ProbLog2: Probabilistic Logic Programming

Anton Dries®™), Angelika Kimmig, Wannes Meert, Joris Renkens,
Guy Van den Broeck, Jonas Vlasselaer, and Luc De Raedt

KU Leuven, Leuven, Belgium
{anton.dries,angelika.kimmig,wannes.meert, joris.renkens,
guy .vandenbroeck, jonas.vlasselaer,luc.deraedt}@cs.kuleuven.be
https://dtai.cs.kuleuven.be/problog

Abstract. We present ProbLog2, the state of the art implementation of
the probabilistic programming language ProbLog. The ProbLog language
allows the user to intuitively build programs that do not only encode
complex interactions between a large sets of heterogenous components
but also the inherent uncertainties that are present in real-life situations.
The system provides efficient algorithms for querying such models as well
as for learning their parameters from data. It is available as an online tool
on the web and for download. The offline version offers both command
line access to inference and learning and a Python library for building
statistical relational learning applications from the system’s components.
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1 Introduction

Probabilistic programming is an emerging subfield of artificial intelligence that
extends traditional programming languages with primitives to support proba-
bilistic inference and learning. Probabilistic programming is closely related to
statistical relational learning (SRL) but focusses on a programming language
perspective rather than on a graphical model one. The common goal is to pro-
vide powerful tools for modeling of and reasoning about structured, uncertain
domains that naturally arise in applications such as natural language processing,
bioinformatics, and activity recognition.

This demo presents the ProbLog2 system, the state of the art implementa-
tion of the probabilistic logic programming language ProbLog [2-4]. Probabilis-
tic logic programming languages and systems such as ProbLog2, PRISM and
CPLint, cf. [1] for an overview, combine ideas from both SRL and probabilistic
programming. They are thus related both to SRL systems such as Alchemy and
Primula, and to probabilistic programming languages rooted in other program-
ming paradigms, such as Church, Venture, Infer.net, and Figaro.

ProbLog2 supports marginal inference, i.e., computing the conditional prob-
abilities of queries given evidence, parameter learning from data in the form
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of (partial) interpretations, sampling of possible worlds, and interaction with
Python.
ProbLog?2 is available on https://dtai.cs.kuleuven.be/problog.

2 Language

ProbLog is a probabilistic programming language that extends Prolog along
the lines of Sato’s distribution semantics. Its development focusses especially on
machine learning techniques and implementation aspects.

From a modeling perspective, a ProbLog program has two parts: (1) a prob-
abilistic part that defines a probability distribution over truth values of a sub-
set of the program’s atoms, and (2) a logical part that derives truth values of
remaining atoms using a reasoning mechanism similar to Prolog. While the lat-
ter part simply contains Prolog clauses, the former is specified by probabilistic
facts p :: fact, meaning that fact is true with probability p. All these are prob-
abilistically independent; in case they contain variables, all ground instances are
independent as well.

For ease of modeling, ProbLog also allows the use of annotated disjunctions
P1 :hij...5pn it hy i— body with Y7 p; < 1, meaning that if body is true,
one of the h; will be true according to the specified probabilities p;. If the
probabilities do not sum to one, it is also possible that none of the h; is true
(with probability 1 — >"" | p;).

The following ProbLog program models a small social network, where peo-
ple’s smoking behaviour is influenced by the behaviour of their friends. And
indirectly, also by the behaviour of friends of friends.

0.4::asthma(X) :- smokes(X).

0.3: :smokes(X).

0.2::smokes(X) :- friend(X,Y), smokes(Y).

friend(1,2). friend(2,1). friend(2,4). friend(3,2). friend(4,2).

The main inference task addressed in ProbLog is that of calculating the
probability that a query succeeds, for instance ?- asthma(2) succeeds with a
probability 0.15. If we add asthma(3) as evidence, the conditional probability
of 7- asthma(2) is 0.19.

3 System Blocks

ProbLog2 is the successor of ProbLogl [2], which was completely integrated in
YAP Prolog and performed BDD-based probabilistic inference. ProbLog2 infer-
ence consists of a series of transformation steps as shown in Figure 1. The first
step is to take the weighted logic program (ProbLog model) and ground it using
a Prolog-based grounder. The ground program that is obtained can be repre-
sented as a logical formula which may contain cycles. The next steps convert
the ground program to a formula in propositional logic, which involves handling



314 A. Dries et al.

ground + sample
ProbLog
model

l ground l

lbreak cycles] l Clark’s completioul

Acyclic
Ground

Program

Ground
Program

probabilities
of interest
learned
parameters

estimate (WMC)

revise weights

forward compile

Fig. 1. Overview of the primary ProbLog pipelines.

cycles. Different options are available for this conversion, using different log-
ical reasoning techniques. Forward compilation directly compiles to sentential
decision diagrams (SDD). Alternatively, cycles can be removed first, and the
resulting acyclic ground program can then be either transformed into conjunc-
tive normal form and compiled into a d-DNNF, or compiled directly into a SDD.
Both these normal forms support efficient weighted model counting to obtain the
final probabilities of interest.

ProbLog also supports query-based sampling in which it assigns a truth value
to each of the queries based on their joint probability in the model. This algo-
rithm operates directly during the grounding phase and does not require knowl-
edge compilation.

Parameter learning from interpretations takes a base model and a set of
examples as sets of evidence and compiles these into an SDD. These SDDs are
then evaluated repeatedly until the weights in the model converge.

4 System Usage
The ProbLog system can be used through three channels:

Online: The web version of ProbLog allows the user to enter and solve ProbLog
problems without the need to install any additional software. It offers an inter-
active tutorial that illustrates the key modeling concepts in ProbLog through
a range of examples, which can be edited on the fly, as well as a separate edi-
tor. Examples in the tutorial range from traditional probabilistic models such
as Bayesian networks (with plates) and Hidden Markov models to relational
probabilistic models that use the full flexibility of ProbLog.

Command line tool: The backend of the online interface is also available as a com-
mand line tool, which in contrast to the online version does not impose resource
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restrictions. It further offers a number of extra options such as, for example, flags
to select the required pathway through Fig. 1. It is written in Python and is easy
to install on multiple platforms. Additionally, the command line tool allows one
to execute ProbLog programs that make use of external functionality written
in Python. This makes it possible to, besides the declarative modeling capaci-
ties of Prolog, also harness the full power of the Python programming language
and its extended ecosystem (e.g. scikit-learn, NLTK). For example, in a natural
language processing application, the probability associated with a probabilistic
fact P::similar(d1,d2) could be defined as the edit-distance between the two
string arguments d1 and d2 as computed by a corresponding Python function.

Library: ProbLog can be used as a Python package for expressing and querying
probabilistic concepts and models. The library provides data structures and
algorithms that represent all the components shown in Figure 1. It allows the user
to build Statistical Relational Learning (SRL) applications that reuse ProbLog’s
components.
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Fig. 2. The online interface (left) and as a Python library in a Jupyter Notebook (right)
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