
Robust Representation for Domain Adaptation
in Network Security

Karel Bartos1,2(B) and Michal Sofka2

1 Faculty of Electrical Engineering,
Czech Technical University in Prague, Prague, Czech Republic

2 Cisco Systems, Karlovo Namesti 10, 12000 Prague, Czech Republic
{kbartos,msofka}@cisco.com

Abstract. The goal of domain adaptation is to solve the problem of
different joint distribution of observation and labels in the training and
testing data sets. This problem happens in many practical situations such
as when a malware detector is trained from labeled datasets at certain
time point but later evolves to evade detection. We solve the problem by
introducing a new representation which ensures that a conditional dis-
tribution of the observation given labels is the same. The representation
is computed for bags of samples (network traffic logs) and is designed
to be invariant under shifting and scaling of the feature values extracted
from the logs and under permutation and size changes of the bags. The
invariance of the representation is achieved by relying on a self-similarity
matrix computed for each bag. In our experiments, we will show that the
representation is effective for training detector of malicious traffic in large
corporate networks. Compared to the case without domain adaptation,
the recall of the detector improves from 0.81 to 0.88 and precision from
0.998 to 0.999.

Keywords: Traffic classification · Machine learning · Malware detec-
tion · HTTP traffic

1 Introduction

In supervised learning, the domain adaptation solves the problem when a joint
distribution of the labels and observations differs for training (source) and testing
(target) data. This can happen as a result of target evolving after the initial
classifier was trained. For example, in network security, the classifier is trained
from network traffic samples of malware communication which can change as
a result of evolving malware. Under the assumption that the source and target
distribution do not change arbitrarily, the goal of the domain adaptation is
to leverage the knowledge in the source domain and transfer it to the target
domain. In this work, we focus on the case where the conditional distribution of
the observation given labels is different, also called a conditional shift.

The knowledge transfer can be achieved by adapting the detector using
importance weighting such that training instances from the source distribution
c© Springer International Publishing Switzerland 2015
A. Bifet et al. (Eds.): ECML PKDD 2015, Part III, LNAI 9286, pp. 116–132, 2015.
DOI: 10.1007/978-3-319-23461-8 8

Robust Representation for Domain Adaptation in Network Security 117

match the target distribution [16]. Another approach is to transform the training
instances to the domain of the testing data or to create a new data representation
with the same joint distribution of observations and labels [1]. The challenging
part is to design a meaningful transformation that transfers the knowledge from
the source domain and improves the robustness of the classifier on the target
domain.

In this paper, we present a new invariant representation of network traffic
data suitable for domain adaptation under conditional shift. The representation
is computed for bags of samples, each of which consists of features computed
from network traffic logs. A bag is constructed for every user and all network
communication with each domain. The representation is designed to be invariant
under shifting and scaling of the feature values and under permutation and size
changes of the bags. This is achieved by constructing an invariant self similarity
matrix for each bag. Pairwise relevance measure is trained to reliably assign
previously-unseen bags to existing categories or to create a new category.

The proposed similarity measure and the new invariant representation is
applied to detect malicious HTTP traffic in network security. We will show that
the classifier trained on malware communication samples from one category can
successfully detect new samples from a different category. This way, the knowl-
edge of the malware behavior is correctly transferred to the new domain which
improves the classifier. Compared to the case without adaptation with 0.81 recall
and 0.998 precision, the new approach has recall 0.88 and precision 0.999.

2 Problem Statement

The paper deals with the problem of supervised classification of bags of samples
into categories with a lack of labeled data. The labels for positive and negative
samples are often very expensive to obtain. Moreover, sample distribution typi-
cally evolves in time, so the probability distribution of training data differs from
the probability distribution of test data. In contrast to the case when enough
samples is available in each category and their distributions are stationary, the
knowledge needs to be transferred in time within categories but also across cat-
egories using labeled samples. In the following, the problem is described in more
detail.

Each sample is represented as an n-dimensional vector x ∈ R
n. Samples are

grouped into bags, where i-th bag is a set of mi samples Xi = {x1, . . . ,xmi
} ∈ X .

A single category yi can be assigned to each bag from the set of categories Y =
{y1, . . . , yN}. Note that not all categories are included in the training set. The
probability distribution on training (labeled) and test bags for category yj will
be denoted as PL(X|yj) and PT (X|yj), respectively. Moreover, the probability
distribution of training data differs from the probability distribution of testing
data, a problem dealt with in the domain adaptation [2] (also called a conditional
shift [18]):

PL(X|yj) �= PT (X|yj), ∀yj ∈ Y. (1)

118 K. Bartos and M. Sofka

The purpose of the domain adaptation is to acquire knowledge from the
training (source) domain and apply it to the testing (target) domain. The rela-
tion between PL(X|yi) and PT (X|yi) is not arbitrary, otherwise it would not
be possible to transfer any knowledge. Therefore there is a transformation τ ,
which transforms the feature values of the bags onto a representation, in which
PL(τ(X)|yi) = PT (τ(X)|yi). We assume that τ(X) is any representation that
is invariant against shift, scale, permutation, and size changes of the bag. The
goal is to find this representation, allowing to classify individual bags Xi into
categories Y = {y1, . . . , yN} under the conditional shift.

A number of other methods for transfer learning have been proposed, includ-
ing kernel mean matching [10], kernel learning approaches [8], maximum mean
discrepancy [11], or boosting [7]. These methods try to solve a general data
transfer with relaxed conditions on the similarity of the distributions during the
transfer. The downside of these methods is the necessity to specify the target
loss function and the availability of large amount of labeled data.

Our solution to the conditional shift problem is to transform the features to
a new representation. The advantage of this approach is that it is independent
of the classification loss function and similarity between the probability distri-
butions does not need to be given. The method achieves the knowledge transfer
by changing the original feature values. The feature values are transformed into
a new representation that is invariant against shift, scale, permutation, and size
changes of the bags (number of samples within each bag). Once the data are
transformed according to the proposed representation, the new feature values
do not follow the original distribution and therefore they are not influenced by
the shift.

To compensate for the lack of labeled data, a simple online linear transforma-
tion is applied. The transformation learns a set of weights on the new features to
match the training and test distributions of the bags from the same category. At
the same time, the weights are optimized to separate bags belonging to different
categories. This way, bags belonging to the same category are assigned the same
label during classification.

3 Invariant Representation of Bags

In this Section, an invariant representation of bags is proposed to overcome
the problem of domain shift introduced in Section 2. The new representation is
calculated with a transformation τ that consists of three steps to ensure that
the new representation will be independent on the mean, and invariant against
scaling, shifting, permutation and size of the bags. In the following, the individual
steps are discussed in more detail.

3.1 Shift Invariance with Self-Similarity Matrix

As stated in Section 2, the probability distribution of bags from the training set
and the testing set can be different. Therefore, in the first step, the represen-
tation of bags is transformed to be invariant against this shift. The traditional

Robust Representation for Domain Adaptation in Network Security 119

representation of i-th bag Xi that consists of a set of m samples {x1, . . . ,xm} is
typically in a form of a matrix:

Xi =

⎛
⎜⎝

x1

...
xm

⎞
⎟⎠ =

⎛
⎜⎜⎝

x1
1 x2

1 . . . xn
1

...

x1
m x2

m

... xn
m

⎞
⎟⎟⎠ ,

where xk
l denotes k-th feature value of l-th sample from bag Xi. This form

of representation of samples and bags is widely used, as it is straightforward to
compute. It is a reasonable choice in many applications with negligible difference
in probability distributions. However, when the difference becomes more serious,
the traditional representation often leads to unsatisfactory results. Therefore, the
following transformation is proposed to overcome the difference typically caused
by the dynamics of the domain, making the solution for the classification problem
more effective. As a first step, the representation is transformed to be invariant
against shift of the feature values.

Shift invariance guaranties that even if some original feature values of all
samples in a bag are increased/decreased by a given amount, the values in the
new representation remain unchanged.

Let us define a translation invariant distance function, which is a distance
function d : R × R → R such that:

d(x1, x2) = d(x1 + a, x2 + a). (2)

Let xk
p, xk

q be k-th feature values of p-th and q-th sample from bag Xi,
respectively. It is possible to express the relation between the values as follows:

xk
p = xk

q − skpq, (3)

where skpq is the difference between values xk
p, xk

q . Then it holds for each trans-
lation invariant distance function d : R × R → R:

d(xk
p, x

k
q) = d(xk

p, x
k
p + skpq) = d(0, skpq) = skpq.

Therefore, the new feature value d(xk
p, x

k
q) expresses the distance between

the two values of k-th feature regardless of their absolute values. This value
is more robust, however it could be less informative, as the information about
the absolute values was removed. To compensate for the possible loss of infor-
mation, the bags are represented with a matrix of these distances d(xk

p, x
k
q),

which is called a self-similarity matrix Sk. Self-similarity matrix is a symmet-
ric positive semidefinite matrix, where rows and columns represent individual
samples and (i, j)-th element corresponds to the distance between i-th and j-
th sample. Self-similarity matrix has been already used thanks to its properties
in several applications (e.g. in object recognition [12] or music recording [14]).
However, only a single self-similarity matrix for each bag has been used in these
approaches.

120 K. Bartos and M. Sofka

This paper proposes to compute a set of similarity matrices, one for every
feature. More specifically, a per-feature self-similarity set of matrices Si =
{S1

i , S2
i , . . . , Sn

i } is computed for i-th bag Xi, where

Sk
i =

⎛
⎜⎜⎜⎝

sk11 sk12 . . . sk1m
sk21 sk22 . . . sk2m

...
skm1 skm2 . . . skmm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

d(xk
1 , x

k
1) d(xk

1 , x
k
2) . . . d(xk

1 , x
k
m)

d(xk
2 , x

k
1) d(xk

2 , x
k
2) . . . d(xk

2 , x
k
m)

...
d(xk

m, xk
1) d(xk

m, xk
2) . . . d(xk

m, xk
m)

⎞
⎟⎟⎟⎠ , (4)

and skpq = d(xk
p, x

k
q) is a distance between feature values xk

p and xk
q of k-th

feature. This means that the bag Xi with m samples and n features will be
represented with n self-similarity matrices of size m × m.

3.2 Scale Invariance with Local Feature Normalization

As explained in the previous section, self-similarity matrix Si of the bag Xi

captures mutual distances among the samples included in Xi. Therefore, the
matrix describes inner temporal dynamics of bags [12], [13]. In other words, it
describes how the bag is evolving in time. In case of a bag, where all samples are
the same, the matrix Si will be composed of zeros. On the other hand, in case of
a bag with many different samples, the self-similarity matrix will be composed
of a wide range of values.

The next step is to transform the matrix Sk
i to be invariant against scaling.

Scale invariance guarantees that even if some original feature values of all
samples in a bag are multiplied by a common factor, the values in the new
representation remain unchanged. To guarantee the scale invariance, the matrix
Sk
i needs to be locally normalized onto the interval [0, 1] as follows:

S̃k
i =

⎛
⎜⎜⎜⎝

s̃k11 s̃k12 . . . s̃k1m
s̃k21 s̃k22 . . . s̃k2m

...
s̃km1 s̃km2 . . . s̃kmm

⎞
⎟⎟⎟⎠ , s̃kpq =

skpq − mini,j(skij)
maxi,j(skij) − mini,j(skij)

. (5)

Note that the maximum and minimum value is computed only from the
samples within the bag, therefore the normalization is referred to as local. After
the local scaling, the matrices S̃i = {S̃1

i , S̃2
i , . . . , S̃n

i } are invariant against shifting
and scaling, focusing purely on the dynamics among the samples (matrix of
differences) and not on the absolute values of the differences. An example of
an input feature vector and the corresponding locally-normalized self-similarity
matrix is illustrated in Figure 1 (a) and Figure 1 (b).

3.3 Permutation and Size Invariance with Histograms

Representing bags with locally-scaled self-similarity matrices S̃ achieves the scale
and shift invariance. However, as there are no restrictions on the size of the

Robust Representation for Domain Adaptation in Network Security 121

0 500 1000 1500
0

10

20

30

40

50

60

70
Feature Vector

Feature Values

S
am

pl
es

(a)

10 20 30 40 50 60

10

20

30

40

50

60

Self similarity Matrix

(b)

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12
Histogram

(c)

Fig. 1. Graphical illustration of the individual steps that are needed to transform
the bag (set of samples) into the proposed invariant representation. First, the bag
is represented with a standard feature vector (a). Then the locally normalized self-
similarity matrix (b) is computed for each feature. Finally, values from the matrix will
create a new histogram (c), which is invariant on the number or the ordering of the
samples within the bag.

bags (i.e. how many samples are included in a bag), the corresponding self-
similarity matrices can be of various sizes. The various sizes of the matrices
make their comparison difficult. This is solved by introducing size invariance
which ensures that the representation does not depend on the size of the bags.
Moreover, in highly dynamic environments, the samples may occur in a variable
ordering. Since the sample order does not matter for the representation of the
bags, the robustness to reordering of rows and columns is guaranteed by the
permutation invariance.

The final step of the proposed transformation is the transition from the scaled
self-similarity matrices S̃i = {S̃1

i , S̃2
i , . . . , S̃n

i } into histograms. Every matrix S̃k
i

is transformed into a single histogram hk
i with a predefined number of bins.

Each bin of a histogram hk
i represents one feature value in the proposed new

representation.
Overall, i-th bag is represented as a vector hi of size n × l as follows:

hi = (h1
i ,h

2
i , . . . ,h

n
i), (6)

where n is the number of features (and histograms) and l is the number of bins.
The whole transformation is depicted in Figure 1. Figure 2 illustrates the invari-
ant properties of the representation. Even though the bags from Figure 1 (a)
and Figure 2 (a) have different number of samples, ordering, and range of the
original feature values, the output histograms are similar.

122 K. Bartos and M. Sofka

0 1000
0

10

20

30

40

50

60

70

80

90

100
Feature Vector

Feature Value

S
am

pl
es

(a)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
Self similarity Matrix

(b)

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12
Histogram

(c)

Fig. 2. Graphical illustration showing the invariant properties of the proposed repre-
sentation for one feature. Even tough the bag (and thus the input feature vector (a))
has more samples than the bag from Figure 1, the histogram (c) computed from the
self-similarity of the samples (b) is similar.

4 Online Similarity Learning

Representing input bags, as proposed in Section 3, ensures invariance against
the conditional shift described in Section 2. Therefore, the transformed feature
values can be used for learning a classifier that classifies the bags into categories.

As mentioned in Section 2, some categories may be missing in the training
set. The classification method should be able to identify them in the test data
and separate them from the rest of the categories. Several existing approaches
have been proposed to address the classification problem with missing labels
in the training set, e.g. zero-shot learning with semantic output codes [15]
or through cross-modal transfer [17]. However, these approaches are typically
designed for many labeled samples. When the number of labeled samples is lim-
ited, a similarity-based approach [5] can be used.

Similarity-based classifiers estimate the category label from a pairwise simi-
larity of a testing bag and a set of labeled training bags. The comparison between
two bags is performed by computing a similarity of feature vectors hi and hj

using a similarity matrix W. The similarity matrix is trained by using a pairwise
relevance measure r : Rn·l×R

n·l → R, designed to evaluate how relevant the two
feature vectors are. Note that n and l denotes the number of features and the
number of bins, respectively (both are defined in Section 3). The benefit of this
approach lies in the fact that the algorithm requires only a limited number of
labeled samples. The samples are labeled in a way to expresses relation, whether
one pair of feature vectors is more relevant than the other. The relevance measure
should satisfy the following conditions:

Robust Representation for Domain Adaptation in Network Security 123

1. Let hi,hj be two feature vectors from category ym and hk be from a different
category yn (or is unlabeled). Then r(hi,hj) > r(hi,hk).

2. Let hi,hj be two feature vectors from category ym and hk,hl be from differ-
ent categories yn1 and yn2 (or are not labeled). Then r(hi,hj) > r(hk,hl).

The first condition defines the basic requirement to consider two bags from
the same category more relevant than two bags from different categories. The
second condition ensures that two bags from the same category are more relevant
to each other than two unlabeled bags. The training is done by using the passive-
aggressive algorithm [6] OASIS [4] originally designed for recognizing similar
images. The algorithm iteratively adjusts the weights of the similarity matrix
to best fit the previous as well as the new training samples (see Algorithm 1).
In [4] it has been shown that the algorithm converges fast with relatively small
number of training pairs.

The algorithm finds a bilinear form W for which:

hi Whj > hi Whk + 1,

where hi,hj , and hk are three feature vectors from the first condition mentioned
earlier in this Section. In case of a hinge loss function defined as:

lW(hi hj ,hk) = max{0, 1 − hi Whj + hi Whk},

the goal is to minimize a global loss LW over all possible triples:

LW =
∑
i,j,k

lW(hi,hj ,hk).

To minimize the global loss LW, a passive-aggressive algorithm is applied to
optimize W over all feature vectors. The algorithm starts with the initial sim-
ilarity matrix W = I (identity matrix). In this case, the similarity is a simple
dot product of the two feature vectors hT

i Ihj = hT
i · hj . The algorithm then

iterates over the training samples to adjust the similarity matrix W to satisfy
the conditions (1) and (2) defined above. In each step, the algorithm randomly
selects a pair of feature vectors from the same category and one feature vector
from a different category (or an unlabeled bag). The purpose of each iteration
is to optimize a trade-off between W computed so far and the current loss lW.
More specifically, the algorithm solves the following convex problem with soft
margin:

Wi = arg min
W

1
2
‖W − Wi−1‖2Fro + Cξ (7)

s.t. lW(hi,hj ,hk) ≤ ξ and ξ ≥ 0,

where ‖.‖Fro is the Frobenius norm and the parameter C controls the trade-off.
The solution of the optimization problem [4] from Equation 7 is described in
Algorithm 1. The training ends after a predefined number of iterations or when
the similarity between the training pairs is below a given threshold.

124 K. Bartos and M. Sofka

Algorithm 1. Training similarity matrix
function TrainSimilarityMatrix

W0 = I
repeat

sample three feature vectors:
F = hi, F+ = hj , F− = hk

such that r(F, F+) > r(F, F−)
Vi = [F (1)(F+ − F−), . . . , F (N)(F+ − F−)]T ,

where F (i) denotes i-th component of F
lW i−1(F, F+, F−)

= max{0, 1 − FW i−1F+ + FW i−1F−}
τi = min{C,

l
Wi−1 (F,F+,F−)

‖Vi‖2 },
where C is aggressiveness parameter

Wi = Wi−1 + τiV
i

until (stopping criterion)
return W

end function

In the testing phase, the similarity is used to create clusters of similar feature
vectors, where all vectors from one cluster belong to the same category. As the
last stage of the training procedure, the algorithm computes centroids ci of the
clusters Ci and threshold t. The threshold t is computed as an average similarity
of a centroid with the rest of the vectors within a cluster. This is calculated
across all clusters as follows:

t =

∑
i,j c

T
i Wh(i)

j

number of all feature vectors h(i)
j

, (8)

where h(i)
j denotes that j-th feature vector from i-th cluster. In case of a vector

not similar to any of the existing centroids (the similarity is below the thresh-
old t), this vector will create a new centroid and thus a new category.

5 Application in Network Security

We applied the combination of the proposed representation with the similarity
learning to classify unseen malware bags in network security domain. The next
section provides specification of the datasets, followed by the results from the
experimental evaluation.

5.1 Specification of the Datasets

This section provides detailed description of the datasets and features used in
the experimental evaluation. The datasets are divided into two disjoint parts:
training, and testing. Both datasets were obtained from 1 month of real network
traffic of 80 international companies (more than 500,000 users) in form of proxy

Robust Representation for Domain Adaptation in Network Security 125

Fig. 3. URL decomposition into seven parts.

Table 1. List of features extracted from proxy logs. Features from the right column
are applied on all URL parts.

Features Features applied on all URL parts + referer

duration length
HTTP status digit ratio
is URL encrypted lower case ratio
is protocol HTTPS upper case ratio
number of bytes up vowel changes ratio
number of bytes down has repetition of ’&’ and ’=’
is URL in ASCII starts with number
client port number number of non-base64 characters
server port number has a special character
user agent length max length of consonant stream
MIME-Type length max length of vowel stream
number of ’/’ in path max length of lower case stream
number of ’/’ in query max length of upper case stream
number of ’/’ in referer max length of digit stream
is second-level domain rawIP ratio of a character with max occurrence

logs. These logs contain HTTP/HTTPS flows, where one flow represents one
communication between a user and a server. More specifically, one flow is a
group of packets with the same source and destination IP address, source and
destination port, and protocol. As flows from the proxy logs are bidirectional,
both directions of a communication are included in each flow.

A flow consists of the following fields: user name, source IP address, destina-
tion IP address, source port, destination port, protocol, number of bytes trans-
ferred from client to server and from server to client, flow duration, timestamp,
user agent, URL, referer, MIME-Type, and HTTP status. The most informative
field is URL, which can be decomposed further into 7 parts as illustrated in
Figure 3. We extracted 317 features from the flow fields (see the list in Table 1).
Features from the right column are applied on all URL parts, including the URL
itself and the referer.

Flows are grouped into bags, where each bag contains flows with the same
user (or source IP) and the same second-level domain. Thus, each bag represents
communication of a user with a particular domain. The size of a bag is at least
5 flows to be able to compute a representative histogram from feature values.
As the datasets were originally unlabeled, we used available blacklists and other
malware feeds from Collective Intelligence Framework (CIF) [9] to add positive

126 K. Bartos and M. Sofka

Table 2. Number of flows and bags of malware categories and background traffic.

Malware Category
Samples

Flows Bags

C&C malware 30,105 532
DGA malware 3,772 105
DGA exfiltration 1,233 70
Click fraud 9,434 304
Trojans 1,230 12

Background 867,438 15,000

Table 3. Summary of the SVM results from the baseline and the proposed representa-
tion. Both classifiers have the same results on the training set, however SVM classifier
where the bags were represented with the proposed self-similarity approach achieved
better performance on the test data.

Representation
Training Data Test Data

TP FP TN precision recall TP FP TN precision recall

baseline 304 0 6976 1.0 1.0 584 13 7987 0.998 0.81
self-similarity 304 0 6976 1.0 1.0 633 6 7994 0.999 0.88

labels to the training dataset. All bags with domains marked as malicious by
CIF (or by other external tools) were labeled as positive.

There are 5 malware categories: malware with command & control channels
(marked as C&C), malware with domain generation algorithm (marked as DGA),
DGA exfiltration, click fraud, and trojans. The summary of malicious categories
is shown in Table 2. The rest of the background traffic is considered as legitimate.

5.2 Experimental Evaluation

This section shows the benefits of the proposed representation for a two-class
and a multi-class classification problem in network security. The feature vec-
tors described in Section 5.1 correspond to input feature vectors {x1, . . . ,xm}
defined in Section 2. These vectors were transformed to the proposed histogram
representation {h1, . . . ,hn}, as described in Section 3. Each histogram hi had
32 bins (l = 32). The proposed approach was compared with a baseline represen-
tation, where each bag is represented as a joint histogram of the input feature
values {x1, . . . ,xm}. This means that one histogram was computed from values
of every feature and bag, and the histograms were then concatenated to one final
feature vector for each bag. Note that the baseline representation differs from
the proposed representation in the fact that the baseline does not compute his-
tograms from self-similarity matrices, but directly from the input feature values.
Comparing these two approaches will show the importance of the self-similarity
matrix, when dealing with domain adaptation problems.

Robust Representation for Domain Adaptation in Network Security 127

C&C DGA DGA Exfiltration Trojan
0

10

20

30

40

50

60

70

80

90
Distribution of False Negatives

Malware Category

N
um

be
r

of
 F

al
se

 N
eg

at
iv

es

Baseline
Self similarity

Fig. 4. Analysis of false negatives for both approaches. Thanks to the proposed self-
similarity representation, SVM classifier was able to correctly classify all DGA exfiltra-
tion, trojan, and most of DGA malware bags, with a slight increase of false negatives
for C&C.

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

110

Features

F
ea

tu
re

s

Trained similarity matrix

0.1

0.08

0.06

0.04

0.02

0

0.02

0.04

0.06

0.08

0.1

(a)

0

20

40

60

80

100

2 1 0 1 2

Sum of weights per row

F
ea

tu
re

Feature weight

(b)

Fig. 5. Graphical illustration of a similarity submatrix W trained according to Algo-
rithm 1 (a) and the corresponding sum of weights for each row (b). The matrix can
also serve for feature selection, as some features have a negligible weight.

First, a two-class SVM classifier was evaluated on both representations. To
demonstrate the conditional shift of positive bags, only click fraud bags were used
in the training set as positive bags. A total of 6976 negative bags were included
in the training set. The SVM classifier was evaluated on bags from C&C and
DGA malware, DGA exfiltration, trojans, and 8000 negative background bags.
The results are shown in Table 3. Both classifiers have the same results on the

128 K. Bartos and M. Sofka

0 50 100 150 200 250 300 350 400 450 500

1

2

3

4

5

6

Number of Occurrences

C
lu

st
er

Malware Categories in Clusters

C&C
DGA
DGA Exfiltration
Click Fraud
Trojan

Fig. 6. Distribution of malware categories in clusters with more than 5 bags. Input
bags are represented with the baseline approach. C&C bags are scatted across more
clusters, and trojan malware bags were not clustered at all.

0 50 100 150 200 250 300 350 400 450 500

1

2

3

4

5

6

Number of Occurrences

C
lu

st
er

Malware Categories in Clusters

C&C
DGA
DGA Exfiltration
Click Fraud
Trojan

Fig. 7. Distribution of malware categories in clusters with more than 5 bags. Input
bags are represented with the proposed approach. Most C&C bags were placed into a
single cluster. Trojan bags were successfully found in cluster 5.

training set, however the SVM classifier using the data represented with the
proposed self-similarity approach achieved better performance on the test data.

More detailed analysis of false negatives for both approaches in provided
in Figure 4. Thanks to the proposed self-similarity representation, the SVM
classifier was able to correctly classify all DGA exfiltration, trojan, and most
of DGA malware bags. There is only a slight increase in the number of false
negatives for C&C. Overall, the proposed self-similarity representation shows
better robustness than the baseline approach.

Next, the performance on a multi-class problem with missing labels is evalu-
ated with the similarity learning algorithm described in Section 4. Two malware
categories were included in the training set (click fraud and C&C) together with
5000 negative bags. Similarity matrix W , trained according to the Algorithm 1,
is depicted in Figure 5.

In the next experiment, similarity matrix W was used to create an adjacency
matrix of all bags in the test set, where i, j-th component of this matrix is
computed as hT

i Whj . This means that i, j-th component expresses the distance
between i-th and j-th bag in a metric space defined by the learned similarity

Robust Representation for Domain Adaptation in Network Security 129

Fig. 8. Graphical illustration of the clustering results, where the input bags were rep-
resented with the proposed representation. Legitimate bags are concentrated in three
large clusters on the top and in a group of non-clustered bags located in the center.
Malicious bags were clustered into six clusters.

130 K. Bartos and M. Sofka

matrix W . Modularity clustering [3] was used to cluster the bags according to
the adjacency matrix. The distribution of categories in malicious clusters with
more than 5 bags is depicted in Figure 6 (for the baseline representation) and in
Figure 7 (for the proposed representation). In contrast to the baseline results,
most C&C bags are concentrated in a single cluster. Moreover, trojan bags were
successfully found (in cluster 5) as opposed to the baseline. The overall clustering
results are illustrated in Figure 8. The legitimate bags are concentrated in three
large clusters on the top and in a group of non-clustered bags located in the
center, while the malicious bags were clustered to six clusters.

6 Conclusion

This paper proposed a robust representation of bags of samples suitable for the
domain adaptation problems with conditional shift. Under conditional shift, the
probability distributions of the observations given labels is different in the train-
ing (source) and testing (target) data which complicates standard supervised
learning algorithms. The new representation is designed to be invariant under
common changes between the source and target data, namely shifting and scal-
ing of the feature values and permutation and size changes of the bags. This is
achieved by computing a self-similarity measure of the bags using sample fea-
tures. The representation is used in online similarity learning which results in a
robust algorithm for multi-class classification with missing labels.

The proposed representation was evaluated and compared with the baseline
representation without adaptation in two network security use cases. First, in a
binary classification of malicious network traffic, the new invariant representation
improved the recall of an SVM classifier from 0.81 to 0.88 and the precision
from 0.998 to 0.999. Second, in a modularity clustering of network traffic, the
proposed approach correctly grouped malware according to their categories and
even identified a new category, previously unseen in the training data. These
results demonstrate the invariant properties of the representation which make it
useful in network security.

There are several remaining challenges in the domain adaptation for network
security. With constantly evolving malware, conditional shift might still occur
even when the new malware families are represented as outlined in this paper.
There are other types of malware, some of which have not been identified or
fully understood, that have different behavioral patterns making it impossible
to transfer knowledge from the source to the target domain. Some of these chal-
lenges might be solved by introducing nonlinearity to the malware similarity
measure. As in the presented online similarity learning, the measure could use
the known samples to learn the differences between malicious and legitimate
traffic. This is the direction of our future research.

Robust Representation for Domain Adaptation in Network Security 131

References

1. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F., et al.: Analysis of represen-
tations for domain adaptation. Advances in neural information processing systems
19, 137 (2007)

2. Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural corre-
spondence learning. In: Proceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing, pp. 120–128. Association for Computational Lin-
guistics (2006)

3. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z.,
Wagner, D.: On modularity clustering. IEEE Transactions on Knowledge and Data
Engineering 20(2), 172–188 (2008)

4. Chechik, G., Sharma, V., Shalit, U., Bengio, S.: Large scale online learning of
image similarity through ranking. The Journal of Machine Learning Research 11,
1109–1135 (2010)

5. Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based
classification: Concepts and algorithms. The Journal of Machine Learning Research
10, 747–776 (2009)

6. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-
aggressive algorithms. The Journal of Machine Learning Research 7, 551–585
(2006)

7. Dai, W., Yang, Q., Xue, G.-R., Yu, Y.: Boosting for transfer learning. In: Proceed-
ings of the 24th International Conference on Machine learning, pp. 193–200. ACM
(2007)

8. Duan, L., Tsang, I.W., Xu, D.: Domain transfer multiple kernel learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence 34(3) (2012)

9. Farnham, G., Leune, K.: Tools and standards for cyber threat intelligence projects.
Technical report, SANS Institute InfoSec Reading Room, p. 10 (2013)

10. Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.:
Covariate shift by kernel mean matching. Dataset shift in machine learning (2009)

11. Iyer, A., Nath, S., Sarawagi, S.: Maximum mean discrepancy for class ratio estima-
tion: convergence bounds and kernel selection. In: Proceedings of the 31st Interna-
tional Conference on Machine Learning (ICML 2014), pp. 530–538 (2014)

12. Junejo, I.N., Dexter, E., Laptev, I., Perez, P.: View-independent action recogni-
tion from temporal self-similarities. IEEE Transactions on Pattern Analysis and
Machine Intelligence 33(1), 172–185 (2011)

13. Körner, M., Denzler, J.: Temporal self-similarity for appearance-based action recog-
nition in multi-view setups. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.)
CAIP 2013, Part I. LNCS, vol. 8047, pp. 163–171. Springer, Heidelberg (2013)

14. Müller, M., Clausen, C.: Transposition-invariant self-similarity matrices. In: Pro-
ceedings of the 8th International Conference on Music Information Retrieval
(ISMIR), pp. 47–50 (2007)

15. Palatucci, M., Pomerleau, D., Hinton, G.E., Mitchell, T.M.: Zero-shot learning with
semantic output codes. In: Advances in Neural Information Processing Systems
(NIPS), pp. 1410–1418 (2009)

132 K. Bartos and M. Sofka

16. Shimodaira, H.: Improving predictive inference under covariate shift by weighting
the log-likelihood function. Journal of statistical planning and inference 90(2),
227–244 (2000)

17. Socher, R., Ganjoo, M., Manning, C.D., Ng, A.: Zero-shot learning through cross-
modal transfer. In: Advances in Neural Information Processing Systems, pp. 935–943
(2013)

18. Zhang, K., Schölkopf, B., Muandet, K., Wang, Z.: Domain adaptation under target
and conditional shift. In: Dasgupta, S., Mcallester, D. (eds.) Proceedings of the 30th
International Conference on Machine Learning (ICML 2013), JMLR Workshop and
Conference Proceedings, vol. 28, pp. 819–827 (2013)

	Robust Representation for Domain Adaptation in Network Security
	1 Introduction
	2 Problem Statement
	3 Invariant Representation of Bags
	3.1 Shift Invariance with Self-Similarity Matrix
	3.2 Scale Invariance with Local Feature Normalization
	3.3 Permutation and Size Invariance with Histograms

	4 Online Similarity Learning
	5 Application in Network Security
	5.1 Specification of the Datasets
	5.2 Experimental Evaluation

	6 Conclusion
	References

