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Abstract. In 1987 Ernst-Rudiger Olderog provided an operationatifPet se-
mantics for a subset of CCSP, the union of Milner's CCS andreleaCSP. It
assigns to each process term in the subset a labelled, safe/tphnsition net.
To demonstrate the correctness of the approach, Olderablisbied agreement
(1) with the standard interleaving semantics of CCSP uprtmgtbisimulation
equivalence, and (2) with standard denotational inteagiats of CCSP opera-
tors in terms of Petri nets up to a suitable semantic equical¢hat fully respects
the causal structure of nets. For the latter he employedearitime semantic
equivalence, namely having the same causal nets.

This paper strengthens (2), employing a novel branchimg-tversion of
this semantics-structure preserving bisimilarity-that moreover preserves in-
evitability. | establish that it is a congruence for the @jters of CCSP.

1 Introduction

The system description languages CCS and CSP have conterged theory of pro-
cesses which—following a suggestion of M. Nielsen—wasechlICCSP” in [26]. The
standard semantics of this language is in terms of labellatsition systems modulo
strong bisimilarity, or some coarser semantic equivaleimbe case of CCS, a labelled
transition system is obtained by taking as states the clo§&&Rlexpressions, and as tran-
sitions those that are derivable from a collection of rulgsnaluction on the structure
of these expressionis [24]; this is calledstructural) operational semantid80]. The
semantics of CSP was originally given in quite a differeny\{&20], but [28] provided
an operational semantics of CSP in the same style as the dD€®f and showed its
consistency with the original semantics.

Such semantics abstract from concurrency relations betaegons by reducing
concurrency to interleaving. An alternative semanticplieitly modelling concurrency
relations, requires models like Petri ndis|[33] or evenicitires [[25,36]. In[[36,21]
non-interleaving semantics for variants of CCSP are gimgriims of event structures.
However, infinite event structures are needed to model siisygtems involving loops,
whereas Petri nets, like labelled transition systemsy fifige representations for some
such systems. Denotational semantics in terms of Petriaid¢k® essential CCSP op-
erators are given i [18,85,16]—sée[27] for more referen¥et a satisfactory deno-
tational Petri net semantics treating recursion has to nowkedge not been proposed.
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Olderog [26.27] closed this gap by giving an operationalssshantics in the style
of [30[24] for a subset of CCSP including recursion—to becjizezguardedrecursion.
To demonstrate the correctness of his approach, Olderqepped two fundamental
properties such a semantics should have, and establishigoiain of them hold [27]:

— Retrievability The standard interleaving semantics for process termsddhe re-
trievable from the net semantics.

— Concurrency The net semantics should represent the intended concyroépro-
cess terms.

The second requirement was not met by an earlier operati@aemantics fronh [5].

To formalise the first requirement, Olderog notes that ai Retrinduces a labelled
transition system through the firing relation between nragki—theinterleaving case
graph—and requires that the interpretation of any CCSP expressia state in a la-
belled transition system through the standard interleps@mantics of CCSP should be
strongly bisimilar to the interpretation of this expressés a marking in the interleaving
case graph induced by its net semantics.

To formalise the second requirement, he notes that thedetkigoncurrency of
process terms is clearly represented in the standard dem@bsemantics of CCSP
operators[[188,35.16], and thus requires that the resulpplying a CCSP operator to
its arguments according to this denotational semantiddyi similar result as doing
this according to the new operational semantics. The corepcesentation of recursion
follows from the correct representation of the other opmsathrough the observation
that a recursive call has the very same interpretation agrenééas its unfolding.

A crucial parameter in this formalisation is the meaning sitiilar”. A logical
choice would be semantic equivalence according to one afitineinterleaving equiv-
alences found in the literature, where a finer or more disoatng semantics gives a
stronger result. To match the concurrency requiremerst ghilivalence shoulespect
concurrencyin that it only identifies nets which display the same coneney rela-
tions. In this philosophy, the semantics of a CCSP exprassimot so much a Petri
net, but a semantic equivalence class of Petri nets, i.etrarféeafter abstraction from
irrelevant differences between nets. For this idea to biesdptonsistent, one needs to
require that the chosen equivalence is a congruence folG8IRCconstructs, so that the
meaning of the composition of two systems, both represeagedjuivalence classes of
nets, is independent of the choice of representative Petisiwithin these classes.

Instead of selecting such an equivalence, Olderog inst&sti'similar” in the above
formalisation of the second requirement wstiongly bisimilar a new relation between
nets that should not be confused with the traditional retatf strong bisimilarity
between labelled transition systems. As shownin [1], grbisimilarity fails to be
an equivalence: it is reflexive and symmetric, but not trtaresi

As pointed out in[[2l7, Page 37] this general shortcomingroigs bisimilarity “does
not affect the purpose of this relation” in that book: thertserves as an auxiliary no-
tion in proving that structurally different nets are calys@quivalent”. Herecausal
equivalenceneans having the same causal nets, wbatssal net§29[34] model con-
current computations or executions of Petri nets. So inceffdderog does choose a
semantic equivalence on Petri nets, namely having the sammiorent computations
as modelled by causal nets. This equivalence fully respectsurrency.
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1.1 Structure preserving bisimilarity

The contribution of the present paper is a strengthenindpief¢hoice of a semantic
equivalence on Petri nets. | propose the n®@tricture preserving bisimulatioaquiv-
alence on Petri nets, and establish that the result of applyiCCSP operator to its ar-
guments according to the standard denotational semairigicsya structure preserving
bisimilar result as doing this according to Olderog’s ofieral semantics. The latter
is an immediate consequence of the observation that steupteserving bisimilarity
between two nets is implied by Olderog’s strong bisimilarit
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Fig. 1. A spectrum of semantic equivalences on Petri nets

Figured shows a map of some equivalence relations on netsl fatthe literature,
in relation to the new structure preserving bisimilariy,,. The equivalences become
finer when moving up or to the right; thus coarser or less bisnating when follow-
ing the arrows. The rectangle from;; to ~, is taken from|[[1D]. The vertical axis is
thelinear time — branching time spectrymwith trace equivalenceat the bottom and
(strong) bisimulation equivalencer bisimilarity, at the top. A host of intermediate
equivalences is discussed in[11]. The key difference islthear time equivalences,
like trace equivalence, only consider the set of possibdeettons of a process, whereas
branching timeequivalences, like bisimilarity, additionally take intocamunt at which
point the choice between two executions is made. The harkaris indicates to what
extent concurrency information is taken into accounterleavingequivalences—on
the left—fully abstract from concurrency by reducing it tdigrary interleavingstep
equivalences additionally take into account the possitiifiat two concurrent actions
happen at exactly the same momespljt equivalences recognise the beginning and end
of actions, which here are regarded to be durational, tlyecapturing some informa-
tion about their overlap in time3T-or interval equivalences fully capture concurrency
information as far as possible by considering durationi@as overlappingin time; and
partial orderequivalences capture the causal links between actionshareby all con-
currency. By taking the product of these two axes, one obtimwo-dimensional spec-
trum of equivalence relations, with entries likgerleaving bisimulatiorequivalence
~;, andpartial order traceequivalencex,;. For the right upper corner several par-
tial order bisimulation equivalences were proposed in itieedture; according td [13]
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thehistory preserving bisimulatioaquivalencex, originally proposed by [32], is the
coarsest one that fully captures the interplay betweeratizpiand branching time.

The causal equivalence employed by Olderag,., is a linear time equivalence
strictly finer than~,,. Since it preserves information about the number of pregslac
of a transition, it is specific to a model of concurrency basedPetri nets; i.e. there
is no obvious counterpart in terms of event structures. hébonly two equivalences
in the literature that are finer than both..., and~,, namelyoccurrence net equiva-
lence[16]—=,..—and theplace bisimilarity~,,;, of [1]. Two nets are occurrence net
equivalent iff they have isomorphic unfoldings. Thefolding defined in[[25], asso-
ciates with a given safe Petri n&ta loop-free net—anccurrence net-that combines
all causal nets ofV, together with their branching structure. This unfoldisgsimi-
lar to the unfolding of a labelled transition system intoeetrand thus the interleaving
counterpart of occurrence net equivalendede equivalencfL1], identifying two tran-
sition systems iff their unfoldings are isomorphic. Thegaldisimilarity was inspired
by Olderog’s strong bisimilarity, but adapted to make insitive, and thus an equiva-
lence relation. My new equivalence ,, will be shown to be strictly coarser thas,..
and~,,, yet finer than botke .4, and=,.

The equivalences discussed above (without the diagoralitirFigure[1) are all
defined on safe Petri nets. Additionally, the definitionsagatise to unsafe Petri nets.
However, there are two possible interpretations of unsafd Rets, called theollec-
tive tokenand theindividual tokerinterpretation[[12], and this leads to two versions of
history preserving bisimilarity. The history preservingimilarity based on the indi-
vidual token interpretation was first defined for Petri net§2], under the naméully
concurrent bisimulatioequivalence. At the level of ST-semantics the collectivetian
dividual token interpretations collapse. The unfoldingiofafe Petri nets, and thereby
occurrence net equivalence, has been defined for the ingiMidken interpretation only
[7123[12], and likewise causal equivalence can be easilgigdised within the individ-
ual token interpretation. The new structure preservinigrlarity falls in the individual
token camp as well.

1.2 Criteria for choosing this semantic equivalence

In selecting a new semantic equivalence for reestablisbidgrog’s agreement of op-
erational and denotational interpretations of CCSP opesal consider the following
requirements on such a semantic equivalence (with subsemséfications):

1. it should be a branching time equivalence,

2. it should fully capture causality relations and concucse(and the interplay be-
tween causality and branching time),

3. it should respedhevitability [22], meaning that if two systems are equivalent, and
in one the occurrence of a certain action is inevitable, #eis it in the other,

4. it should bereal-time consistenfl6], meaning that for every association of execu-
tion times to actions, assuming that actions happen as soiegcan, the running
times associated with computations in equivalent systdrosld be the same,

5. it should bepreserved under action refinemdAfl13], meaning that if in two equiv-
alent Petri nets the same substitutions of nets for actiomsnade, the resulting
nets should again be equivalent,
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6. it should be finer than Olderog’s causal equivalence,

7. it should not distinguish systems whose behaviours aengig the same, such as
Petri nets that differ only in their unreachable parts,

8. it should be a congruence for the constructs of CCSP,

9. and it should allow to establish agreement between theatpeal and denotational
interpretations of CCSP operators.

Requirement 1 is the driving force behind this contributibis motivated by the insight
that branching time equivalences better capture phenotilendeadlock behaviour.
Since in general a stronger result on the agreement betwssatmnal and denota-
tional semantics is obtained when employing a finer semgntigim for a semantics
that fully captures branching time information, and thuatifeast as discriminating as
interleaving bisimilarity.

Requirement 2 is an obvious choice when the goal of the prigi¢o capture con-
currency explicitly. The combination of Requirements 1 ariden naturally asks for an
equivalence that is at least as finesgs One might wonder, however, for what reason
one bothers to define a semantics that captures concurngiocgnation. In the litera-
ture, various practical reasons have been given for piafear semantics that (partly)
respects concurrency and causality over an interleavim@sgcs. Three of the more
prominent of these reasons are formulated as requiremgft@l 5 above.

Requirement 3 is manifestly useful when considering ligs@operties of systems.
Requirement 4 obviously has some merit when timing is areisRequirement 5 is
useful in system design based on stepwise refinernent [13].

Requirement 6 is only there so that | can truthfully state awehstrengthened
Olderog’s agreement between the denotational and opeahtsemantics, which was
stated in terms of causal equivalence. This requiremehtwilbe needed in my justi-
fication for introducing a new semantic equivalence—antheeiwill Requirement 2.

Requirement 7 is hardly in need of justification. The pap#tifts as a desirable
property of semantic equivalences—one that is not met by ¢wen proposake,,—
that they should not distinguish nets that have isomorphfoldings, given that un-
folding a net should not be regarded as changing it behawhen working within
the individual token interpretation of nets | will take tlais a suitable formalisation of
Requirement 7.

The argument for Requirement 8 has been given earlier initiligduction, and
Requirement 9 underlies my main motivation for selectingmantic equivalence in
the first place.

1.3 Applying the criteria

Table[d tells which of these requirements are satisfied byséimeantic equivalences
from Sectior L1L (not considering the one collective tokgumivalence there). The first
two rows, reporting which equivalences satisfy Requireimérand 2, are well-known;

these results follow directly from the definitions. The thiow, reporting on respect for
inevitability, is a contribution of this paper, and will bésdussed in Sectidn_1.4, and
delivered in Sectiorls 1[=114.
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Table 1. Which requirements are satisfied by the various semantivaguces

Equivalence Ritree =oce
b Rsh Raop|  RsTb X Cep Ripb

Requirement Rt Rest Riot RsTe  |Rpt =caus
1. Branching time X v V|x V|x V|x V|x V|x Vv V|V
2. Causality X X X | X X|X X|x x|V V|V vV V|V
3. Inevitability X X X | X X|X X|xX x|x x|x vV V|V
4. Real-time consistengyx  x X [ X X | X X | X VvV |x V|x Vv V|V
5. Actionrefinement | x X X | x X |Xx x|V V|V V|V?2V?2V?
6. Finer thare cqus X X X | X X|X X|x x|x x|V vV V|V
7. Coarser thaee,c. v Vv VIV VIV VIV VIV VYV VX
8. Congruence v v v
9.Operat=denotat. |v v x|V V|V V|V V|V V|V V x

Regarding Row 4, InN[16] it is established that ST-bisiniilais real-time consis-
tent. Moreover, the formal definition is such that if a sentaatuivalencex is real-
time consistent, then so is any equivalence finer thahinear time equivalences are
not real-time consistent, and neitheris;, [17].

In [13] it is established thatv,; and~, are preserved under action refinement,
but interleaving and step equivalences are not, becaugedth@ot capture enough
information about concurrency. 10 [10] it is shown that; and~gr, are already
preserved under action refinement, whereas by [17] spliagéios are not. | conjecture
that=,,s and=,.. are also preserved under action refinement, but | have notesee
formal proof. | also conjecture that the new,, is preserved under action refinement.

Rows 6 and 7 follow as soon as | have formally established rii@i¢ations of
Figure[l (in Sectiof10). As for Row 8, | will show in Sectighhat <, is a congru-
ence for the operators of CCSP. That adsp and=;;, are congruences for CCSP is
well known. The positive results in Row 9 follow from the fabat Olderog’s strong
bisimilarity implies <, which will be established in Sectidh 6.

Requirements 1 and 6 together limit the search space fatdeiequivalence re-
lations to=,.., ~p» and the news,,. When dropping Requirement 6, but keeping
2, also~;, becomes in scope. When also dropping 2, but keeping 4, |-ggin, as a
candidate equivalence. However, beth and~ s, will fall pray to Requirement 3, so
also without Requirements 2 and 6 the search space will bigetino =,.., ~,, and
the new<;,.

Requirement 7 rules out,;, as that equivalence makes distinctions based on un-
reachable parts of nefs/[1]. The indispensable Requiretharles out=,,.., since that
equivalence distinguishes the operational and denotdtgamantics of the CCSP ex-
pressiom0 + a0. According to the operational semantics this expressisromdy one
transition, whereas by the denotational semantics it hasand=,.. does not collapse
identical choices. The same issue plays in interleavingaseios, where the operational
and denotational transition system semantics of CCSP dagret up to tree equiva-
lence. This is one of the main reasons that bisimilarity terofegarded as the top of
the linear time — branching time spectrum.

This constitutes the justification for the new equivaletieg,.
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1.4 Inevitability

The meaning of Requirement 3 depends on which type of pregrefsirness property
one assumes to guarantee that actions that are due to odlcactwally happen. Lots of
fairness assumption are mentioned in the literature, lsifaraas | can tell, they can be
classified in exactly 4 groupprogressjustnessweak fairnessndstrong fairnes§15].
These four groups form a hierarchy, in the sense that oneot@onsistently assume
strong fairness while objecting to weak fairness, or justnvehile objecting to progress.

Strong and weak fairness deal with choices that are offafedtely often. Suppose
you have a shop with only two custometsand B that may return to the shop to buy
something else right after they are served. Then it is urifaionly serve customer
A again and again, whilé is continuously waiting to be served. In caBeis not
continuously ready to be served, but sometimes goes honhegjp, yet always returns
to wait for his turn, it is weakly fair to always ignore custenB in favour of A, but
not strongly fair.

Weak and strong fairness assumptions can be rioaddly, pertaining tosomere-
peating choices of the modelled system but not to othergladrally, pertaining to all
choices of a given type. Since the real world is largely up&rong and weak fairness
assumptions need to be made with great caution, and thepoetiippear in this paper.

Justness and progress assumptions, on the other hand, obnie the global vari-
ant, and can be safely assumed much more often. A prograssptisn says that if a
system can do some action (that is not contingent on extampat) it will do an action.
In the example of the shop, if there is a customer continyaesidy to be served, and
the clerk stands pathetically behind the counter staririjeatustomer but not serving
anyone, there is a failure of progress. Without assumingness, no action is inevitable,
because it is always possible that a system will remain imit&l state without ever
doing anything. Hence the concept of inevitability only realsense when assuming at
least progress.

Justness[B.15] says roughly that if a parallel componentncake progress (not
contingent on input from outside of this component) it widl sb. Suppose the shop has
two counters, each manned by a clerk, and, whereas custdrniserepeatedly served
at counter 1, customds is ready to be served by counter 2, but is only stared at by a
pathetic clerk. This is not a failure of progress, as in aatesbf the system someone will
be served eventually. Yet it counts as a failure of justniesthe context of Petri nets,
a failure of justness can easily be formalised as an exetudiaing which, from some
pointonwards, all preplaces of a given transition remairked, yet the transition never
fires [14]. One could argue that, when taking concurrendgssly, justness should be
assumed whenever one assumes progress.

Inevitability can be easily expressed in temporal logike LTL [31] or CTL [6],
and it is well known that strongly bisimilar transition sgsts satisfy the same tem-
poral formulas. This suggests that interleaving bisintifaalready respects inevitabil-
ity. However, this conclusion is warranted only when assunprogress but not just-
ness, or perhaps also when assuming some form of weak ogdamness. The sys-
temC = (X|X = aX + bX)—using the CCSP syntax of Sectibh 2—repeatedly
choosing between the actionsandb, is interleaving bisimilar to the syste® :=
(YY =aY)||{Z|Z =0bZ), which in parallel performs infinitely manys and infinitely
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manybs. Yet, when assuming justness but not weak fairness, tloeigar of the action
b is inevitable inD, but notinC'. This shows that when assuming justness but not weak
fairness, interleaving bisimilarity does not respect itahility. The paper([22], which
doesn’t use Petri nets as system model, leaves the precisalédgion of a justness as-
sumption for future work—this task is undertaken in the efiént context of CCS in
[15]. Also, respect of inevitability as a criterion for juitig semantic equivalences does
not occur in[[22], even though “the partial order approastghown to be beneficial.

In this paper, assuming justness but not strong or weakdsg;r1 show that neither
/2, NOr =4, Fespects inevitability (using infinite nets in my countexmple). Hence,
respecting concurrency appears not quite enough to respaatability. Respect for
inevitability, like real-time consistency, is a properhat holds for any equivalence
relation finer than one for which it is known to hold already.&so none of the ST- or
interleaving equivalences respects inevitability. | stibat the new equivalence?,
respects inevitability. This makes it the coarsest eqaived of Figur€ll that does so.

2 CCSP

CCSP is parametrised by the choice of an infinite4étof actions, that | will assume
to be fixed for this paper. Just like the version of CSP fromiddad], the version of
CCSP used here is a typed language, in the sense that with@ZSP proces® an
explicit alphabety(P) C Act is associated, which is a superset of the set of all actions
the process could possibly perform. This alphabet is etqiddin the definition of the
parallel compositior?||@: actions in the intersection of the alphabetsband@ are
required to synchronise, whereas all other action® @nd @ happen independently.
Because of this, processes with different alphabets magrievidentified, even if they
can perform the same set of actions and are alike in all operds. It is for this reason
that | interpret CCSP in terms 6fpedPetri nets, with an alphabet as extra component.
| also assume an infinite sét of variable namesA variableis a pair X 4 with
X € VandA C Act. The syntax of (my subset of) CCSP is given by

Pu=04 | aP | P+P | P|P | R(P) | Xa | (XalS) with X4 € Vs)

with A C Act, a € Act, R C Act x Act, X € V andS arecursive specificatiara set
of equationYs = Sy, | Y5 € Vs} with Vs C V x Act (thebound variableof S)
andSy, a CCSP expression satisfyindSy, ) = B for all Yg € Vs (werea(Sy,)
is defined below). The constafy represents a process that is unable to perform any
action. The processP first performs the action and then proceeds @& The process
P + @ will behave as eitheP or Q, || is a partially synchronous parallel composition
operator,R a renaming, andX 4 |S) represents th&  ,-component of a solution of the
system of recursive equatiol§s A CCSP expressioR is closedif every occurrence of
a variableX 4 occurs in a subexpressidliz|S) of P with X4 € Vs.
The constant 0 and the variables are indexed with an alph@betalphabet of an

arbitrary CCSP expression is given by:

— a(04) = o(Xa) = a((X4|S)) = A

— afaP) ={a}Ua(P)
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Table 2. Structural operational interleaving semantics of CCSP

PP PP
pep T T (ab)eR
aP 2 po g 9@ T (@hen
P2 p PP, Q-%Q
P

PrQ %P Pl 5 pg P Ne(@)

Q¢ Qb9 i) (Sx,1S) 2 P
P+Q—Q  PI|Q—=P|Q (XalS) — P

~ a(P +Q) = a(P[Q) = a(P) Ua(Q)
— a(R(P)) ={b|3a € a(P) : (a,b) € R}.
Substitutions of expressions for variables are alloweg drthe alphabets match. For
this reason a recursive specificatifiis declared syntactically incorrectd(Sy, ) # B
for someYi €Vs. The interleaving semantics of CCSP is given by the labéfbatsition
relation— C Tcosp X Act X Toosp on the sefl'ccgp of closed CCSP terms, where
the transitionsP - @Q (on arbitrary CCSP expressions) are derived from the rules
of Table[2. Here(P|S) for P an expression and a recursive specification denotes
the expressiorP in which (Y5|Sy,,) has been substituted for the variablg for all
Yp € Vs.
A CCSP expression iwell-typedif for any subexpression of the formP one has
a € a(P) and for any subexpression of the fofh+ @ one hasy(P) = «(Q). Thus
aly,y +bXy is not well-typed, although the equivalent expressiop, ;, +bXy, ) is.
A recursive specificatiofiX 4 |S) is guardedif each occurrence of a variablg; € Vs
inatermsS;,, for someZ-€Vs lays within a subterm aof . of the forma P. Following
[27] | henceforth only consider well-typed CCSP expressiaith guarded recursion.
In Olderog’s subset of CCSP, each recursive specificatienondy one equation,
and renamings must be functions instead of relations. Haltevi mutual recursion and
relational renaming, where an action may be renamed intoizelof several actions—
or possibly none. This generalisation does not affect anlg@proofs in[[27].

Example 1.The behaviour of the customer from Sectlon] 1.4 could be ghsetthe
recursive specificatioScys:

Cus¢, = enter buy leav€usg,

indicating that the customer keeps coming back to the shaypiyamore things. Here
enter, buy, leaves Act and Quse V. The customer’s alphabét is {enter, buy, leave.
Likewise, the behaviour of the store clerk could be givenhgyspecificatiobe k :

CLK ¢ = serveCLK ¢

whereCl = {serve. The CCSP processes representing the customer and theveitbrk
their reachable states and labelled transitions betwesn,thre displayed in Figuke 2.
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(CusculScus)

leave
\

enter leaveg/CuScy|Scus) (CLK 1| Scrk ) serve

bu
et

buy leave(CUScy |Scus)

Fig. 2. Labelled transition semantics of customer and clerk

In order to ensure that the parallel composition synchesikebuy-action of the cus-
tomer with theserveaction of the clerk, | apply renaming operatdig,s and Rc «
with Rcys(buy) = servesand Rc « (serve = servesand leaving all other actions un-
changed, wherservesds a joint action of the renamed customer and the renamekl cler
The total CCSP specification of a store with one clerk and ostmer is

Recus({CUS ey |Scus)) | Rewk ({CLK ¢1|Scik )

and the relevant part of the labelled transition system oc$8E @ displayed below.

Reus({CUScu|Scus)) | Rewk ({(CLK a1l Scik )

\Ieave

enter Rcys(leave(Cuscu|Scus)) || Rewk ((CLK il Scik ))

serve/s/

Rcys(buy leave(CUscwu|Scus)) || Rew ((CLK ci|Scik )

Fig. 3. Labelled transition semantics of the 1-customer 1-clevkest

One possible behaviour of this system is the sequence afnsetnter serves leave
enter, followed by eternal stagnation. This behaviour is ruletl lputhe progress as-
sumption of Sectioh 114. The only behaviour compatible whtis assumption is the
infinite sequence of actior{enter serves leaye’.

To model a store with two customers (A and B) and 2 clerks (ll&nd introduce
a relational renaming for each of them, defined by

Ra(enten = Aenters R4(buy) = {lservesd, |l servesA} R,(leave = Aleaves
Rp(enten = Benters Rp(buy) = {lserves3, |l servesB} Rp(leave = Bleaves
Ri(servg = {l servesA, | servesB}
Ry(serve = {Il servesA, Il servesB}.

The CCSP specification of a store with two clerks and two custs is
(Ra((CusculScus)II BB (Cuscu|Scus)) | (Rr(CLK ci|Scu )| Rur ((CLK c1 Seux )

and the part of the labelled transition system of CCSP rddelieom that process has
3 x 3 x1x1=09states an@ x 4 = 24 transitions.
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3 Petrinets

A multisetover a sefS' is a functionC': S — IN, i.e.C € IN; let|C| := > owex O);
x € S is anelement ofC, notationz € C, iff C(x) > 0.

The function(): S — IN, given byl)(z) := 0 for all z € S, is theemptymultiset oversS.
For multisetsC and D over S one writesC' < D iff C'(z) < D(z) forall z € S;

C' N D denotes the multiset ovéfwith (C'N D)(x) := min(C(z), D(x)),

C' + D denotes the multiset ovérwith (C' + D)(z) := C(z) + D(x); and

the multisetC' — D is only defined ifD < C and thenC' — D)(z) := C(z) — D(z).
A multisetC with C(x) < 1 for all z is identified with the (plain) sefz | C(z) =1}.
The constructio' := { f(z1,...,z,) | 2; € D;} of a setC out of setsD; (i =1, ...,n)
generalises naturally to multisetsand D;, taking the multiplicityC'(z) of an element
ztobed . ., Di(x1) ... Dn(an).

Definition 1. A (typed Petri netis a tupleN = (S, T, F, My, A, ¢) with
— S andT disjoint sets (oplacesandtransitiong,
- F:((SxT)uU(T x S)) — IN (theflow relationincludingarc weights,
— My : S — IN (theinitial marking),
— A a set ofactions thetypeof the net, and
— £ :T — A (thelabelling functior).

Petri nets are depicted by drawing the places as circlestanttansitions as boxes,
containing their label. Identities of places and transgiare displayed next to the net
element. For,y € S U T there areF'(z,y) arrows @rcs) from z to y. When a Petri
net represents a concurrent system, a global state of thiisrayis given as marking
a multisetM of places, depicted by placint/ (s) dots token$ in each places. The
initial state isMj.

The behaviour of a Petri net is defined by the possible movesdem markings
M andM’, which take place when a transitiofiires In that caset consumes (s, t)
tokens from each place Naturally, this can happen only M makes all these tokens
available in the first place. Moreovemproduces (¢, s) tokens in each place Defini-
tion[2 formalises this notion of behaviour.

Definition 2. Let N = (S,T, F, My, A, ¢) be a Petri net and € S U T. The multisets
*z, *: SUT — N are given by z(y) = F(y,z) andz®(y) = F(z,y) forall ye SUT;
for t € T', the elements oft and¢® are calledpre- and postplacesf ¢, respectively.
Transitiont € T is enabledfrom the markingM € IN®—notationM [t)—if *t < M.
In that case firing yields the marking\/’ := M — °t + t*—notationM [t) M.

A pathr of a Petri netVN is an alternating sequen@éyt, Mito Msts ... of markings
and transitions, starting from the initial markidd, and either being infinite or ending
in a markingM,,, such thatMy[t,) M1 for all k (<n). A marking isreachableif it
occurs in such a path. The Petri iéts safeif all reachable markings/ are plain sets,
meaning thaf\/(s) < 1 for all placess. It hasbounded parallelisnf16] if there is no
reachable marking/ and infinite multiset of transitions such thad ,_,, *t < M. In
this paper | consider Petri nets with bounded parallelisty,@md call thenmets
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4 An operational Petri net semantics of CCSP

This section recalls the operational Petri net semantic€@EP, given by Olderog
[26217]. It associates a nfP] with each closed CCSP expressiBn

The standard operational semantics of CCSP, presentediio&a, yields one big
labelled transition system for the entire Ianguﬂgiach individual closed CCSP ex-
pressionP appears as a state in this LTS. If desiredr@cess graph-an LTS enriched
with an initial state—forP can be extracted from this system-wide LTS by appointing
P asthe initial state, and optionally deleting all statestaasitions not reachable from
P. In the same vein, an operational Petri net semantics yaldsbig Petri net for the
entire language, but without an initial marking. | call sucPetri neunmarked Each
processP € Tcesp corresponds with a markingea(P) of that net. If desired, a Petri
net[P] for P can be extracted from this system-wide net by appoinfing P) as its
initial marking, taking the type of P] to be«(P), and optionally deleting all places
and transitions not reachable frafez (P).

The setSccsp of places in the net is the smallest set including:

04  inaction aP  prefixing u—+ v choice
ulla  left parallel component Allp right component R(i) renaming

for A C Act, P € Tcesp, a € Act, u,v € Scesp and renamingsk. The mapping
dex : Tacsp — Z(Scesp) decomposing and expanding a process expression into a
set of places is inductively defined by:

dex(04) = {04}
dex(aP) = {aP} dex(R(P)) = R(dex(P))
dex(P+ Q) = dex(P) + dex(Q) dex((XalS)) = dex({Sx,|S))

dex(P||Q) = dex(P)||a U al|dex(Q) whereA = a(P) N a(Q).

HereH || 4, a||H, R(H) andH + K for H, K C Sccgp are defined element by element;
e.g.R(H) = {R(n) | p € H}. The binding matters, so thé||H)|| s # all(H| 5)-
Since | deal with guarded recursion o, is well-defined.

Following [27], | construct the unmarked Petri &t T, F, Act, ¢) of CCSP with
S := Scesp, specifying the triplé T, F, ¢) as a ternary relations € IN® x Act x IN®,
An elementd - J of this relation denotes a transitiore 7' with () = a such that
*t = H andt® = J. The transitiong? — J are derived from the rules of Talile 3.

Note that there is no rule for recursion. The transitionsrefarsive processt 4 |S)
are taken care of indirectly by the decompositién:((X 4|S)) = dex((Sx,|S)),
which expands the decomposition of a recursive call into @agosition of an ex-
pression in which each recursive call is guarded by an agtiefix.

Example 2.The Petri net semantics of the 2-customer 2-clerk ktore Betior[ 2 is
displayed in Figuré&l4. It is more compact than the 9-statér@dsition labelled tran-
sition system. The name of the bottom-most place.i# g|| Rii(serve(CLK ¢;|Scik ))
whereSer is the alphabefl serves4, | servesB, Il servesd, Il servesB}.

LA labelled transition syster(LTS) is given by a sefS of statesand atransition relation
T C S x % xS for some set of label&”. The LTS generated by CCSP héis= Tccsp,
& = Act andT := —.
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Table 3. Operational Petri net semantics of CCSP

{aP} - dex(P)
H-%J H-%J
———— ((@,b) e R) ———— (a¢ 4
R(H) — R(J) Hl[a = Jla
HYUK % J H%J K%L
: : (a € 4)
HU (K + dex(Q)) % J H|aU | K -% J||aU A|lL
HYUK % J H-%J
a —— o (@¢4)
HU (dex(P) + K) % J AllH — allJ

A progress assumption, as discussed in Se€fidn 1.4, disalions that stop after
finitely many actions. So in each run some of the actions f&arwill occur infinitely
often. When assuming strong fairness, each of those aatiireccur infinitely often.
When assuming only weak fairness, it is possible thaéilvesd and liservesB will
never occur, as long asérves4 and IservesB each occur infinitely often, for in such
a run the actions BervesA and llserves3 are not enabled in every state (from some
point onwards). However, it is not possible thaelves3 and llservesB never occur,
because in such a run, from some point onwards, the actervés3 is enabled in
every state.

When assuming justness but not weak fairness, a run thasbgpany two serv-
ing actions is possible, but a run that bypassesrvess, Il servesd and liservesB
is excluded, because in such a run, from some point onwdrésdtion liservesB is
perpetually enabled, in the sense that both tokens in ifdgres never move away.

| servesA

| servesB

“...-
Il servesA Il servesB

Fig. 4. Petri net semantics of the 2-customer 2-clerk store

Olderog [26,217] shows that the Petri fé?] associated to a closed CCSP expres-
sion P is safe, and that all its reachable markings are finite; ttierlamplies that it
has bounded parallelism. The following result, framl[26,Zhows that the standard
interleaving semantics of CCSP is retrievable from the eetantics; it establishes a
strong bisimulation relating any CCSP expression (seersteain a labelled transition
system) with its interpretation as a marking in the Petriaf€2CSP.
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Theorem 1. There exists a relatio® between closed CCSP expressions and markings
in the unmarked Petri net of CCSP, such that

— P % dex(P) for each closed, well-typed CCSP expression with guardadsen,

— if P#M andP — P’ then there is a markingy/’ and transitiort with ¢(t) = a,
M[tyM' andP#M’, and

— if PAM andM]|t)M' then there is CCSP proceBSwith P L0, prandPBM'.

To formalise the concurrency requirement for his net seiosu@lderog defines for
eachn-ary CCSP operatasp ann-ary operatioropa on safe Petri nets, inspired by
proposals from[18,35.16], and requires that

(1) [op(Pr, ..., Pu)]
(2) [(XalS)]

opn ([P, -, [Pa])
[(Sx.415)]

Q

for a suitable relatiors. In fact, (2) turns out to hold taking fee the identity relation.
He establishes (1) taking fes a relation he callstrong bisimilarity whose definition
will be recalled in Sectioh]6. When a relatienincludes~, and (1) holds for, then it
also holds for=.

The operationspys (i.e.(04)n for AC Act, aps for a€ Act, Ry for RC Act x Act,
|- and+ ) are defined only up to isomorphism, but this is no problensasrphic
nets are strongly bisimilar. The definition is recalled leleit generalises verbatim
to non-safe nets, except thaty is defined only for nets whose initial markings are
nonempty plain sets.

Definition 3. [27] The net) 4 has typed and consists of a single place, initially marked:
(OA)N = ({OA}a @7 (Z)’ {OA}a A, (Z))

GivenanetN = (S, T, F, M, A,¢) anda € Act, takeso,t, ¢ SUT. Then the net
an N is obtained fromV by the addition of the fresh placg and the fresh transition
tq, 1abelleda, such thatt, = {so} andt,®* = M. The type ofa, N will be AU {a}
and the initial markind so }.

GivenanetN = (S,T, F, M, A, () and a renaming operat(_), the netRxr (V)
has typeR(A) := {b € Act | Ja € A, (a,b) € R}, the same places and initial marking
asN, and transitiong, for eacht € T"andb € Act with (¢(¢),b) € R. One hast, := °t,
t,* = t*, and the label of, will be b.

Given two netsN; = (S;, Ty, F;, M;, A;, 4;) (i = 1,2), their parallel composition
Ny||awNo = (S, T, F, M, A, ¢) is obtained from the disjoint union @¥; and N, by the
omission of all transitions of T} U 75 with £(t) € A; N As, and the addition of fresh
transitions(ty, t2) for all pairst; € T; (i = 1, 2) with ¢1(t1) = l2(t2) € Ay N As. Take
.(tl,tg) = °t1 + °tg, (tl,tg). =11°+12°, é(tl, tQ) = g(tl), andA = Al U AQ.

Given netsN; = (S;, Ty, F;, M;, A;, £;) with M; # () a plain set{= 1, 2), the net
N1 +n No with type A; U A, is obtained from the disjoint union d¥; and N, by
the addition of the set of fresh placé$, x M,—this set will be the initial marking of
N1+ No—and the addition of fresh transition for anyt; € T; andd#£ K <°*t, N\ M.
f(th) :fi(t), .t{( =*t—-K+ (K X Mg), .té( =%— K+ (Ml X K) and(tiK)' =t;°.
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5 Structure preserving bisimulation equivalence

This section presents structure preserving bisimulatipivalence on nets.

Definition 4. Given two netsV,=(S;,T;,F;,M;,A;,l;), alink is a pair(sy, s2) €51 X.S2
of places. Alinking I e IN°**51 is a multiset of links; it can be seen as a pair of markings
with a bijection between them. Let (1) cIN®' be these markings, given by (1)(s1) =
252652 1(81782) for all s1 €51 andﬂ'g(l)(SQ) = 251651 1(81782) for all So € Ss.
A structure preserving bisimulatiofsp-bisimulatiofis a set# of linkings, such that
—if ¢ <1le P andm(c) ="°t; fort; € Ty then there are a transitian € T, with
L(t2) = £(t1) andma(c) = *t2, and a linkinge such thatr (¢) = t1°, m2(¢) = 2°
andl:=1—c+ce 2.
— if ¢ <l e Zandmy(c) = °ts then there are & and ac with the same properties.
N, andN, arestructure preserving bisimilanotationV, <, No, if A1 =A4, and there
is a linking! in a structure preserving bisimulation wilf; = 7 (1) and My = 7o (1).

Note thatifZ is an sp-bisimulation, then so is its downward closte i€ Z. k < I}.

Moreover, if # is an sp-bisimulation between two nets, then the set of thiokiegs

l € % for which (1) andm,(1) are reachable markings is also an sp-bisimulation.
If Bis a set of a links, leB be the set ol linkings that are multisets ovés.

Proposition 1. Structure preserving bisimilarity is an equivalence iefat

Proof. The relation/d, with Id the identity relation on places, is an sp-bisimulation,
showing thatV <, N for any net\V.

Given an sp-bisimulation8, also{/~! | | € 4} is an sp-bisimulation, showing
symmetry of& ,,.

Given linkingsh € IN1 %% | ¢ IN®1 %52 andl € IN®2*%% write h € k; [ if there is
amultisetm € IN1 %2 of triples of places, with:(s1, s2) = 3, cs m(s1, 52, 83),
U(s2,83) = > g, e5m(51,52,53) andh(sy,s3) = D>, cgm(s1, s2,53). Now, for sp-
bisimulationsZ and%#’, also#; %' := {hek;l | ke ANl A’} is an sp-bisimulation,
showing transitivity of& .. O

6 Strong bisimilarity

As discussed in the introduction and at the end of SeElionderOg defined a relation
of strong bisimilarityon safe Petri nets.

Definition 5. ForB C S; x S, a binary relation between the places of two safe nets
N; = (S;,T;, F;, M;, A;, ¢;), write B for the set of all linkingd C B such thatr; (1)

is a reachable marking a¥; for i = 1,2 andB N (w1 (1) x m2(1)) = I. Now astrong
bisimulationas defined in[27] can be seen as a structure preserving baiomof the
form B. The netsV; and N, arestrongly bisimilarif A; = A, and there is a linking

in a strong bisimulation witth/; = 71 (1) and My = w2 (1).

This reformulation of the definition from [27] makes immetgis clear that strong
bisimilarity of two safe Petri nets implies their structym@serving bisimilarity. Conse-
quently, thé concurrency requirement for the net semafrbes Olderog, as formalised
by Requirements (1) and (2) in Sect(dn 4, holds for strughueserving bisimilarity.
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7 Compositionality

In this section | show that structure preserving bisimilais a congruence for the op-
erators of CCSP, or, in other words, that these operatorsoan@ositional up ta= ..

Theorem 2. If N; £, No, a€ Act andR C Act x Act, thenay N1 £, ay N2 and
Rp(Na) € Ryr(No). If Nf <, Ny andNT <, N3 thenN1|\NN{ “sp NéHNNQT
and, if the initial markings oV} and N} are nonempty set&! + N7 <, Ns+ar N5

Proof. Let N; = (S;, Ty, F;, M;, A;, £;) fori =1, 2, and lets; andu; be the fresh place
and transition introduced in the definition @f N;. From N, £, N, it follows that
A; = Ay and henced; U {a} = Ay U {a}.

Let # be an sp-bisimulation containing a linkigwith M; = m; (k) fori =1, 2.
Let B, := B U {h}, with h = {(s1, s2)}. Thenh links the initial markings ofix N,
andax No. Hence it suffices to show tha#, is an sp-bisimulation. So suppose& h
andm (c)="t, for somet, €T}. Thenc=h andt, =u,. Takety := uy andh := ¢ := k.

To show thatRy(N2) &5, Ra(N2) it suffices to show thatZ also is an sp-
bisimulation betweem® n-(N2) andRxr(N2), which is straightforward.

Now letN!=(S!, T}, F}, M}, AL ¢4y and Ny =(Sr, Tr, Fr, M7, Ar, ¢F) fori=1, 2.
LetA:= Al N AT = AL N A5, Create the d|5]0|nt union de andN[ in the definition
of N} N/ by renaming aII places and transitions of N} into s| 4 andt|| 4, and all
placess and transitions of N/ into 4||s and 4 ||t. Let %' and %" be sp-bisimulations
containing linkingsk! and k", respectively, withM! = m; (k') and M} ==;(k"), for
i=1,2.TakeZ := {(h'||a)+(al|h") | h'e B AR € B}, whereh! || a:={(s1]| , 52| )
| (s1,82)€h!}, andy||h" is defined likewise. Them; ((k!|| 1)+ (4]|k7)) = mi(kY)||a +
allmi (k) = MY 4+ a||M] is the initial marking ofN!|| - N7 fori=1, 2, so it suffices
to show thatZ is an sp-bisimulation.

So suppose < (h!||4) + (a||h") € B with h! € B' ANh" € " andT (c) = *t; for
t; atransition ofN{ || o» NT. Thene has the forn(c!||a) + (a]|c¢") for ¢! < h! € %' and
c"<h"€%", andt; has the form (iY! || o for t} € T} with ¢ (t})¢ A, or (ii) ()] 4, a[[})
for t{ € T} andt] € Ty with ¢4 (t)) = ¢5(t]) € A, or (iii) 4|t} for ¢} € TT with
75 (t7) ¢ A. In case (i) one hag’ = ) and, (¢!) = *}, whereas in case (ii}; (¢') = "t}
andr(¢") = *t7. | only elaborate case (ii); the other two proceed likewBiece %'
is an sp- b|S|muIat|on there are a transntténmth (L) = 2 () andm( 1y =1,
and a linkingé such thatr; (¢) = t1°, mo(¢') = t4° andh! :== Wl = + & € A,
Likewise, sinceZ” is an sp-bisimulation, there are a transiti§rwith ¢5(t5) = ¢7(¢})
andmy(c") = *t5, and a linkinge™ such thatr, (¢") = t}°, m2(¢") = t4* andh” :=
" —c" + e € B Takety := (th| 4, allth). This transition has the same label as
tl, t, th, t7 and (t}]|a, al|t]) = ti. Moreover,my(c) = ma(c)||a + allm2(c) =

t2|\A+A|| th = *ty. Takec := (&'[|4) + (allc"). Thenm (¢ )_tl , m(¢) = t2* and
hi= (hHa) + (alh7) — e+ e = (A a) + (allh7) € 2.

Let N/=(S!, T}, F!, M}, AL, ¢Y)y and N =(ST, T), FI, M], A7, ¢7) fori=1, 2, with
M} and M} nonempty pIa|n sets, but this time | assume the nets to aiteadisjoint,
and such that all the places and transitions added in theroation of N} +, N/
are fresh. Let#' and %" be as above. Without loss of generality | may assume that
the linkingsh in %' and.%" have the property that;(h) is a reachable marking for
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i = 1,2, so that the restriction of;(h) to M! or M/ is a plain set. Define

Bt = {hL + (B, @ k") | L + h! € B AR £ K'}
{ny+ (K'®@ ") | Ay + b € B AR, 5 k" U{Kl @k}

whereh! @h"™ = {((s}, 1), (sh,s5)) | (s', sh)Eh A (st s5)eh™}. NowT; (k' @k") =
7 (k') x (k") = M} x M is the initial marking ofN} + N/, so again it suffices
to show that#* is an sp-bisimulation.

So suppose < hl + (b, @ k") € #* with hl, + h!, € ', h!, < k' andr(c) ="t
for ¢, a transition ofN! 4+ N7.

First consider the case that< hl. Thenc < hl < hl + hl € #'. Since#! is an
sp-bisimulation, there are a transitione T} with ¢4(t2) = ¢4 (t1) andma(c) = *ta,
and a linkinge such thatr (¢) = t,°, m(¢) = to* andhl + R —c+ce ZA'. Now
hL+ (W, @k™)—c+E = (hl, —c+¢)+ (b, @ ko) € BT becauséhl —c+¢)+h', € A"

In the remaining case, (c) contains a placés}, s7) € M{ x M7, sot; must have
either the form:S with ) # K < *t) n M! for somet! € T}, or tfS with ) # K <
*t7 N M7 for somet] € T7. First assume, towards a contradiction, that ¢¥. Then
MixK <t = (c)<m (h}) +mi (kY @k"). Since the places i/} x K C M!x M{
are fresh, it follows thad/{ x K < 1 (hl, @ k") < w1 (hY) x m (k") < my(hY) x M7,
implying thatM{ < m (h!,) andK < M{—here | use that/{ #()#K andr; (k') and
My are plain sets. However, the conditibh < k! implies thatr, (k') 5w (k') = M,
yielding a contradiction. Henag is of the form¢£S.

Sincer; (c) = "t¥ = *t, — K + (K x M), the linkinge must have the form,+¢’
with 71 (ce) = "t} — K and 7 (¢) = K x MJ. As no place in"t, — K can be in
M{ x M7 2 mi (kY ® k"), it follows thatc, < hl. Likewise, as none of the places in
K x M7 can be inr(hl), it follows thate’ < bl @ k". ThusK x M| = m(c/) <
mi(hl @ k") < mi(hL) x m(k") < m(hl) x M7, implying K < (k! )—again
using thatm; (k') and M7 # () are plain sets. The linking!, ® k" has the property
that its projectionr; (h!, @ k") is a plain set. Since a subsét of a such linking is
completely determined by its first projectian(c¢”), it follows that¢’ = ¢ ® k" for
the unique linking-y < A!, with 71 (c;) = K.

Now ce +cp < hl+hl € B andry(co+cy)=("ti —K)+ K ="t!. Since#' is an
sp-bisimulation, there are a transitigne 7% with ¢4 (t4) = ¢4 (t}) andmy (ce+c4 ) ="tb,
and a linkinge such thatry (¢) = t}°, ma(¢) = t5° andhl + b, — (ce +c4) +¢ € A
Let L:=ms(cy). ThenL #0 sinceK #0, L = ma(cy) < ma(hl,) < mo(k') = M} and
L =my(cy) < ma(ce + cy) = "th. By Definition[3 N+ N has a transition}; with
U(t5y) = E5(th) = L1 (t}) = £(ty), "5 = “th—L+ (L x M3) = ma(ca+ 1) —ma(cy ) +
(ma2(cy) x T (k7)) = malce + (cr @ k7)) = ma(c) andth® = tb° = my(c). Moreover,
m1 (@)=t} " =t{* Finally, b} + (b}, @k") —c+e = (hl —co+0)+((hl —c})RK") € B
since(hl, — ce + ') + (bl —cy) € #' andh! —c, < Bl K.

The case supposing< h, + (k" @ h,) € 7 follows by symmetry, whereas the
casec < k! ® k" proceeds by simplification of the other two cases. a
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8 Processes of nets and causal equivalence

A processof a netNV [29/S/19] is essentially a conflict-free, acyclic net tdggtwith

a mapping function taV. It can be obtained by unwindingy, choosing one of the
alternatives in case of conflict. It models a run, or conatroemputation, ofV. The
acyclic nature of the process gives rise to a notion of céydar transition firings in
the original net via the mapping function. A conflict presenthe original net is rep-
resented by the existence of multiple processes, eachseayineg one possible way to
decide the conflict. This notion of process differs from thhe ased in process algebra;
there a “process” refers to the entire behaviour of a systectyding all its choices.

Definition 6. A causal né is a netN = (8,T,F, My, A, £) satisfying
1 ifes=40
0 otherwise,
- Jis acyclic, i.e.vz € SUT.(z,2) ¢ I, whereF " is the transitive closure of
{(z,9) | F(z,y) > 0},
—and{t € T| (t,u) € "} is finite forallu € T,
A foldingfrom a netN = (8, T, F, My, A, ) into anetN = (S, T, F, My, A, ¢) is a
functionp : SUT — S U T with p(8) C S andp(T) C T, satisfying
— A =Aandin(t) = L(p(t)) forallt € T,
- p(Mo) = My, i.e. My(s) = |p~1(s) N M| forall s € S, and
— Yt e T,s € 8. Fs, plt) = [~ (s) N *t| A F(p(t), 5) = [0~ (s) N ¢*|.B
A pairP = (N, p) of a causal nelN and a folding ofN into a netV is aprocessof N.
P is calledfiniteif T is finite.

— Vs e8|%| <1>|s*| A My(s) = {

Note that if V has bounded parallelism, than so do all of its processes.

Definition 7. [27] A netN is called a causal nef a netN if it is the first component
of a processN, p) of N. Two netsN; andN, arecausal equivalennotation=..s, if
they have the same causal nets.

Olderog shows that his relation of strong bisimilarity i€lided in=..,. [27], and
thereby establishes the concurrency requiremeht (1) frectiG{4 for=,...

ForN = (8,7,3, My, A, () a causal net, IeN° := {s €8 | s*=0}. The
following result supports the claim that finite processesletdinite runs.

Proposition 2. [19, Theorems 3.5 and 3.8) is a reachable marking of a natiff v
has a finite proces§\, p) with p(N°) = M. Herep(N°)(s) = [p~(s) N N°|.

2 A causal net[[2,34] is traditionally called accurrence nef9I19[33]. Here, following[[27], |
will not use the terminology “occurrence net” in order to @voonfusion with the occurrence
nets of [2%.36]; the latter extend causal nets with forwamhbhing places, thereby capturing
all runs of the represented system, together with the bragatructure between them.

3 ForH C 8, the multiseip(H ) € IN“ is defined byp(H)(s) = |p~ " (s) N H|. Using this, these
conditions can be reformulated a€¢) = *p(t) andp(t®) = p(¢)°.
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A process is not required to represent a completed run ofrigaal net. It might just
as well stop early. In those cases, some set of transitiandeadded to the process
such that another (larger) process is obtained. This quorets to the system taking
some more steps and gives rise to a natural order betweeegsex

Definition 8. Let P = ((8,T,F, Mo, A, £), p) andP’ = ((8',T", F', M, A", ¢'), p')
be two processes of the same rBt.is a prefix of P, notation?’ < P, andP an
extensiorof ', iff 8’ € 8§, T" € T, My = Mo, F' = F[(§'xT" U T'x8’) and
p = p[(8"UT’). (This implies thatd’ = A and¢’ = ¢ | T.)

The requirements above imply that® < P, (z,4) € I andy € 8’ U T’ thenz €
8" U T, Conversely, any subs8t’ C T satisfying(t,u) e F Aue T =teT’
uniquely determines a prefix &f. A procesgN, p) of a netN is initial if N contains
no transitions; thep(N°) is the initial marking ofV. Any process has an initial prefix.

Proposition 3. [19, Theorem 3.17]1fP; = ((8;, T:, Fi, Mo, Ai, £:), pi) (i € IN) is a
chain of processes of a nat, satisfyingP; < P, fori < j, then there exists a unique
processP = ((8,7T,F, My, A, ), p) of N with 8 = |,y i andT = (J, .y Ti—the
limit of this chain—such thdP; < P for all i € IN. O

In [29/8[19] processes were defined without the third resmént of Definitiofi 6. Goltz
and Reisig[[1P] observed that certain processes did natgpond with runs of systems,
and proposed to restrict the notion of a process to thosedmabe obtained as the limit
of a chain of finite processels 19, end of Section 3].[By [1%drems 3.18 and 2.14],
for processes of finite nets this limitation is equivalentrmwimposing the third bullet
point of Definition[®. My restriction to nets with bounded pbelism serves to recreate
this result for processes of infinite nets.

Proposition 4. Any process of a net can be obtained as the limit of a chain d@éfin
approximations.

Proof. Define thedepthof a transitionu in a causal net as one more than the maximum
of the depth of all transitionswith ¢+ . Since the set of such transitionss finite,

the depth of a transition is a finite integer. Now, given a proce8sthe approximation

P, is obtained by restricting to those transitiondlf depth< i, together with all their
pre- and postplaces, and keeping the initial marking. Glgiluese approximations form

a chain, with limit?. By induction oni one shows thdP; is finite. ForP this is trivial,

as it has no transitions. Now assufReis finite but®;.; is not. Executing, iffP; 1,

all transitions of?; one by one leads to a marking @%_; in which all remaining
transitions ofP,; are enabled. As these transitions cannot have common pespla
this violates the assumption tHBt, ; has bounded parallelism. a

9 A process-based characterisation of sp-bisimilarity

This section presents an alternative characterisatiop-bfsmilarity that will be instru-
mental in obtaining Theorerfi$ 4 and 5, saying thay, is a finer semantic equivalence
than=_,.s; and~,. This characterisation could have been presented as thiaalrief-
inition; however, the latter is instrumental in showingttka,, is coarser thare,,;, and
=.cc, and implied by Olderog’s strong bisimilarity.
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Definition 9. A process-based sp-bisimulatibetween two netd/; andNs is a set#
of triples(p1, N, p2) with (N p;) a finite process ol;, for: = 1, 2, such that
— Z contains a triple p1, N, p2) with N a causal net containing no transitions,
—if (p1,N, p2) eZ and(N', p}) with i € {1, 2} is a fin. proc. ofN; extending N, p;)
thenN; with j:=3—i has aproces§\’, o) > (N, p;) such thatp}, N', p) € Z.

Theorem 3. Two nets are sp-bisimilar iff there exists a process-bapduismulation
between them.

Proof. Let # be a process-based sp-bisimulation between Agtand N». Define
B = {{(p1(s), p2(s)) | s € N°} | (p1, N, p2) € #}. ThenZ is an sp-bisimulation:

— Letc < 1€ Zandm(c) = *t; for t; € Th. Thenl = {(p1(s), p2(s) | s € N°}
for some(p1, N, po) € %. ExtendN to N’ by adding a fresh transitionand fresh
placess; for s € S; andi € IN with F (t1,s) > i; let®t = {s € N° | p1(s) € *t1}
andt® = {s; | s € S1 At € INAF(t1,s) > i}. Furthermore, exteng, to p} by
pi(t):=t1 andp! (s;) := s. Then®pi(t) = *t1 = p{ (*t) andp (1)* = t1° = p1 (t*),
so (N, p}) is a process oV, extendingN, p1). SinceZ is a process-based sp-
bisimulation, N, has a procesgN’, py) > (N, p2) such that(p}, N, py) € Z.
Takety := ph(t). Thenly(tz) = In(t) = ¢1(t1) ande = {(p1(s), p2(s) | 5 € °t},
som(c) = {p2(s) | 5 €t} = p(*t) = ph(*t) = “ph(t) = *to. Taked :=
{(pi(s),p5(s)) | s € t°}. Thenmy (') = t1°, ma(d') = tx* andl’ :=1 —c+ ¢ =
{(p1(), ph(5)) | 5 € N° =2t} = {(pf (5), p(5)) | s € N} € 2.

— The other clause follows by symmetry.

SinceZ contains a triplep1, N, p2) with N a causal net containing no transitiong,
contains a linking := {(p1(s), p2(s)) | s € N° such thatr; (1) = p;(N°) = M; for
i = 1,2, whereM; is the initial marking ofN;. Since(N, p;) is a process ofV;, N;
must have the the same typeJdsfor i = 1, 2. It follows thatN; <, No.

Now let % be an sp-bisimulation between néfg andNs. Let%Z := {(p1, N, p2) |
(N, p;) is a finite process aN; (i = 1,2) and{(p1(s), p2(s)) | s € N°} € B}. Then
Z is a process-based sp-bisimulation.

— 9% must contain a linkind with m; (1) = M, for i = 1,2, whereM; is the initial
marking of N;; letl = {(s%,s5) | k € K}. LetN be a causal net with place$
for k € K and no transitions, and defipgfor i = 1,2 by p;(s*) = sk for k € K.
Then(N, p;) is an initial process oN; (i = 1,2) and(py, N, p2) € Z.

— Supposépi, N, p2) € Z and(N', p}) is a finite process oN; extending(N, p1).
(The case of a finite process 8f, extending(N, p;) will follow by symmetry.)
Thenl := {(p1(s), p2(s)) | s e N°} € Z. Without loss of generality, | may assume
that\’ extend$\ by just one transitiort, The definition of a causal net ensures that
*t C N°, and the definition of a process givgg*t) = ¢, wheret; := p/ (t). Let
c:={(p1(s), p2(s)) | s € *t}. Thenc < [ andry(c) = p1(°t) =p) (°t) ="*1;. Since
2 is an sp-bisimulation, there are a transitignvith £(t2) =£(t1) andmra(c) = *ta,
and a linkingc’ such thatr (¢/) = #1°, m(d) = t2* andl’ :=1 — c + ¢ € .
The definition of a process gives (t*) = t;°. This makes it possible to extend
p2 10 p SO thatps(t) = ta, p5(t*) = t2°* andc’ = {(pi(s),p5(s)) | s € t°}.
Moreover,ph (*t) = pa(*t) = ma(c) = *to. Thus(N', p}) is a finite process ol
extending(N, p,). Furthermore{(p'(s), p3(s)) | 5 € N} = {(pi(s), pb(5)) |
seN° —*t+t}=1—c+ € B Hence(p), N, ph) € Z. m
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10 Relating sp-bisimilarity to other semantic equivalencs

In this section | place sp-bisimilarity in the spectrum ofstxg semantic equivalences
for nets, as indicated in Figulé 1.

10.1 Place bisimilarity

The notion of a place bisimulation, defined|in [1], can be nefalated as follows.

Definition 10. A place bisimulatioris a structure preserving bisimulation of the form
B (whereB is defined in Sectiol5). Two net; = (S;, T, F;, M;, A;, ¢;) (i=1,2) are
strongly bisimilar notationN; ~,, N», if Ay = A, and there is a linking in a place
bisimulation withM; = 71 (1) and My = o (1).

It follows that~,, is finer than<z,, in the sense that place bisimilarity of two nets
implies their structure preserving bisimilarity.

10.2 Occurrence net equivalence

Definitions of theunfolding for various classes of Petri nets into ancurrence net
appear in[[26,35.36.16.7,23]12]—I will not repeat themehén all these cases, the
definition directly implies that if an occurrence riistresults from unfolding a nev
thenN is safe and there exists a foldingXfinto N (recall Definitior ) satisfying

— if M is a reachable marking 6f, and¢ € T is a transition ofV with *¢ < p(M)
then there is a€ T with p(t) = ¢.

Proposition 5. If such a folding fromN to NV exists, therN <, N.

Proof. The set of linkingsZ := {{(s, p(s)) | s € M} | M a reachable marking &}
is an sp-bisimulation betweéd and N. Checking this is trivial. a0

Two netsN; and N, areoccurrence net equivalefitg] if they have isomorphic unfold-
ings. Since isomorphic nets are strongly bisimilar [27] &edce structure preserving
bisimilar, it follows that occurrence net equivalence betw nets is finer than structure
preserving bisimilarity.

In [] it is pointed out that the strong bisimilarity of Oldwy “is not compatible with
unfoldings”: they show two nets that have isomorphic unfuad, yet are not strongly
bisimilar. However, when the néf is safe, the sp-bisimulation displayed in the proof of
Propositiori® is in fact a strong bisimulation, showing #th net is strongly bisimilar
with its unfolding. This is compatible with the observatioh[1] because of the non-
transitivity of strong bisimilarity.
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10.3 Causal equivalence
Causal equivalence is coarser than structure presenangilarity.
Theorem 4. If Ny <, N, for netsN; and Ny, thenN; = 445 No.

Proof. By Theoreni B there exists a process-based sp-bisimulatibetweenV; and
Na. % must contain a triplép?, N°, p9) with N° a causal net containing no transitions.
So (NO, 09) and(NO, p9) are initial processes d¥; and N,, respectively. The nén’
contains isolated places only, as many as the size of thalimtrkings of/N; and N,.

Let N be a causal net aiv;. | have to prove thal\ is also a causal net a¥,.
Without loss of generality | may assume tRdt is a prefix ofN, as being a causal net
of a given Petri net is invariant under renaming of its plaaed transitions.

So N; has a proces®; = (N, p1). By Propositiof#,P; is the limit of a chain
P <P} <P? <...offinite processes aF;. Moreover, forP) one can takéN’, o).
LetP] = (N, p¢) for i € IN. By induction oni € IN, it now follows from the properties
of a process-based sp-bisimulation that has processe®;, ™ = (N'*', pit!), such
that(N’, pi) < (N, pi+1) and(pit:, N, pit!) € 2. Using Propositiof3, the limit
P2 = (N, p2) of this chain is a process df,, contributing the causal neX. O

10.4 History preserving bisimilarity

The notion ofhistory preserving bisimilarityvas originally proposed in [32] under
the namebehavior structure bisimilaritystudied on event structures [n[13], and first
defined on Petri nets, under to the individual token integtien, in [2], under the name
fully concurrent bisimulatiomquivalence.

Definition 11. [2] Let N; = (8;, T;, Fi, Mo, As, £;) (¢ = 1, 2) be two causal nets. An
order-isomorphisnbetween them is a bijectiofi : T; — T3 such thatd; = A,
lo(B(t)) = £,(t) forall t € Ty, andt I wiff 3(t) F5 B(u) forallt,u e Ty.

Definition 12. [2] A fully concurrent bisimulatiorbetween two netsv; and N, is a
setZ of triples((p1, N1), 8, (N2, p2)) with (N;, p;) a finite process oN;, fori =1, 2,
andg an order-isomorphism betweé¥fy andN-, such that
— Z contains a triple(p1,N1), 3, (N2, p2)) with N; containing no transitions,
— if (Py, B, P2) €% andP; with i € {1, 2} is a fin. proc. ofN; extendingP;, thenN;
with j := 3—i has a proces®) > P; such thatP}, 3, P,) € % for somes’ 2 8.
Write N1 =, Na or Ny =, N iff such a bisimulation exists.

It follows immediately from the process-based characitios of sp-bisimilarity in
Sectior® that fully concurrent bisimilarity (or historygserving bisimilarity based on
the individual token interpretation of nets) is coarsentbp-bisimilarity.

Theorem 5. If Ny &, N, for netsN; andNa, thenN; ~j.p No.

Proof. A process-based sp-bisimulation is simply a fully concuirtgsimulation with
the extra requirement thgtmust be the identity relation. a
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11 Inevitability for non-reactive systems

A run or execution of a system modelled as PetriNetan be formalised as a path of
N (defined in Sectiofl3) or a process &t (defined in Sectiofil8). A path or process
representing a complete run of the represented system—haméstnot just the first
part of a larger run—is sometimes called@mpletepath or process. Once a formal
definition of a complete path or process is agreed upon, @ndcis inevitablein a net
N iff each complete path (or each complete proces$y @bntains a transition labelled
b. In case completeness is defined both for paths and pro¢éssekefinitions ought to
be such that they give rise to the same concept of inevitgbili

The definition of which paths or processes count as being egdepends on
two factors: (1) whether actions that a net can perform bgdia transition are fully
under control of the represented system itself or (alsohefenvironment in which it
will be running, and (2) what type of progress or fairnessiaggtion one postulates to
guarantee that actions that are due to occur will actualbpba. In order to address (2)
first, in this section | deal only with nets in which all activis fully under control of the
represented system. In Section 14 | will generalise thelosions to reactive systems.

When making no progress or fairness assumptions, a systeemsahas the option
not to progress further, and all paths and all processe®anplete—in particular initial
paths and processes, containing no transitions. Constguenaction is inevitable in
any net, so each semantic equivalence respects inewabili

When assuming progress, but not justness or fairness, fingerpath or process is
complete, and a finite path or process is complete iff it isimak in the sense that it has
no proper extension. In this setting, interleaving bisarity, and hence also each finer
equivalence, respects inevitability. The argument is #minterleaving bisimulation
induces a relation between the paths of two related Netand N,, such that

— each path ofV; is related to a path aV, and vice versa,
— if two paths are related, either both or neither contain @asiteon labelled,
— if two paths are related, either both or neither of them arepete.

In the rest of this paper | will assume justness, and heneemlsgress, but not
(weak or strong) fairness, as explained in Sedfioh 1.4.ignsthiting a process jastor
complet iff it is maximal, in the sense that it has no proper extension

Example 3.The net depicted on the right has
complete process performing the actiomfinitely b ‘tb_@ a :@
often, but never the actioh It consumes each to- t*

ken that is initially present or stems from any firing of thertsition:®. Henceb is not
inevitable. This fits with the intuition that if a transitia@ctcurrence is perpetually en-
abled it will eventually happen—nbut only when strictly adhg to the individual token
interpretation of nets. Under this interpretation, eadhdiof t* using a particular token
is a different transition occurrence. It is possible to stthe an infinite sequence aé

in such a way that none such transition occurrence is peajpenabled from some
point onwards.

4 The term “complete” is meant to vary with the choice of a pesgror fairness assumption;
when assuming only justness, it is set to the value “just”.
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When adhering to the collective token interpretation osn#te actiorb could be
considered inevitable, as in any execution schedulignly, transitiort” is perpetually
enabled. Since my structure preserving bisimulation fithiwithe individual token
interpretation, here one either should adhere to thatpnégation, or restrict attention
to safe nets, where there is no difference between bothpirgitions.

12 History preserving bisimilarity does not respect inevitbility

52
b 4—@1—v a |t ty| a 4—@3
51 51
3
51
b 4—@1—v a |t ti| a 4—@3
50 50
£
: O :
50 s 53

Fig. 5. A net in which the actior is not inevitable

Consider the safe neé¥; depicted in Figur&l5, and the nat obtained fromN; by
exchanging for any transitiatj (i>0) the preplace! , for s*. The netV, performsin
parallel an infinite sequence oftransitions (where at each stép0 there is a choice
betweert! andt?) and a singlé-transition (where there is a choice betwegfor i >0).

In N, the actiorb is inevitable. InVy, on the other hand,is not inevitable, for the run
of Ny in which ¢! is chosen ovet! for all i>0 is complete, and cannot be extended
which ab-transition. Thus, each semantic equivalence that equétesd NV, fails to
respect inevitability.

Theorem 6. Causal equivalence does not respect inevitability.

Proof. N1 =..us N2, because both nets have the same causal nets. One of theie net
depicted in FigurEl6; the others are obtained by omittingttransition, and/or omitting
all but a finite prefix of the:-transitions. a
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Fig. 6. A causal net ofV; and N,

Theorem 7. History preserving bisimilarity does not respect ineviligb

Proof. Recall thatNV; and N differ only in their flow relations, and have the same set
of transitions. | need to describe a fully concurrent bidation # betweenV; andNs.
Z consists of a set of triples, each consisting of a proceg$,0f related process of
N, and an order isomorphism between them. First of all | inelaltitriples(P1, 3, P2)
where®; is an arbitrary process d¥;, P- is the unique process &, that induces the
same set of transitions &3, and 3 relates transition of’; and P, when they map
to the same transition a¥; (=1, 2). Secondly, | include all triple§P;, 3, P2) where
P, is an arbitrary process a¥, inducing bothtz and tﬁc for somek>0, andP; is
any process ofV; that induces the same transitionsJasexcept that, for somé>k
the induced transition! , if present, is replaced b}, and¢? is replaced byt’. (3
should be obvious.) It is trivial to check that the resultietation is a fully concurrent
bisimulation indeed. |

13 Structure preserving bisimilarity respects inevitability

Definition 13. A netN is called acompletecausal net of a neV if it is the first com-
ponent of a maximal proces¥, p) of N. Two netsN; and N, arecomplete causal net
equivalentnotation=.., if they have the same complete causal nets.

Since the causal nets of a n&t are completely determined by the complete causal
nets of N, namely as their prefixesy; =.. Ny implies N1 = 4,s. Na. It follows
immediately from the definition of inevitability that .. respects inevitability. Thus, to
prove thatt ,, respects inevitability it suffices to show that,, is finer than=...

Theorem 8. If Ny <, N, for netsN; and N, thenN; =.. N».

Proof. SupposeV; <, N,. By Theoren B there exists a process-based sp-bisimulation
Z betweenN; and N,. % must contain a triple(p?,NO,pg) with N° a causal net
containing no transitions. S&N’, p?) and(N°, p9) are initial processes af; and Ny,
respectively. The néy" contains isolated places only.

Let N be a complete causal net of;. | have to prove thal\ is also a complete
causal net ofV,. Without loss of generality | may assume thdt is a prefix ofN, as
being a complete causal net of a given Petri net is invariatdéurenaming of its places.

So N; has a complete procedy = (N, p;). By Propositiorf #,P; is the limit
of a chainﬂD(lJ < ﬂ)} < ﬂ’f < ... of finite processes ofV;. Moreover, forﬂD(lJ one
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can take(N", p9). Let P} = (N*, pi) for i € IN. By induction oni € IN, it now fol-
lows from the properties of a process-based sp-bisimulatat V2 has processes
Pyt = (N, pith), such that ', pi) < (N'*, pit!) and (!, N', pit!) € 2.
Using Propositiof]3, the limP; = (N, p2) of this chain is a process df,. It remains
to show thatP; is complete.

Towards a contradiction, 18, = (N, p2.,) be a proper extension 6, say with
just one transitiony.. Then®u C N°. By the third requirement on occurrence nets of
Definition[@, their are only f|n|tely many transitionswith (¢,u) € S"’L Hence one
of the finite apprOX|mat|on§\f of N contains all these transitions. So C (Nk)
Let, for all i > k, P, = (N, pgu) be the finite prefix ofP,, that extendsP;, with
the single transition.. Then®,,, < P.-' for all i > k, and the limit of the chain
ﬂ? ﬂ””l <...isPy,. By |nduct|on on € IN, it now follows from the properties of
a process based sp-bisimulation that has processe®;, (CN';, pt,) foralli >k,
such that(pi,,. N\, ph,) € 2, (N, pb) < (N, gk, ) and (N, p3,) < (NS i),
Using Propositiof 13, the |Iml'fPlu = (N, p1.) of this chain is a process df;. It
extendsP; with the single transitiom, contradicting the maximality dP;. a

14 Inevitability for reactive systems

In the modelling of reactive systems, an action performed Imgt is typically a syn-
chronisation between the net itself and its environmenthSn action can take place
only when the netis ready to performit, as well as its envinent. In this setting, an ad-
equate formalisation of the concepts of justness and ilenilly requires keeping track
of the set of actions that from some point onwards are bloblggte environment—e.g.
because the environmentis not ready to partake in the sgnigation. Such actions are
not required to occur eventually, even when they are peafigtenabled by the net it-
self. Let’s speak of & -environmentf Y is this set of actions. In Sectiénl11 | restricted
attention to()-environments, in which an action can happen as soon as itabled
by the net in question. In[15] a path is call&djust iff, when assuming justness, it
models a complete run of the represented systemliresvironment. The below is a
formalisation for this concept for Petri nets under thevidlial token interpretation.

Definition 14. A process of a net i¥ -just or Y'-completet each of its proper exten-
sions adds a transition with a label¥h

Note that a just or complete process as defined in Selction d @-jast or )-complete
process. In applications there often is a subset of actioatsare known to be fully
controlled by the system under consideration, and not lsntgronment. Such actions
are often calledhon-blocking A typical example from process algebral[24] is the inter-
nal actionr. In such a settingy-environments exists only for sets of actiofisC ¢,
where% is the set of all non-non-blocking actions.

A process of a net isompletéf it models a complete run of the represented system
in some environment. This is the case iff itiscomplete for some sé&t C ¢, which
is the case iff it is6-complete.

In [B4], non-blocking is a property of transitions ratheamhactions, and non-
blocking transitions are calleubt Transitions that are not hot aceld, which inspired
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my choice of the latte#” above. In this setting, a proce$s= (N, p) is complete iff
the markingo(N°) enables cold transitions only [34].

Definition 15. A actionb is Y-inevitablein a net if eachY’-complete process contains
a transition labelled. A semantic equivalence respectsy -inevitability if whenever
N1 =~ N> andb is Y-inevitable in N1, thenb is Y-inevitable in Ns. It respects in-
evitability iff it respectsY -inevitability for eachy” C €.

In Sectior IR it is shown that ..., and~; do not respecf-inevitability. From this

it follows that they do not respect inevitability. In Sectid3 it is shown that=,
does respedt-inevitability. By means of a trivial adaptation the samegdfrshows that
£, respects’-inevitability, for arbitraryY”. All that is needed is to assume that the
transitionu in that proof has a labet Y. Thus<,, respects inevitability.

15 Conclusion

This paper proposes a novel semantic equivalence for dsystems represented as
Petri nets:structure preserving bisimilarityAs a major application—the one that in-
spired this work—it is used to establish the agreement batlee operational Petri net
semantics of the process algebra CCSP as proposed by Old@abis denotational
counterpart. An earlier semantic relation used for thigopae was Olderog’strong
bisimilarity on safe Petri nets, but that relation failed to be transitiveereby conjec-
ture that on the subclass of occurrence nets, strong basitgibnd structure preserving
bisimilarity coincide. If this it true, it follows, togetmewith the observations of Sec-
tion[@ that strong bisimilarity is included in structure peeving bisimilarity, and of
Section 10.R that each safe net is strongly bisimilar wihuinfolding into an occur-
rence net, that on safe nets structure preserving bisityilarthe transitive closure of
strong bisimilarity.

Sectior I.R proposes nine requirements on a semantic égpiesthat is used for
purposes like the one above. | have shown that structuremiag bisimilarity meets
eight of these requirements and conjecture that it meet®thaining one as well.

— It meets Requirement 1, that it respects branching time casmsequence of Theo-
rem[3, saying that it is finer than history preserving bisamity, which is known to
be finer than interleaving bisimilarity.

— It meets Requirement 2, that it fully captures causality emcurrency (and their
interplay with branching timﬁalso as a consequence of Theofém 5.

— It meets Requirement 3, that it respects inevitability @mitie standard interpreta-

tion of Petri nets that assumes justness but not fairRess)shown in Sectidn13.

It meets Requirement 4, that it is real-time consistent, r@salt of Theorerfil5.

| conjecture that it meets Requirement 5, that it is presbuveler action refinement.
It meets Requirement 6, that it is finer than causal equicalgny Theorerfl4.

It meets Requirement 7, that it is coarser than,., as shown in Sectidn 10.2.

It meets Requirement 8, that it is a congruence for the CC®Patqrs, by Thni]2.
It meets Requirement 9, that it allows to establish agre¢fetween the opera-
tional and denotational interpretations of CCSP operaginge it is coarser than
Olderog'’s strong bisimilarity, as shown in Sectidn 6.

5 when taking the individual token interpretation of netsrestricting attention to safe ones
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Moreover, structure preserving bisimilarity is the firstolm equivalence that meets
these requirements. In fact, it is the first that meets theRexyuirements 3, 4, 7 and 9.

Acknowledgemenitly thanks to Ursula Goltz for proofreading and valuable fesk.
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