9 d (dist a b)]

10 ;; Data --- samples from the unknown distribution
11 (observe d 1) (observe d 2) (observe d 4) (observe d 7)
12 ;; Output --- predicted distribution type and parameters
13 (predict :d (type d))
14 (predict :a a) (predict :b b)))

Internally, an Anglican query is represented by a computation in continuation
passing style (CPS), and inference algorithms exploit the CPS structure of the
code to intercept probabilistic operations in an algorithm-specific way. Among
the available inference algorithms there are Particle Cascade [6], Lightweight
Metropolis-Hastings [8], Iterative Conditional Sequential Monte-Carlo (Particle
Gibbs) [9], and others. Inference on Anglican queries generates a lazy sequence
of samples, which can be processed asynchronously in Clojure code for analysis,
integration, and decision making.

Clojure (and Anglican) run on the JVM and get access to a wide choice
of Java libraries for data processing, networking, presentation, and imaging.
Conversely, Anglican queries can be called from Java and other JVM languages.
Programs involving Anglican queries can be deployed as JVM jars, and run
without modification on any platform for which JVM is available.

3 Usage Patterns

Anglican is suited to rapid prototyping and exploration, on one hand, and inclu-
sion as a library into larger systems for supporting inference-based decision mak-
ing, on the other hand.

For exploration and research, Anglican can be run in Gorilla REPL (http://
gorilla-repl.org/); a modified version of Gorilla REPL better suited for Anglican

http://gorilla-repl.org/
http://gorilla-repl.org/


310 D. Tolpin et al.

is provided. Gorilla REPL is a notebook-style environment which runs in browser
and serves well as a workbench for rapid prototyping and checking of ideas.
Figure 1 shows a fragment of an Anglican worksheet in the browser:

Fig. 1. Anglican worksheet fragment. Post-processed inference results shown in a plot.

Library use is inherent to the Anglican’s design for interoperability with
Clojure. An Anglican query, along with supporting functions written in either
Anglican or Clojure, can be encapsulated in a Clojure module and called from
other modules just like Clojure function. Additionally, Anglican functions com-
mon for queries of a particular type or structure, such as state-space models or
decision-making queries, can be wrapped as libraries and re-used.

4 Anglican Examples

Anglican benefits from a community-maintained collection of problem exam-
ples (https://bitbucket.org/fwood/anglican-examples), styled as Gorilla REPL
worksheets. Each example is a case study of a problem involving probabilis-
tic inference, includes problem statement, explanations for the solution, and a
graphical presentation of inference results. Some of the included examples are:

https://bitbucket.org/fwood/anglican-examples


Probabilistic Programming in Anglican 311

– Indian GPA,
– Complexity Reduction,
– Bayes Net,
– Kalman Smoother,
– Gaussian Mixture Model,
– DP Mixture Model,
– Hierarchical Dirichlet Process,
– Probabilistic Deterministic Infinite Automata,
– Nested Number Guessing,
– Maximum Likelihood for Logistic Regression.

Anglican users are encouraged to contribute examples, both demonstrating
advantages of probabilistic programming and presenting challenges to the cur-
rent state-of-art of inference algorithms, to the repository.

Acknowledgments. This work is supported under DARPA PPAML through the U.S.
AFRL under Cooperative Agreement number FA8750-14-2-0004.

References

1. Goodman, N.D., Stuhlmüller, A.: The Design and implementation of probabilistic
programming languages (2015). http://dippl.org/ (electronic; retrieved March 11,
2015)

2. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In: Proc. of Uncertainty in Artificial
Intelligence (2008)

3. Mansinghka, V.K., Selsam, D., Perov, Y.N.: Venture: a higher-order probabilistic
programming platform with programmable inference (2014). CoRR abs/1404.0099

4. van de Meent, J.W., Yang, H., Mansinghka, V., Wood, F.: Particle gibbs with
ancestor sampling for probabilistic programs. In: Artificial Intelligence and Statis-
tics (2015). http://arxiv.org/abs/1501.06769

5. Minka, T., Winn, J., Guiver, J., Knowles, D.: Infer.NET 2.4. Microsoft Research
Cambridge (2010)

6. Paige, B., Wood, F., Doucet, A., Teh, Y.: Asynchronous anytime sequential Monte
Carlo. In: Advances in Neural Information Processing Systems (2014)

7. Stan Development Team: Stan: A C++ Library for Probability and Sampling,
Version 2.4 (2014)

8. Wingate, D., Stuhlmüller, A., Goodman, N.D.: Lightweight implementations of
probabilistic programming languages via transformational compilation. In: Proc.
of the 14th Artificial Intelligence and Statistics (2011)

9. Wood, F., van de Meent, J.W., Mansinghka, V.: A new approach to probabilistic
programming inference. In: Artificial Intelligence and Statistics (2014)

10. Yang, L., Hanrahan, P., Goodman, N.D.: Generating efficient MCMC kernels from
probabilistic programs. In: Proceedings of the Seventeenth International Confer-
ence on Artificial Intelligence and Statistics, pp. 1068–1076 (2014)

http://dippl.org/
http://arxiv.org/abs/1501.06769

	Probabilistic Programming in Anglican
	1 Introduction
	2 Design Outline
	3 Usage Patterns
	4 Anglican Examples
	References


