
Being and Change:
Reasoning About Invariance

Frank S. de Boer 1,2 and Stijn de Gouw1

1 Centre Mathematics & Computer Science, Netherlands
2 Leiden Advanced Institute of Computer Science, Netherlands

frb@cwi.nl, cdegouw@cwi.nl

Abstract. We introduce a new way of reasoning about invariance in
terms of foot-prints in a Hoare logic for recursive programs with (un-
bounded) arrays. A foot-print of a statement is a predicate that describes
that part of the state that can be changed by the statement. We define in-
variance of an assertion with respect to a foot-print by means of a logical
operation. This new Hoare logic is applied in a new simpler and modular
proof of correctness of the well-known Quicksort sorting algorithm.

1 Introduction

During a visit of Ernst-Ruediger Olderog at the CWI in 2014, together with
Krzysztof R. Apt we discussed different alternative proofs of correctness of the
well-known Quicksort sorting algorithm [Hoa62]. These discussions resulted in
various proof strategies which have been further detailed by Ernst-Ruediger and
which form the starting point of this paper.

Proving correctness of (imperative) programs in Hoare logic is in general a
challenging task, even for what seem to be relatively simple programs (measured
for example in terms of the lines of code). Most of the complications are due to
the basic fact that an imperative program specifies what changes, whereas an as-
sertion describes what is. Consequently, most of the effort in proving correctness
goes in specifying and verifying what does not change, i.e., what is invariant.

Proving correctness of recursive programs in Hoare logic requires special
auxiliary rules (axioms) for reasoning about invariance [AdBO09], the so-called
adaptation rules. These rules are used to adapt a given correctness formula, for
example by adding to the pre- and postcondition an invariant. Hoare introduced
in [Hoa71] one rule, the adaptation rule, which generalizes these rules. In his
seminal paper [Old83] Ernst-Ruediger Olderog studied the expressiveness and
the completeness of the adaptation rule.

Programs with, for example, array variables give rise to aliasing, i.e., the
phenomenon of two syntactically different expressions which refer to the same
memory location. In the presence of aliasing we cannot determine statically any-
more general invariant properties, whereas the standard adaptation rules are
based on such a static determination, namely checking syntactically whether a
given assertion contains occurrences of variables which appear in the given pro-
gram. The adaptation rules, including Hoare’s rule, therefore are of limited use

in proving invariant properties of (recursive) programs with arrays. This limi-
tation in general greatly complicates the correctness proofs because it does not
fully support modularity : invariant properties in general are verified in terms of
the internal control structure of a given program.

For recursive programs with array variables we extend in this paper the
standard pre-postcondition specification with a footprint. A footprint is a set of
predicates indexed by an array name. The arity of the predicate equals that of
the array (interpreted as a function). Such a predicate associated with an array
describes that subset of the domain of the array which can be changed by the
program. We show how to extend the syntactic characterization of invariance to
these footprints by means of a logical operation. We prove soundness of this logi-
cal operation and apply the logic to the verification of the well-known Quicksort
sorting algorithm, which results in a simpler and modular proof.

Related work A large body of related work focuses on reasoning about invariant
properties of object-oriented programs. For example, dynamic frames [Wei11]
have been introduced as an extension of Hoare logic where invariant proper-
ties are specified and verified in terms of an explicit heap representation. Such a
representation however in general does not match the abstraction level of object-
oriented languages like Java. In separation logic [Rey05] invariant properties of
object-oriented programs are specified and verified in terms of a logical operation
of separation conjunction which allows to split the heap into two disjoint parts.
The resulting logic however is undecidable for its propositional subset [BK14].
Moreover, in [CYO01] it is shown that validity of the first-order language re-
stricted to so-called “points to” predicate is not recursively enumerable, and as
such not axiomatizable. In general, such axiomatizations are needed to prove
formally the verification conditions which establish program correctness.

In contrast our approach, which can be extended to object-oriented programs
(see Section 5), is based on standard predicate logic which allows established the-
orem proving techniques/engines. Further it allows reasoning at an abstraction
level which coincides with the programming language, i.e., it does not require
special predicates like the “points to” predicate.

2 Adaptation Rules

To allow for modular reasoning in Hoare logic, adaptation rules are needed to
adapt the specifications in correctness formulas to a specific context. This section
discusses four such adaptation rules [AdBO09], abstracting from the program-
ming language: a conjunction rule, an existential introduction rule, an invariance
rule, and a substitution rule. The invariance rule provides a basic form to reason
about invariance using a simple syntactic test. A more precise semantic form,
introduced in the next section, is needed for arrays. The adaptation rules are
amenable to this extension; the next section shows that a modest addition to
these rules suffices. In this section we clarify the relation between these adap-
tation rules and Hoare’s single rule of adaptation [Hoa71], which was analyzed

by Olderog in [Old83]. The precise definitions of the adaptation rules are given
below (for details about the standard logical operations used, like substitution
p[z := x] of z for x in p, we refer to [AdBO09]):

RULE A1: CONJUNCTION

{p1} S {q1}, {p2} S {q2}
{p1 ∧ p2} S {q1 ∧ q2}

RULE A2: ∃-INTRODUCTION

{p} S {q}
{∃z : p} S {q}

where z does not occur in S or q.

RULE A3: INVARIANCE

{p} S {q}
{r ∧ p} S {r ∧ q}

where S does not assign to the variables in the formula r.

RULE A4: SUBSTITUTION

{p} S {q}
{p[z := t]} S {q[z := t]}

where z does not occur in S, and S does not assign the variables in the term t.

The invariance rule above provides a basic way to reason about assertions
whose truth remains invariant under execution of S. However, in the presence
of arrays, the invariance rule is rather crude. Due to the syntactic check in the
side-condition, if any array element is assigned to, any assertion that mentions
the array cannot be used with the invariance rule, even if the assertion accesses
only those indices that are not assigned. The next section shows how to address
this problem.

Hoare’s rule of adaptation is:
RULE (H) : HOARE-ADAPT

{p} S {q}
{∃z : (p ∧ ∀y : (q[x := y]→ r[x := y]))} S {r}

where z does not occur in S or r, x is the list of all variables occurring in S and
y is a list of fresh variables.

The question arises: what is the relation between Hoare’s rule (H) and the
other adaptation rules? The next example by Olderog [Old83] shows that they
differ in proof strength.

Lemma 1. Let k be a variable that does not occur in S. From the correctness
formula {x = k} S {x = k} we can derive {x = k + 1} S {x = k + 1} by A4, but
not by rule (H). ut

Proof : To derive {x = k + 1} S {x = k + 1} simply apply A4, substituting k+1
for k. To see that this is not derivable with (H), note that the precondition
∃z : x = k ∧ ∀y : y = k → y = k + 1 given by (H) simplifies to false. ut

Theorem 1. In the presence of the consequence rule, (H) is derivable by A2,
A3. ut

Proof : we show that from {p} S {q}, we can derive

{∃z : (p ∧ ∀y : (q[x := y]→ r[x := y]))} S {r}

where z does not occur in S or r, x is the list of all variables occurring in S and
y is a list of fresh variables. Assume

{p} S {q}

From A3:

{p ∧ ∀y : (q[x := y]→ r[x := y])} S {q ∧ ∀y : (q[x := y]→ r[x := y])}

Consequence rule:

{p ∧ ∀y : (q[x := y]→ r[x := y])} S {r}

From A2:
{∃z : (p ∧ ∀y : (q[x := y]→ r[x := y]))} S {r}

ut
Thus, in the presence of the consequence rule, theorem 1 and lemma 1 show

that A1, A2, A3 and A4 are strictly stronger than rule (H).

3 Reasoning about invariance

The programming language We assume a basic imperative programming lan-
guage featuring the usual sequential control structures. We distinguish between
two kinds of (typed) variables: simple variables like x, y, u, v, . . . which range over
elements of the included basic types integer or Boolean, and array variables
like a, b, . . . of a higher type T1 × . . . × Tn→ T , where the argument types and
the result type are basic types. Semantically arrays are functions, e.g., an array
of type integer→ integer is unbounded. Expressions are side-effect free (every
operator in the language is semantically interpreted as a total function, e.g., di-
vision by zero results by definition to, for example, zero). A subscripted variable
of type T is of the form a[s1, . . . , sn], where a is of some type T1 × . . .× Tn→ T

and si is an expression of type Ti, for i = 1, . . . , n. For technical convenience only
we restrict here to array assignments of the form a[s1, . . . , sn] := t, where the
argument expressions s1, . . . , sn do not contain subscripted variables. A program
consists of a statement S and a set of procedure declarations P (u1, . . . , un) ::= S,
with formal parameters u1, . . . , un of a basic type and body S. A procedure call
is of the form P (t1, . . . , tn), where ti is an expression of a basic type which equals
the one of the corresponding formal parameter.

Correctness formulas Assertions p, q, . . . are logical formula, defined as usual
(as in [AdBO09]) (in contrast to program assignments, in assertions we do allow
nested subscripted variables). By

F : {p} S {q}

we denote a correctness formula with a footprint F . A footprint F is a (finite)
set of uniquely labeled formulas a : p(x1, . . . , xn), where n is the arity of array
a. All the formulas of the footprint F are syntactically invariant in that they do
not contain any program variables which can be affected by an execution of S

The partial correctness interpretation of F : {p} S {q} (we assume an im-
plicitly given set of procedure declarations D) extends that of {p} S {q} with
the following clause:

σ |= p and
< S, σ >→∗< a[s1, . . . , sn] := t;S′, σ′ > and a : r(x1, . . . , xn) ∈ F
implies
σ′ |= r(s1, . . . , sn).

Here →∗ denotes the reflexive, transitive closure of the transition system for
recursive programs (see Section 5.2 in [AdBO09]). In words, the above addi-
tional clause states that whenever an assignment to an array is executed the
corresponding footprint should hold.

The Hoare logic of footprints The footprint of an array assignment is captured
by the following rule:

RULE 1: ARRAY ASSIGNMENT

q[a[s1, . . . , sn] := t]→ p(s1, . . . , sn)

{a : p(x1, . . . , xn)} : {q[a[s1, . . . , sn] := t]} a[s1, . . . , sn] := t {q}

Here the weakest precondition q[a[s1, . . . , sn] := t] is calculated by means of
a substitution operation [a[s1, . . . , sn] := t] which takes into account aliasing (see
Section 2.7 in [AdBO09]). For the soundness of this rule, we refer to [AdBO09]
to a proof that σ |= q[a[s1, . . . , sn] := t] if and only if σ[a[s1, . . . , sn] := t] |=
q, where σ[a[s1, . . . , sn] := t] denotes the result of exexuting the assignment
a[s1, . . . , sn] := t in σ. It remains to show that the above additional clause

defining the semantics of a foot-print is valid, i.e., σ |= q[a[s1, . . . , sn] := t]
implies σ |= p(s1, . . . , sn). This follows immediately from the premise.

As a very simple example, it is trivial to derive

{a : x = j} : {true} a[j] := 1 {true}

In order to reason semantically about invariance in terms of footprints we
introduce the restriction q ↑ F of a formula q which “talks” only about that
part of the state disjoint from the footprint. First we transform q in a formula
q′ in prenex normal form such that its matrix r is in disjunctive normal form.
For technical convenience only and without loss of generality we assume that r
contains no nested subscripted variables. The formula q ↑ F then can be obtained
from q′ by simply adding for each subscripted variable a[s1, . . . , sn] appearing
as an argument in a literal the formula ¬pa(s1, . . . , sn) to the conjunct in which
the literal appears, where pa(x1, . . . , xn) ∈ F . More formally, we replace every
literal l(s1, . . . , sn) in q′ by l(s1, . . . , sn)∧

∧
i ¬pai

(t̄i), where i ranges over those
indices such that si ≡ ai(t̄i).

Given the above we can now introduce the following rule:

RULE 2: SEMANTIC INVARIANCE

F : {p} S {q}
F : {p ∧ r ↑ F} S {q ∧ r ↑ F}

where none of the simple variables which appear free in r appear in S at the
right-hand-side of an assignment.

Let us illustrate the use of this latter rule by a very simple example. We want
to prove

{∀i : i 6= j → a[i] = 0} a[j] := 1 {∀i : i 6= j → a[i] = 0}

As already stated above it is trivial to derive from the above array assignment
rule that

{a : x = j} : {true} a[j] := 1 {true}
Calculating next

(∀i : i 6= j → a[i] = 0) ↑ x 6= j

yields the formula
∀i : i = j ∨ (a[i] = 0 ∧ i 6= j).

Clearly this latter formula is logically equivalent to ∀i : i 6= j → a[i] = 0 itself.
So we can apply the above RULE 2 which gives us the desired result.

Soundness of the above proof system derives in a straightforward manner
from the following lemma (soundness proofs of the remaining rules are standard,
see [AdBO09]).

Lemma 2. (Soundness): Let a be an array variable that does not appear (free)
in the formulas of the footprint F . Further, let σ′ = σ[a[s̄] := u] and σ |= pa(s̄).
It follows that σ |= r ↑ F iff σ′ |= r ↑ F .

Proof : By definition of r ↑ F it suffices to show the above for any literal
l. By definition of σ′, we have that σ(t) = σ′(t), for any term t which does
not involve the array variable a. So it suffices to show that σ |= l ↑ F or
σ′ |= l ↑ F implies that σ(a[t̄]) = σ′(a[t̄]), for any subscripted variable a[t̄]
appearing as argument of l. By definition of l ↑ F , we have that l ↑ F implies
¬pa(t̄). Consequently, since σ |= pa(s̄), we have that σ(s̄) 6= σ(t̄), which in turn
implies that σ(a[t̄]) = σ[a[t̄] := u](a[t̄]) = σ′(a[t̄]). ut

We have the following extension of the consequence rule.

RULE 3: CONSEQUENCE

p→ p′ F : {p′} S {q′} q′→ q

F : {p} S {q}

The following two rules deal with recursion. For technical convenience only
we restrict to procedure declarations with read-only formal parameters and pro-
cedure calls with actual parameters which are not affected by the call. In Rule
5 “`” denotes the derivability in the proof system itself. It allows to introduce
assumptions about recursive calls (see [AdBO09]).

RULE 4: INSTANTIATION

F : {p} P (ū) {q}
F [ū := t̄] : {p[ū := t̄]} P (t̄) {q[ū := t̄]}

where P (ū) ::= S ∈ D and S does not assign to the variables appearing t̄.

RULE 5: RECURSION

F : {p1} P1(ū1) {q1}, . . . , F : {pn} Pn(ūn) {qn} ` F : {p} S {q},
F : {p1} P1(ū1) {q1}, . . . , F : {pn} Pn(ūn) {qn} `

F : {pi} Si {qi}, i ∈ {1, . . ., n}

F : {p} S {q}

where Pi(ūi) :: Si ∈ D for i ∈ {1, . . . , n}.

To extend the standard auxiliary rules (as discussed in the previous section)
to footprints is straightforward (we omit the similar straightforward extensions of
the standard axiom and rules, e.g., the axiom for assignments to simple variables,
the conditional rule, the while rule, and the rule for sequential composition).

RULE A5: CONJUNCTION

F : {p1} S {q1}, F : {p2} S {q2}
F : {p1 ∧ p2} S {q1 ∧ q2}

RULE A6: ∃-INTRODUCTION

F : {p} S {q}
F : {∃z : p} S {q}

where z does not occur in F , S or q.

RULE A7: SUBSTITUTION

F : {p} S {q}
F [z := t] : {p[z := t]} S {q[z := t]}

where z does not occur in S and S does not change any of the variables in the
term t.

The following invariance rule additionally allows to adjust the footprint.

RULE A8: INVARIANCE

(r ∧ F)→ F ′ F : {p} S {q}
F ′ : {p ∧ r} S {q ∧ r}

where S does not assign to the variables in the formula r. Further, (r∧F)→ F ′

holds if for every a : p′(x̄) ∈ F there exists a : p′′(x̄) ∈ F ′ such that (r ∧
p′(x̄))→ p′′(x̄).

4 Case study: Quicksort

We illustrate the use of footprints in a proof of correctness of the well-known
quicksort sorting algorithm [Hoa62,FH71]:

QS(l, r) ::
if l < r
then P (l, r);

begin
local u := m;
QS(l, u− 1);
QS(u, r)
end

fi

Here P (l, r) calls the partitioning algorithm which operates on an array a :
integer→ integer and generates a value for the global integer variable m. The
partitioning algorithm satisfies the following contracts.

– A1 ≡ x ∈ [l : r] : {l < r} P (l, r) {m ∈ (l : r] ∧ a[l : m− 1] ≤ a[m : r]}
– A2 ≡ x ∈ [l : r] : {a = a0} P (l, r) {perm(a, a0 , l , r)}

where m ∈ (l : r] abbreviates l < m ∧ m ≤ r and a[l : m − 1] ≤ a[m : r]
abbreviates ∀i ∈ [l : m − 1] : ∀j ∈ [m : r] : a[i] ≤ a[j]. The postcondition of the
first contract thus states that the array segment a[l : r] can be split into two
segments a[l : m−1] and a[m : r] such that all numbers in a[l : m−1] are smaller
or equal to all numbers in a[m : r]. The predicate perm(a, a0, l, r) states that the
array a is a permutation of a0 on the interval [l : r], which can be expressed by
the assertion

∃b : ∀i, j ∈ [l : r] : ∃k ∈ [l : r] : (i 6= j→ b[i] 6= b[j]) ∧ b[i] = k ∧ a[i] = a0[b[i]]

where b is an array of type integer→ integer. Finally, the footprint x ∈ [l : r]
of the array a states that the array a is only changed on the interval [l : r] (we
thus omit for notational convenience the label “a”).

Given these contracts we want to prove the following specifications of Quick-
sort:

– B1 ≡ x ∈ [l : r] : {true} QS(l, r) {sorted(a[l : r])}
– B2 ≡ x ∈ [l : r] : {a = a0} QS(l, r) {perm(a, a0, l, r)}

where sorted(a[l : r]) abbreviates the assertion

∀i ∈ [l : r − 1] : a[i] ≤ a[i+ 1]

Let SQS denote the body of the procedure QS. By the recursion rule it suffices
to prove (assuming the contracts A1 and A2)

A1, A2, B1, B2 `
x ∈ [l : r] : {true} SQS {sorted(a[l : r])} (1)

and
A1, A2, B2 `

x ∈ [l : r] : {a = a0} SQS {perm(a, a0, l, r)}
(2)

Proof of obligation (1) By the conditional rule it suffices to prove that

x ∈ [l : r] : {l ≥ r} skip {sorted(a[l : r])} (3)

and

A1, B1, B2 ` x ∈ [l : r] : {l < r} T {sorted(a[l : r])} (4)

where T denotes the then-branch of S.
The first follows directly from a trivial application of the consequence rule.

Using A1, the (standard) assignment axiom, the block [AdBO09] and sequential
composition rule, it is straightforward to establish proof obligation (4) from

x ∈ [l : r] :
{u ∈ (l : r] ∧ a[l : u− 1] ≤ a[u : r]}

QS(l, u− 1);QS(u, r)
{sorted(a[l : r])}

(5)

In order to establish this proof obligation, we first instantiate l and r by u and
r, respectively, in B1:

x ∈ [u : r] : {true} QS(u, r) {sorted(a[u : r])}

By instantiating l and r by u and r, respectively, in B2, and the conjunction
rule:

x ∈ [u : r] : {a = a0} QS(u, r) {sorted(a[u : r]) ∧ perm(a, a0, u, r)}

It is straightforward to check that

(sorted(a[l : u− 1]) ∧ a[l : u− 1] ≤ a0[u : r]) ↑ x ∈ [u : r]↔
(sorted(a[l : u− 1]) ∧ a[l : u− 1] ≤ a0[u : r])

Thus applying the footprint rule 2:

x ∈ [u : r] :
{a = a0 ∧ sorted(a[l : u− 1]) ∧ a[l : u− 1] ≤ a0[u : r]}

QS(u, r)
{sorted(a[u : r]) ∧ perm(a, a0, u, r) ∧ sorted(a[l : u− 1]) ∧ a[l : u− 1] ≤ a0[u : r]}

Next observe that

– perm(a, a0, u, r) ∧ a[l : u− 1] ≤ a0[u : r] implies a[l : u− 1] ≤ a[u : r], and
– sorted(a[l : u−1])∧sorted(a[u : r])∧a[l : u−1] ≤ a[u : r] implies sorted(a[l :
r]).

Thus by the consequence rule:

x ∈ [u : r] :
{a = a0 ∧ sorted(a[l : u− 1]) ∧ a[l : u− 1] ≤ a0[u : r]}

QS(u, r)
{sorted(a[l : r])}

Existential elimination (of a0) and consequence rule:

x ∈ [u : r] :
{sorted(a[l : u− 1]) ∧ a[l : u− 1] ≤ a[u : r]}

QS(u, r)
{sorted(a[l : r])}

Invariance rule A8 (adjusting the footprint: u ∈ (l : r] ∧ x ∈ [u : r] implies
x ∈ [l : r]):

x ∈ [l : r] :
{u ∈ (l : r] ∧ sorted(a[l : u− 1]) ∧ a[l : u− 1] ≤ a[u : r]}

QS(u, r)
{u ∈ (l : r] ∧ sorted(a[l : r])}

Consequence rule:

x ∈ [l : r] :
{u ∈ (l : r] ∧ sorted(a[l : u− 1]) ∧ a[l : u− 1] ≤ a[u : r]}

QS(u, r)
{sorted(a[l : r])}

(6)

Following a similar pattern as above, from assumption B1 we obtain by in-
stantiation

x ∈ [l : u− 1] : {true} QS(l, u− 1) {sorted(a[l : u− 1])}

By instantiating assumption B2 and the conjunction rule:

x ∈ [l : u−1] : {a = a0} QS(l, u− 1) {sorted(a[l : u− 1]) ∧ perm(a, a0, l, u− 1)}

It is straightforward to check that

(a0[l : u− 1] ≤ a[u : r]) ↑ x ∈ [l : u− 1]↔ (a0[l : u− 1] ≤ a[u : r])

Thus applying the footprint rule 2:

x ∈ [l : u−1] :
{a = a0 ∧ a0[l : u− 1] ≤ a[u : r]}

QS(l, u− 1)
{sorted(a[l : u− 1]) ∧ perm(a, a0, l, u− 1) ∧ a0[l : u− 1] ≤ a[u : r]}

Since
perm(a, a0, l, u− 1) ∧ a0[l : u− 1] ≤ a[u : r]

implies a[l : u− 1] ≤ a[u : r], we obtain by the consequence rule:

x ∈ [l : u− 1] :
{a = a0 ∧ a0[l : u− 1] ≤ a[u : r]}

QS(l, u− 1)
{sorted(a[l : u− 1]) ∧ a[l : u− 1] ≤ a[u : r]}

Existential elimination (of a0) and consequence rule:

x ∈ [l : u− 1] :
{a[l : u− 1] ≤ a[u : r]}

QS(l, u− 1)
{sorted(a[l : u− 1]) ∧ a[l : u− 1] ≤ a[u : r]}

Invariance rule A8 (adjusting the footprint: u ∈ (l : r] ∧ x ∈ [l : u − 1] implies
x ∈ [l : r]):

x ∈ [l : r] :
{u ∈ (l : r] ∧ a[l : u− 1] ≤ a[u : r]}

QS(l, u− 1)
{u ∈ (l : r] ∧ sorted(a[l : u− 1]) ∧ a[l : u− 1] ≤ a[u : r]}

(7)

Sequential composition applied to the correctness formulas (6) and (7) finally
establishes proof obligation (5).

Proof of obligation (2) In this proof we use the next lemma.

Lemma 3. Suppose z does not occur in S and let p be a binary transitive rela-
tion. From F : {x = z} S {p(x, z)} we can derive F : {p(x, z)} S {p(x, z)}.

Proof : Assume F : {x = z} S {p(x, z)}. Apply the standard invariance rule,
where y is a fresh variable:

F : {x = z ∧ p(z, y)} S {p(x, z) ∧ p(z, y)}

Consequence (rule 3):

F : {x = z ∧ p(z, y)} S {p(x, y)}

Existential elimination (rule A6) and consequence (rule 3):

F : {p(x, y)} S {p(x, y)}

Substitution (rule A7):
F : {p(x, z)} S {p(x, z)}

ut
We are now ready to establish proof obligation (2). By the conditional rule

it suffices to prove

x ∈ [l : r] : {l ≥ r ∧ a = a0} skip {perm(a, a0, l, r)} (8)

and
B2 ` x ∈ [l : r] : {l < r ∧ a = a0} T {perm(a, a0, l, r)} (9)

where T denotes the then-branch of S. The first follows trivially by the conse-
quence rule. To establish proof obligation (9), we obtain from assumption B2 by
instantiation

x ∈ [u : r] : {a = a0} QS(u, r) {perm(a, a0, u, r)}

Note that perm(a, a0, l, u−1) ↑ x ∈ [u : r] is logically equivalent to perm(a, a0, l, u−
1) itself. Thus applying the footprint rule 2:

x ∈ [u : r] :
{a = a0 ∧ perm(a, a0, l, u− 1)} QS(u, r) {perm(a, a0, l, u− 1) ∧ perm(a, a0, u, r)}

Consequence rule:

x ∈ [u : r] : {a = a0} QS(u, r) {perm(a, a0, l, r)}

Note that perm is a binary, transitive predicate in the first two arguments. Thus
lemma 3 gives:

x ∈ [u : r] : {perm(a, a0, l, r)} QS(u, r) {perm(a, a0, l, r)}

Invariance rule A8 (adjusting the footprint) and consequence rule (weakening
the postcondition):

x ∈ [l : r] : {u ∈ (l : r] ∧ perm(a, a0, l, r)} QS(u, r) {perm(a, a0, l, r)} (10)

As above, we can derive

x ∈ [l : u− 1] : {perm(a, a0, l, r)} QS(l, u− 1) {perm(a, a0, l, r)}

Invariance rule A8 (adjusting the footprint again):

x ∈ [l : r] :
{u ∈ (l : r] ∧ perm(a, a0, l, r)} QS(l, u− 1) {u ∈ (l : r] ∧ perm(a, a0, l, r)}

(11)
Sequential composition (applied to the correctness formulas (10) and (11)):

x ∈ [l : r] :
{u ∈ (l : r] ∧ perm(a, a0, l, r)} QS(l, u− 1);QS(r, u) {perm(a, a0, l, r)}

The remainder of the proof follows in a straightforward manner by instantiating
A1 and A2, and applying the conjunction rule, the block rule (for u := m), and
the rule for sequential composition.

5 Future Work

First we want to prove (relative) completeness of the Hoare logic extended with
footprints. We conjecture that this requires a straightforward extension of the
usual Gorelick (relative) completeness proof (see [Apt84]).

It is not difficult to extend the notion of footprints to reasoning about invari-
ant properties of object-oriented programs. The basic idea is simply to include
for each field f a monadic predicate pf : Object→Boolean which holds for all
those objects which have updated their field f . This extension we want to inte-
grate with our proof theory of abstract object creation [AdBG09] which allows
specification and verification of dynamic heap structures at an abstraction level
that coincides with the Java programming language and which already has been
implemented in the KeY theorem prover [BHS07].

References

[AdBG09] Wolfgang Ahrendt, Frank S. de Boer, and Immo Grabe. Abstract object
creation in dynamic logic. In FM 2009: Formal Methods, Second World
Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceedings,
pages 612–627, 2009.

[AdBO09] Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog. Verifica-
tion of Sequential and Concurrent Programs. Texts in Computer Science.
Springer, 2009.

[Apt84] Krzysztof R. Apt. Ten years of hoare’s logic: A survey part II: nondeter-
minism. Theor. Comput. Sci., 28:83–109, 1984.

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H Schmitt. Verification of
object-oriented software: The KeY approach. Springer-Verlag, 2007.

[BK14] James Brotherston and Max I. Kanovich. Undecidability of propositional
separation logic and its neighbours. J. ACM, 61(2):14, 2014.

[CYO01] Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn. Computability
and complexity results for a spatial assertion language for data structures. In
Ramesh Hariharan, V. Vinay, and Madhavan Mukund, editors, FST TCS
2001: Foundations of Software Technology and Theoretical Computer Sci-
ence, volume 2245 of Lecture Notes in Computer Science, pages 108–119.
Springer Berlin Heidelberg, 2001.

[FH71] M. Foley and C. A. R. Hoare. Proof of a recursive program: Quicksort.
Comput. J., 14(4):391–395, 1971.

[Hoa62] C. A. R. Hoare. Quicksort. Comput. J., 5(1):10–15, 1962.
[Hoa71] C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In

Symposium on Semantics of Algorithmic Languages, pages 102–116. 1971.
[Old83] Ernst-Rüdiger Olderog. On the notion of expressiveness and the rule of

adaption. Theor. Comput. Sci., 24:337–347, 1983.
[Rey05] John C. Reynolds. An overview of separation logic. In Verified Software:

Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Conference, VSTTE
2005, Zurich, Switzerland, October 10-13, 2005, Revised Selected Papers and
Discussions, pages 460–469, 2005.

[Wei11] Benjamin Weiß. Deductive Verification of Object-Oriented Software: Dy-
namic Frames, Dynamic Logic and Predicate Abstraction. PhD thesis, Karl-
sruhe Institute of Technology, 2011.

