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Abstract. Complex networks theory has commonly been used for mod-
elling and understanding the interactions taking place between the ele-
ments composing complex systems. More recently, the use of generative
models has gained momentum, as they allow identifying which forces and
mechanisms are responsible for the appearance of given structural prop-
erties. In spite of this interest, several problems remain open, one of the
most important being the design of robust mechanisms for finding the
optimal parameters of a generative model, given a set of real networks.
In this contribution, we address this problem by means of Probabilis-
tic Constraint Programming. By using as an example the reconstruction
of networks representing brain dynamics, we show how this approach is
superior to other solutions, in that it allows a better characterisation of
the parameters space, while requiring a significantly lower computational
cost.
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1 Introduction

The last decades have witnessed a revolution in science, thanks to the appearance
of the concept of complex systems: systems that are composed of a large number
of interacting elements, and whose interactions are as important as the elements
themselves [I]. In order to study the structures created by such relationships,
several tools have been developed, among which complex networks theory [213],
a statistical mechanics understanding of graph theory, stands out.

Complex networks have been used to characterise a large number of different
systems, from social [4] to transportation ones [5]. They have also been valu-
able in the study of brain dynamics, as one of the greatest challenges in modern
science is the characterisation of how the brain organises its activity to carry
out complex computations and tasks. Constructing a complete picture of the
computation performed by the brain requires specific mathematical, statistical
and computational techniques. As brain activity is usually complex, with differ-
ent regions coordinating and creating temporally multi-scale, spatially extended
networks, complex networks theory appears as the natural framework for its
characterisation.



When complex networks are applied to brain dynamics, nodes are associated
to sensors (e.g. measuring the electric and magnetic activity of neurons), thus
to specific brain locations, and links to some specific conditions. For instance,
brain functional networks are constructed such that pairs of nodes are connected
if some kind of synchronisation, or correlated activity, is detected in those nodes
- the rationale being that a coordinated dynamics is the result of some kind of
information sharing [6]. Once these networks are reconstructed, graph theory al-
lows endowing them with a great number of quantitative properties, thus vastly
enriching the set of objective descriptors of brain structure and function at neu-
roscientists’ disposal. This has especially been fruitful in the characterisation of
the differences between healthy (control) subjects and patients suffering from
neurologic pathologies [7].

Once the topology (or structure) of a network has been described, a further
question may be posed: can such topology be explained by a set of simple gen-
erative rules, like a higher connectivity of neighbouring regions, or the influence
of nodes physical position? When a set of rules (a generative model) has been
defined, it has to be optimised and validated: one ought to obtain the best set
of parameters, such that the networks yielded by the model are topologically
equivalent to the real ones. This usually requires maximising a function of the
p-values representing the differences between the characteristics of the synthetic
and real networks. In spite of being accepted as a standard strategy, this method
presents several drawbacks. First, its high computational complexity: large sets
of networks have to be created and analysed for every possible combination of
parameters; and second, its unfitness for assessing the presence of multiple local
minima.

In this contribution, we propose the use of probabilistic constraint program-
ming (PCP) for characterising the space created by the parameters of a gen-
erative model, i.e. a space representing the distance between the topological
characteristics of real and synthetic networks. We show how this approach al-
lows recovering a larger quantity of information about the relationship between
model parameters and network topology, with a fraction of the computational
cost required by other methods. Additionally, PCP can be applied to single sub-
jects (networks), thus avoiding the constraints associated with working with a
large and homogeneous population. We further validate the PCP approach by
studying a simple generative model, and by applying it to a data set of brain
activity of healthy people.

The remainder of the text is organised as follows. Besides this introduction,
Sections[2] and [2.I] respectively review the state of the art in constraint program-
ming and its probabilistic version. Afterwards, the application of PCP is pre-
sented in Section [3|for a data set of brain magneto-encephalographic recordings,
and the advantages of PCP are discussed in Section [d Finally, some conclusions
are drawn in Section [l



2 Constraint Programming

A constraint satisfaction problem [§] is a classical artificial intelligence paradigm
characterised by a set of variables and a set of constraints, the latter specifying
relations among subsets of these variables. Solutions are assignments of values
to all variables that satisfy all the constraints.

Constraint programming is a form of declarative programming, in the sense
that instead of specifying a sequence of steps to be executed, it relies on proper-
ties of the solutions to be found that are explicitly defined by the constraints. A
constraint programming framework must provide a set of constraint reasoning
algorithms that take advantage of constraints to reduce the search space, avoid-
ing regions inconsistent with the constraints. These algorithms are supported by
specialised techniques that explore the specificity of the constraint model, such
as the domain of its variables and the structure of its constraints.

Continuous constraint programming [III0] has been widely used to model
safe reasoning in applications where uncertainty on the values of the variables is
modelled by intervals including all their possibilities. A Continuous Constraint
Satisfaction Problem (CCSP) is a triple (X, D, C), where X is a tuple of n real
variables (x1,- -+ ,x,), D is a Cartesian product of intervals D(z1) X - - - x D(x,)
(a box), each D(x;) being the domain of variable x;, and C'is a set of numerical
constraints (equations or inequalities) on subsets of the variables in X. A solution
of the CCSP is a value assignment to all variables satisfying all the constraints
in C. The feasible space F' is the set of all CCSP solutions within D.

Continuous constraint reasoning relies on branch-and-prune algorithms [I1]
to obtain sets of boxes that cover exact solutions for the constraints (the feasible
space F'). These algorithms begin with an initial crude cover of the feasible space
(the initial search space, D) which is recursively refined by interleaving pruning
and branching steps until a stopping criterion is satisfied. The branching step
splits a box from the covering into sub-boxes (usually two). The pruning step
either eliminates a box from the covering or reduces it into a smaller (or equal)
box maintaining all the exact solutions. Pruning is achieved through an algo-
rithm [I2] that combines constraint propagation and consistency techniques [13]:
each box is reduced through the consecutive application of narrowing operators
associated with the constraints, until a fixed-point is attained. These opera-
tors must be correct (do not eliminate solutions) and contracting (the obtained
box is contained in the original). To guarantee such properties, interval analysis
methods are used.

Interval analysis [14] is an extension of real analysis that allows computations
with intervals of reals instead of reals, where arithmetic operations and unary
functions are extended for interval operands. For instance, [1, 3] + [3, 7] results
in the interval [4, 10], which encloses all the results from a point-wise evaluation
of the real arithmetic operator on all the values of the operands. In practice
these extensions simply consider the bounds of the operands to compute the
bounds of the result, since the involved operations are monotonic. As such, the
narrowing operator Z < ZN(X +Y') may be associated with constraint z+y = z
to prune the domain of variable z based on the domains of variables z and



y. Similarly, in solving the equation with respect to x and y, two additional
narrowing operators can be associated with the constraint, to safely narrow the
domains of these variables. With this technique, based on interval arithmetic,
the obtained narrowing operators are able to reduce a box X x Y x Z = [1, 3] x
[3,7] % [0,5] into [1, 2] x [3,4] x [4, 5], with the guarantee that no possible solution
is lost.

2.1 Probabilistic Constraint Programming

In classical CCSPs, uncertainty is modelled by intervals that represent the do-
mains of the variables. Constraint reasoning reduces uncertainty, providing a safe
method for computing a set of boxes enclosing the feasible space. Nevertheless
this paradigm cannot distinguish between different scenarios, and all combina-
tion of values within such enclosure are considered equally plausible. In this
work we use probabilistic constraint programming [I5], which extends the con-
tinuous constraint framework with probabilistic reasoning, allowing to further
characterise uncertainty with probability distributions over the domains of the
variables.

In the continuous case, the usual method for specifying a probabilistic model [16]
assumes, either explicitly or implicitly, a joint probability density function (p.d.f.)
over the considered random variables, which assigns a probability measure to
each point of the sample space §2. The probability of an event H, given a p.d.f.
f, is its multidimensional integral on the region defined by the event:

P(H) = /H f(x)dx (1)

The idea of probabilistic constraint programming is to associate a proba-
bilistic space to the classical CCSP by defining an appropriate density function.
A probabilistic constraint space is a pair ((X,D,C), f), where (X, D,C) is a
CCSP and f is a p.d.f. defined in £2 O D such that: [, f(x)dx = 1.

A constraint (or a conjunction of constraints) can be viewed as an event H
whose probability can be computed by integrating the density function f over its
feasible space as in equation . The probabilistic constraint framework relies
on continuous constraint reasoning to get a tight box cover of the region of inte-
gration H, and computes the overall integral by summing up the contributions
of each box in the cover. Generic quadrature methods may be used to evaluate
the integral at each box.

In this work, Monte Carlo methods [I7] are used to estimate the value of the
integrals at each box. The integral can be estimated by randomly selecting IV
points in the multidimensional space and averaging the function values at these

points. This method displays ﬁ convergence, i.e. by quadrupling the number

of sampled points the error is halved, regardless of the number of dimensions.
The advantages obtainable from this close collaboration between constraint

pruning and random sampling were previously illustrated in ocean colour remote

sensing studies [I8], where this approach achieved quite accurate results even
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Fig. 1. Schematic representation of the use of generative models for analysing func-
tional networks. f and f respectively represent real and synthetic topological features,
as the ones described in Sec. [3.2] Refer to Sec. [] for a description of all steps of the
analysis.

with small sampling rates. The success of this technique relies on the reduction
of the sampling space, where a pure non-naive Monte Carlo (adaptive) method
is not only hard to tune, but also impractical in small error settings.

3 From brain activity to network models

In order to validate the use of PCP for analysing the parameters space of a
generative models, here we consider a set of magneto-encephalographic (MEG)
recordings. A series of preliminary steps are required, as shown in Fig. [} First,
starting from the left, real brain data (or data representing any other real com-
plex system) have to be recorded and encoded in networks, then transformed
into a set of topological (structural) features. In parallel, as depicted in the right
part, a generative model has to be defined: this allows to generate networks
as a function of the model parameters, and extract their topological features.
Finally, both features should be matched, i.e. the model parameters should be
optimised to minimise the distance between the vectors of topological features
of the synthetic and real networks.

3.1 MEG data recording

Magneto-encephalographic (MEG) scans were obtained for 19 right handed el-
derly and healthy participants, recruited from the Geriatric Unit of the Hospital
Universitario San Carlos Madrid and the Centro de Prevencién del Deterioro
Cognitivo, Ayuntamiento de Madrid, Spain. Before the task execution, all par-
ticipants or legal representatives gave informed consent to participate in the
study. The study was approved by the local ethics committee.

Brain activity scans correspond to a modified version of the Sternberg’s letter-
probe task [19], a standard task used to evaluate elders memory proficiency. MEG
signals were recorded with a 254 Hz sampling rate, using 148-channel whole head
magnetometer, confined in a magnetically shielded room (MSR). 35 artefact-free
epochs were randomly chosen from those corresponding to correct answers for
each of participant.



3.2 Networks reconstruction and evaluation

Following the diagram of Fig. [[] MEG recordings are converted in functional
networks. Nodes, corresponding to MEG sensors and therefore to different brain
regions, are pairwise connected when some kind of common dynamics is detected
between the corresponding time series. Such relationship is assessed through
Synchronization Likelihood (SL) [20], a metric able to detect generalised syn-
chronisation, i.e. situations in which two time series react to a given input in
different, yet consistent ways [21]. It thus goes beyond simple linear correlations,
as it is able to detect non-linear and potentially chaotic relations. Applying SL
yields a correlation matrix C{w;;} of size 148 x 148 (the number of sensors in the
MEG machine) for each epoch available. In order to filter any kind of transient
or noise specific to one epoch, the 35 matrices corresponding to each subjects
have been averaged: the final result is then a single weight matrix C’{wij} for
each subject.

While a correlation matrix can readily be interpreted as a weighted fully-
connected network, few metrics are available to describe the structure of such
objects. It is then customary to apply a threshold, i.e. discard all links whose
weight is not significant, and thus obtain an unweighted network. This presents
several advantages. First of all, brain networks are expected to be naturally
sparse, as increasing the connectivity implies a higher physiological cost. Fur-
thermore, low synchronisation values may be the result of statistical fluctuations,
e.g. of correlated noise; in such cases, deleting spurious links can only improve the
understanding of the system. Lastly, a pruning can also help deleting indirect,
second order correlations, which do not represent direct dynamical relationships.

The final step involves the calculation of the topological metrics associated
to each pruned network, i.e. the fs of Fig. [Il Two have here been considered,
representing two complementary aspects of brain information processing; their
selection has been motivated by the generative model used afterwards (see Sec-

tion :

Clustering coefficient. The clustering coefficient, also known as transitivity,
measures the presence of triangles in the network [22]. Mathematically, it is
defined as the relationship between the number of triangles and the number
of connected triples in the network: C' = 3N a/N3. Here, a triangle is a set of
three nodes with links between each pair of them, while a connected triple is
a set of three nodes where each one can be reached from each other (directly
or indirectly). From a biological point of view, the clustering coefficient rep-
resents how brain regions are locally connected, creating dense communities
computing some information in a collaborative way.

Efficiency. It is defined as the inverse of the harmonic mean of the length of
the shortest paths connecting pairs of nodes [23]:

1 1
E:N(N—1);Ij’ )
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Fig. 2. Evolution of clustering coefficient (Left) and efficiency (Right) as a function of
the link density for the 19 functional brain networks reconstructed in Sec.

d;; being the distance between nodes ¢ and j, i.e. the number of jumps
required to travel between them. A low value of E implies that all brain
regions are connected by short paths.

It has to be noticed how these two measures are complementary, the cluster-
ing coeflicient and efficiency respectively representing the segregation and inte-
gration of information [24125]. Additionally, both C' and E are here defined as
a function of the threshold 7 applied to prune the networks - their evolution is
represented in Fig. 2]

3.3 Generative model definition

Jumping to the right side of Fig. [1} it is now necessary to define a generative
model. As an example, we have here implemented a Economical Clustering Model
model as defined in [2627]. Given two nodes ¢ and j, the probability of creating
a connection between them is given by:
P kzjdz_j" (3)
k; j is the number of neighbours common to 4 and j, and d; ; is the physical
distance between the two nodes. This model thus includes two different forces
that compete to create links. On one side, v controls the appearance of trian-
gles in the network, by positive biasing the connectivity between nodes having
nearest neighbours in common; it thus defines the clustering coefficient and the
appearance of computational communities. On the other side, 1 accounts for the
distance in the connection, such that long-range connections, which are biologi-
cally costly, are penalised.

3.4 Parameters estimation through p-values

The problem is now identifying the best values of v and 1 that permit recov-
ering the topological properties obtained in Sec. [3.2] for the experimental brain
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Fig. 3. (Left) Contour plot of the energy F (see Eq. @) in the parameters space, for
a link density of 0.3. (Right) Energy contour plots for ten link densities, from 0.05
(bottom) to 0.5 (top); for the sake of clarity, only region outlines are visible.

networks. As an example of a standard p-value based mechanism, we here use a
simplified version of the energy function proposed in Refs. [26]27]:

E=1/]]P. (4)

P, represents the p-value of the Kolmogorov-Smirnoff (K-S) test between the
distributions estimated from the model and experimental networks, and ¢ runs
over all topological metrics. As just two topological properties are here studied,
the previous formula simplifies to: E = 1/(Pg - Pc).

For each considered value of 7 and 7, a set of networks have been generated
according to the model of Eq. [3} their topological features extracted; and the
resulting probability distribution compared with the distribution corresponding
to the real networks, through a K-S test.

Fig. [3| presents the result of plotting the energy evolution in the parameters
space. Specifically, Fig. [3] Left reports the evolution of the energy for a link
density of 0.3. It can be noticed that a large portion of the space, constructed
around the values of v and 7 suggested in [26], maximises the energy. Fig.
Right represents the same information for ten different link densities, from 0.05
(bottom part) to 0.5 (upper part).

3.5 Parameters estimation through Probabilistic Constraint
Programming

As an alternative solution, the previously described PCP method is here used
to recover the shape of the parameters space. Two preliminary steps have to
be completed: first, reconstruct a set of synthetic networks using the generative
model of Eq. [3] for different v and n values, and extract their topological charac-
teristics; and second, obtain approximated functions describing the evolution of
the topological metrics as a function of the model parameters, i.e. C = fo(v,n)



and F = f~E (v,m). Afterwards, each observed feature o; is modelled as a function
f; of the model parameters plus an associated error term ¢; ~ N (u =0, 02):

oi = fi(v,n) + €

For n observations, a probabilistic constraint space is considered with random
variables v and 7, a set of constraints C,

C={-30<o0;— fi(y,m) <30|l <i<n}

30 being chosen to keep the error within reasonable bounds, and the joint p.d.f.

f

n

Fm) =119 —fi(v.m) (5)

=1

where g is the normal distribution with 0 mean and standard deviation o.

To compute the probability distribution of the random variables v and 7,
a grid is constructed over their domains and a branch-and-prune algorithm is
initially used to obtain a grid box cover of the feasible space (where each box
belongs to a single grid cell). Then, for each box in the cover, a Monte Carlo
method is used to compute its contribution to equation with the p.d.f. defined
in equation . The probability of the respective cell is updated accordingly and
normalised in end of the process.

Fig. 4] reports the results obtained, i.e. the probability of obtaining networks
with the generative model which are compatible with the real ones, as a function
of the two parameters v and 7, and as a function of the link density. In the next
Section, both approaches and their results are compared.

4 Comparing p-value and Probabilistic Constraint
Programming

Results presented in Sec. [3-4] and [3.5] allow comparing the p-value and PCP
methods, and highlight the advantages that the latter presents over the former.

The extremely high computational cost of analysing the parameters space
by means of K-S tests seldom allows a full characterisation of such space. This
is due to the fact that, for any set of parameters, a large number of networks
have to be created and characterised. Increasing the resolution of the analysis, or
enlarging the region of the space considered, increases the computational cost in
a linear way. This problem is far from being trivial, as, for instance, the networks
required to create Fig. [3] represents approximatively 3 GB of information and
several days of computation in a standard computer. Such computational cost
implies that it is easy to miss some important information. Let us consider, for
instance, the result presented in Fig. [3] Left. The shape of the iso-lines suggests
that the maximum is included in the region under analysis, and that no further
explorations are required - while Figs. [] and [f] prove otherwise.
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Fig. 4. Contour plot of the parameters space, as obtained by the PCP method, for
the whole population of subjects and as a function of the link density. The colour of
each point represents the normalised probability of generating topologically equivalent
networks.

On the other hand, estimating the functions fo and fg requires the creation
and analysis of a constant number of networks, independently on the size of
the parameters space. The total computational cost drops below the hour in
a standard computer, implying a 3 orders of magnitude reduction. This has
important consequences on the kind of information one can obtain. Fig. [5] Left
presents the same information as Fig. [3] Left, but calculated by means of PCP
over a larger region. It is then clear that the maximum identified in Fig. [3]is just
one of the two maxima presents in the system.

The second important advantage is that, while the PCP can yield results for
just one network or subject, a p-value analysis requires a probability distribu-
tion. It is therefore not possible to characterise the parameters space for just
one subject, but only for a large population. Fig. [f] Right explores this issue, by
showing the probability evolution in the parameters space for six different sub-
jects. It is interesting to notice how subjects are characterised by different shapes
in the space. This allows a better description of subjects, aimed for instance at
detecting differences among them.

5 Conclusions

In this contribution, we have presented the use of Probabilistic Constraint Pro-
gramming for optimising the parameters of a generative model, aimed at de-
scribing the mechanisms responsible for the appearance of some given topological
structures in real complex networks. As a validation case, we have here presented
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the results corresponding to functional networks of brain activity, as obtained
through MEG recordings of healthy people.

The advantages of this method against other customary solutions, e.g. the
use of p-values obtained from Kolmogorov-Smirnoff tests, have been discussed.
First, the lower computational cost, and especially its independence on the size
of the parameters space and on the resolution of the analysis. This allows a bet-
ter characterisation of such space, reducing the risk of missing relevant results
when multiple local minima are present. Second, the possibility of characteris-
ing the parameters space for single subjects, thus avoiding the need of having
data for a full population. This will in turn open new doors for understand-
ing the differences between individuals: as, for instance, for the identification of
characteristics associated to specific diseases in diagnosis and prognosis tasks.
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