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Abstract. In 1987 Ernst-Rüdiger Olderog provided an operational Petri net se-
mantics for a subset of CCSP, the union of Milner’s CCS and Hoare’s CSP. It
assigns to each process term in the subset a labelled, safe place/transition net.
To demonstrate the correctness of the approach, Olderog established agreement
(1) with the standard interleaving semantics of CCSP up to strong bisimulation
equivalence, and (2) with standard denotational interpretations of CCSP opera-
tors in terms of Petri nets up to a suitable semantic equivalence that fully respects
the causal structure of nets. For the latter he employed a linear-time semantic
equivalence, namely having the same causal nets.

This paper strengthens (2), employing a novel branching-time version of
this semantics—structure preserving bisimilarity—that moreover preserves in-
evitability. I establish that it is a congruence for the operators of CCSP.

1 Introduction

The system description languages CCS and CSP have convergedto one theory of pro-
cesses which—following a suggestion of M. Nielsen—was called “CCSP” in [26]. The
standard semantics of this language is in terms of labelled transition systems modulo
strong bisimilarity, or some coarser semantic equivalence. In the case of CCS, a labelled
transition system is obtained by taking as states the closedCCS expressions, and as tran-
sitions those that are derivable from a collection of rules by induction on the structure
of these expressions [24]; this is called a(structural) operational semantics[30]. The
semantics of CSP was originally given in quite a different way [3,20], but [28] provided
an operational semantics of CSP in the same style as the one ofCCS, and showed its
consistency with the original semantics.

Such semantics abstract from concurrency relations between actions by reducing
concurrency to interleaving. An alternative semantics, explicitly modelling concurrency
relations, requires models like Petri nets [33] or event structures [25,36]. In [36,21]
non-interleaving semantics for variants of CCSP are given in terms of event structures.
However, infinite event structures are needed to model simple systems involving loops,
whereas Petri nets, like labelled transition systems, offer finite representations for some
such systems. Denotational semantics in terms of Petri netsof the essential CCSP op-
erators are given in [18,35,16]—see [27] for more references. Yet a satisfactory deno-
tational Petri net semantics treating recursion has to my knowledge not been proposed.

⋆ NICTA is funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program.
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Olderog [26,27] closed this gap by giving an operational netsemantics in the style
of [30,24] for a subset of CCSP including recursion—to be precise:guardedrecursion.
To demonstrate the correctness of his approach, Olderog proposed two fundamental
properties such a semantics should have, and established that both of them hold [27]:

– Retrievability. The standard interleaving semantics for process terms should be re-
trievable from the net semantics.

– Concurrency. The net semantics should represent the intended concurrency of pro-
cess terms.

The second requirement was not met by an earlier operationalnet semantics from [5].
To formalise the first requirement, Olderog notes that a Petri net induces a labelled

transition system through the firing relation between markings—theinterleaving case
graph—and requires that the interpretation of any CCSP expression as a state in a la-
belled transition system through the standard interleaving semantics of CCSP should be
strongly bisimilar to the interpretation of this expression as a marking in the interleaving
case graph induced by its net semantics.

To formalise the second requirement, he notes that the intended concurrency of
process terms is clearly represented in the standard denotational semantics of CCSP
operators [18,35,16], and thus requires that the result of applying a CCSP operator to
its arguments according to this denotational semantics yields a similar result as doing
this according to the new operational semantics. The correct representation of recursion
follows from the correct representation of the other operators through the observation
that a recursive call has the very same interpretation as a Petri net as its unfolding.

A crucial parameter in this formalisation is the meaning of “similar”. A logical
choice would be semantic equivalence according to one of thenon-interleaving equiv-
alences found in the literature, where a finer or more discriminating semantics gives a
stronger result. To match the concurrency requirement, this equivalence shouldrespect
concurrency, in that it only identifies nets which display the same concurrency rela-
tions. In this philosophy, the semantics of a CCSP expression is not so much a Petri
net, but a semantic equivalence class of Petri nets, i.e. a Petri net after abstraction from
irrelevant differences between nets. For this idea to be entirely consistent, one needs to
require that the chosen equivalence is a congruence for all CCSP constructs, so that the
meaning of the composition of two systems, both representedas equivalence classes of
nets, is independent of the choice of representative Petri nets within these classes.

Instead of selecting such an equivalence, Olderog instantiates “similar” in the above
formalisation of the second requirement withstrongly bisimilar, a new relation between
nets that should not be confused with the traditional relation of strong bisimilarity
between labelled transition systems. As shown in [1], strong bisimilarity fails to be
an equivalence: it is reflexive and symmetric, but not transitive.

As pointed out in [27, Page 37] this general shortcoming of strong bisimilarity “does
not affect the purpose of this relation” in that book: there it “serves as an auxiliary no-
tion in proving that structurally different nets are causally equivalent”. Herecausal
equivalencemeans having the same causal nets, wherecausal nets[29,34] model con-
current computations or executions of Petri nets. So in effect Olderog does choose a
semantic equivalence on Petri nets, namely having the same concurrent computations
as modelled by causal nets. This equivalence fully respectsconcurrency.
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1.1 Structure preserving bisimilarity

The contribution of the present paper is a strengthening of this choice of a semantic
equivalence on Petri nets. I propose the novelstructure preserving bisimulationequiv-
alence on Petri nets, and establish that the result of applying a CCSP operator to its ar-
guments according to the standard denotational semantics yields a structure preserving
bisimilar result as doing this according to Olderog’s operational semantics. The latter
is an immediate consequence of the observation that structure preserving bisimilarity
between two nets is implied by Olderog’s strong bisimilarity.

bisimulation
semantics

trace
semantics

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

structure
preserving
semantics

≈it

≈ib
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≈st

≈sb

≈2t

≈2b

≈STt

≈STb
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≈h

≈h (collective)

≡caus

↔sp

≡occ

≈pb

BRANCHING TIME

LINEAR TIME

ABSTRACT FROM CAUSALITY/CONCURRENCY CAPTURE CAUSALITY/CONCURRENCY

Fig. 1. A spectrum of semantic equivalences on Petri nets

Figure 1 shows a map of some equivalence relations on nets found in the literature,
in relation to the new structure preserving bisimilarity,↔sp. The equivalences become
finer when moving up or to the right; thus coarser or less discriminating when follow-
ing the arrows. The rectangle from≈it to ≈h is taken from [10]. The vertical axis is
the linear time – branching time spectrum, with trace equivalenceat the bottom and
(strong) bisimulation equivalence, or bisimilarity, at the top. A host of intermediate
equivalences is discussed in [11]. The key difference is that linear timeequivalences,
like trace equivalence, only consider the set of possible executions of a process, whereas
branching timeequivalences, like bisimilarity, additionally take into account at which
point the choice between two executions is made. The horizontal axis indicates to what
extent concurrency information is taken into account.Interleavingequivalences—on
the left—fully abstract from concurrency by reducing it to arbitrary interleaving;step
equivalences additionally take into account the possibility that two concurrent actions
happen at exactly the same moment;split equivalences recognise the beginning and end
of actions, which here are regarded to be durational, thereby capturing some informa-
tion about their overlap in time;ST-or interval equivalences fully capture concurrency
information as far as possible by considering durational actions overlapping in time; and
partial orderequivalences capture the causal links between actions, andthereby all con-
currency. By taking the product of these two axes, one obtains a two-dimensional spec-
trum of equivalence relations, with entries likeinterleaving bisimulationequivalence
≈ib andpartial order traceequivalence≈pt. For the right upper corner several par-
tial order bisimulation equivalences were proposed in the literature; according to [13]
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thehistory preserving bisimulationequivalence≈h, originally proposed by [32], is the
coarsest one that fully captures the interplay between causality and branching time.

The causal equivalence employed by Olderog,≡caus , is a linear time equivalence
strictly finer than≈pt. Since it preserves information about the number of preplaces
of a transition, it is specific to a model of concurrency basedon Petri nets; i.e. there
is no obvious counterpart in terms of event structures. I found only two equivalences
in the literature that are finer than both≡caus and≈h, namelyoccurrence net equiva-
lence[16]—≡occ—and theplace bisimilarity≈pb of [1]. Two nets are occurrence net
equivalent iff they have isomorphic unfoldings. Theunfolding, defined in [25], asso-
ciates with a given safe Petri netN a loop-free net—anoccurrence net—that combines
all causal nets ofN , together with their branching structure. This unfolding is simi-
lar to the unfolding of a labelled transition system into a tree, and thus the interleaving
counterpart of occurrence net equivalence istree equivalence[11], identifying two tran-
sition systems iff their unfoldings are isomorphic. The place bisimilarity was inspired
by Olderog’s strong bisimilarity, but adapted to make it transitive, and thus an equiva-
lence relation. My new equivalence↔sp will be shown to be strictly coarser than≡occ

and≈pb, yet finer than both≡caus and≈h.
The equivalences discussed above (without the diagonal line in Figure 1) are all

defined on safe Petri nets. Additionally, the definitions generalise to unsafe Petri nets.
However, there are two possible interpretations of unsafe Petri nets, called thecollec-
tive tokenand theindividual tokeninterpretation [12], and this leads to two versions of
history preserving bisimilarity. The history preserving bisimilarity based on the indi-
vidual token interpretation was first defined for Petri nets in [2], under the namefully
concurrent bisimulationequivalence. At the level of ST-semantics the collective and in-
dividual token interpretations collapse. The unfolding ofunsafe Petri nets, and thereby
occurrence net equivalence, has been defined for the individual token interpretation only
[7,23,12], and likewise causal equivalence can be easily generalised within the individ-
ual token interpretation. The new structure preserving bisimilarity falls in the individual
token camp as well.

1.2 Criteria for choosing this semantic equivalence

In selecting a new semantic equivalence for reestablishingOlderog’s agreement of op-
erational and denotational interpretations of CCSP operators, I consider the following
requirements on such a semantic equivalence (with subsequent justifications):
1. it should be a branching time equivalence,
2. it should fully capture causality relations and concurrency (and the interplay be-

tween causality and branching time),
3. it should respectinevitability [22], meaning that if two systems are equivalent, and

in one the occurrence of a certain action is inevitable, thenso is it in the other,
4. it should bereal-time consistent[16], meaning that for every association of execu-

tion times to actions, assuming that actions happen as soon as they can, the running
times associated with computations in equivalent systems should be the same,

5. it should bepreserved under action refinement[4,13], meaning that if in two equiv-
alent Petri nets the same substitutions of nets for actions are made, the resulting
nets should again be equivalent,
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6. it should be finer than Olderog’s causal equivalence,
7. it should not distinguish systems whose behaviours are patently the same, such as

Petri nets that differ only in their unreachable parts,
8. it should be a congruence for the constructs of CCSP,
9. and it should allow to establish agreement between the operational and denotational

interpretations of CCSP operators.

Requirement 1 is the driving force behind this contribution. It is motivated by the insight
that branching time equivalences better capture phenomenalike deadlock behaviour.
Since in general a stronger result on the agreement between operational and denota-
tional semantics is obtained when employing a finer semantics, I aim for a semantics
that fully captures branching time information, and thus isat least as discriminating as
interleaving bisimilarity.

Requirement 2 is an obvious choice when the goal of the project is to capture con-
currency explicitly. The combination of Requirements 1 and2 then naturally asks for an
equivalence that is at least as fine as≈h. One might wonder, however, for what reason
one bothers to define a semantics that captures concurrency information. In the litera-
ture, various practical reasons have been given for preferring a semantics that (partly)
respects concurrency and causality over an interleaving semantics. Three of the more
prominent of these reasons are formulated as requirements 3, 4 and 5 above.

Requirement 3 is manifestly useful when considering liveness properties of systems.
Requirement 4 obviously has some merit when timing is an issue. Requirement 5 is
useful in system design based on stepwise refinement [13].

Requirement 6 is only there so that I can truthfully state to have strengthened
Olderog’s agreement between the denotational and operational semantics, which was
stated in terms of causal equivalence. This requirement will not be needed in my justi-
fication for introducing a new semantic equivalence—and neither will Requirement 2.

Requirement 7 is hardly in need of justification. The paper [1] lists as a desirable
property of semantic equivalences—one that is not met by their own proposal≈pb—
that they should not distinguish nets that have isomorphic unfoldings, given that un-
folding a net should not be regarded as changing it behaviour. When working within
the individual token interpretation of nets I will take thisas a suitable formalisation of
Requirement 7.

The argument for Requirement 8 has been given earlier in thisintroduction, and
Requirement 9 underlies my main motivation for selecting a semantic equivalence in
the first place.

1.3 Applying the criteria

Table 1 tells which of these requirements are satisfied by thesemantic equivalences
from Section 1.1 (not considering the one collective token equivalence there). The first
two rows, reporting which equivalences satisfy Requirements 1 and 2, are well-known;
these results follow directly from the definitions. The third row, reporting on respect for
inevitability, is a contribution of this paper, and will be discussed in Section 1.4, and
delivered in Sections 11–14.
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Table 1.Which requirements are satisfied by the various semantic equivalences

Equivalence ≈tree ≡occ

≈ib ≈sb ≈2b ≈STb ≈h ↔sp ≈pb

Requirement ≈it ≈st ≈2t ≈STt ≈pt ≡caus

1. Branching time × X X × X × X × X × X × X X X

2. Causality × × × × × × × × × X X X X X X

3. Inevitability × × × × × × × × × × × × X X X

4. Real-time consistency× × × × × × × × X × X × X X X

5. Action refinement × × × × × × × X X X X X? X? X?
6. Finer than≡caus × × × × × × × × × × × X X X X

7. Coarser than≡occ X X X X X X X X X X X X X X ×
8. Congruence X X X

9. Operat.≡ denotat. X X × X X X X X X X X X X ×

Regarding Row 4, In [16] it is established that ST-bisimilarity is real-time consis-
tent. Moreover, the formal definition is such that if a semantic equivalence≈ is real-
time consistent, then so is any equivalence finer than≈. Linear time equivalences are
not real-time consistent, and neither is≈2b [17].

In [13] it is established that≈pt and≈h are preserved under action refinement,
but interleaving and step equivalences are not, because they do not capture enough
information about concurrency. In [10] it is shown that≈STt and≈STb are already
preserved under action refinement, whereas by [17] split semantics are not. I conjecture
that≡caus and≡occ are also preserved under action refinement, but I have not seen a
formal proof. I also conjecture that the new↔sp is preserved under action refinement.

Rows 6 and 7 follow as soon as I have formally established the implications of
Figure 1 (in Section 10). As for Row 8, I will show in Section 7 that↔sp is a congru-
ence for the operators of CCSP. That also≈it and≈ib are congruences for CCSP is
well known. The positive results in Row 9 follow from the factthat Olderog’s strong
bisimilarity implies↔sp, which will be established in Section 6.

Requirements 1 and 6 together limit the search space for suitable equivalence re-
lations to≡occ, ≈pb and the new↔sp. When dropping Requirement 6, but keeping
2, also≈h becomes in scope. When also dropping 2, but keeping 4, I gain≈STb as a
candidate equivalence. However, both≈h and≈STb will fall pray to Requirement 3, so
also without Requirements 2 and 6 the search space will be limited to≡occ, ≈pb and
the new↔sp.

Requirement 7 rules out≈pb, as that equivalence makes distinctions based on un-
reachable parts of nets [1]. The indispensable Requirement9 rules out≡occ, since that
equivalence distinguishes the operational and denotational semantics of the CCSP ex-
pressiona0 + a0. According to the operational semantics this expression has only one
transition, whereas by the denotational semantics it has two, and≡occ does not collapse
identical choices. The same issue plays in interleaving semantics, where the operational
and denotational transition system semantics of CCSP do notagree up to tree equiva-
lence. This is one of the main reasons that bisimilarity is often regarded as the top of
the linear time – branching time spectrum.

This constitutes the justification for the new equivalence↔sp.
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1.4 Inevitability

The meaning of Requirement 3 depends on which type of progress or fairness property
one assumes to guarantee that actions that are due to occur will actually happen. Lots of
fairness assumption are mentioned in the literature, but, as far as I can tell, they can be
classified in exactly 4 groups:progress, justness, weak fairnessandstrong fairness[15].
These four groups form a hierarchy, in the sense that one cannot consistently assume
strong fairness while objecting to weak fairness, or justness while objecting to progress.

Strong and weak fairness deal with choices that are offered infinitely often. Suppose
you have a shop with only two customersA andB that may return to the shop to buy
something else right after they are served. Then it is unfairto only serve customer
A again and again, whileB is continuously waiting to be served. In caseB is not
continuously ready to be served, but sometimes goes home to sleep, yet always returns
to wait for his turn, it is weakly fair to always ignore customerB in favour ofA, but
not strongly fair.

Weak and strong fairness assumptions can be madelocally, pertaining tosomere-
peating choices of the modelled system but not to others, orglobally, pertaining to all
choices of a given type. Since the real world is largely unfair, strong and weak fairness
assumptions need to be made with great caution, and they willnot appear in this paper.

Justness and progress assumptions, on the other hand, come only in the global vari-
ant, and can be safely assumed much more often. A progress assumption says that if a
system can do some action (that is not contingent on externalinput) it will do an action.
In the example of the shop, if there is a customer continuously ready to be served, and
the clerk stands pathetically behind the counter staring atthe customer but not serving
anyone, there is a failure of progress. Without assuming progress, no action is inevitable,
because it is always possible that a system will remain in itsinitial state without ever
doing anything. Hence the concept of inevitability only makes sense when assuming at
least progress.

Justness [8,15] says roughly that if a parallel component can make progress (not
contingent on input from outside of this component) it will do so. Suppose the shop has
two counters, each manned by a clerk, and, whereas customerA is repeatedly served
at counter 1, customerB is ready to be served by counter 2, but is only stared at by a
pathetic clerk. This is not a failure of progress, as in any state of the system someone will
be served eventually. Yet it counts as a failure of justness.In the context of Petri nets,
a failure of justness can easily be formalised as an execution, during which, from some
point onwards, all preplaces of a given transition remain marked, yet the transition never
fires [14]. One could argue that, when taking concurrency seriously, justness should be
assumed whenever one assumes progress.

Inevitability can be easily expressed in temporal logics like LTL [31] or CTL [6],
and it is well known that strongly bisimilar transition systems satisfy the same tem-
poral formulas. This suggests that interleaving bisimilarity already respects inevitabil-
ity. However, this conclusion is warranted only when assuming progress but not just-
ness, or perhaps also when assuming some form of weak or strong fairness. The sys-
tem C := 〈X |X = aX + bX〉—using the CCSP syntax of Section 2—repeatedly
choosing between the actionsa and b, is interleaving bisimilar to the systemD :=
〈Y |Y = aY 〉‖〈Z|Z = bZ〉, which in parallel performs infinitely manyas and infinitely
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manybs. Yet, when assuming justness but not weak fairness, the execution of the action
b is inevitable inD, but not inC. This shows that when assuming justness but not weak
fairness, interleaving bisimilarity does not respect inevitability. The paper [22], which
doesn’t use Petri nets as system model, leaves the precise formulation of a justness as-
sumption for future work—this task is undertaken in the different context of CCS in
[15]. Also, respect of inevitability as a criterion for judging semantic equivalences does
not occur in [22], even though “the partial order approach” is shown to be beneficial.

In this paper, assuming justness but not strong or weak fairness, I show that neither
≈h nor≡caus respects inevitability (using infinite nets in my counterexample). Hence,
respecting concurrency appears not quite enough to respectinevitability. Respect for
inevitability, like real-time consistency, is a property that holds for any equivalence
relation finer than one for which it is known to hold already. So also none of the ST- or
interleaving equivalences respects inevitability. I showthat the new equivalence↔sp

respects inevitability. This makes it the coarsest equivalence of Figure 1 that does so.

2 CCSP

CCSP is parametrised by the choice of an infinite setAct of actions, that I will assume
to be fixed for this paper. Just like the version of CSP from Hoare [20], the version of
CCSP used here is a typed language, in the sense that with every CCSP processP an
explicit alphabetα(P ) ⊆ Act is associated, which is a superset of the set of all actions
the process could possibly perform. This alphabet is exploited in the definition of the
parallel compositionP‖Q: actions in the intersection of the alphabets ofP andQ are
required to synchronise, whereas all other actions ofP andQ happen independently.
Because of this, processes with different alphabets may never be identified, even if they
can perform the same set of actions and are alike in all other aspects. It is for this reason
that I interpret CCSP in terms oftypedPetri nets, with an alphabet as extra component.

I also assume an infinite setV of variable names. A variable is a pairXA with
X ∈ V andA ⊆ Act. The syntax of (my subset of) CCSP is given by

P ::= 0A | aP | P + P | P‖P | R(P ) | XA | 〈XA|S〉 (with XA ∈ VS)

with A ⊆ Act, a ∈ Act, R ⊆ Act × Act, X ∈ V andS a recursive specification: a set
of equations{YB = SYB

| YB ∈ VS} with VS ⊆ V × Act (thebound variablesof S)
andSYB

a CCSP expression satisfyingα(SYB
) = B for all YB ∈ VS (wereα(SYB

)
is defined below). The constant0A represents a process that is unable to perform any
action. The processaP first performs the actiona and then proceeds asP . The process
P +Q will behave as eitherP or Q, ‖ is a partially synchronous parallel composition
operator,R a renaming, and〈XA|S〉 represents theXA-component of a solution of the
system of recursive equationsS. A CCSP expressionP is closedif every occurrence of
a variableXA occurs in a subexpression〈YB|S〉 of P with XA ∈ VS .

The constant 0 and the variables are indexed with an alphabet. The alphabet of an
arbitrary CCSP expression is given by:

– α(0A) = α(XA) = α(〈XA|S〉) = A
– α(aP ) = {a} ∪ α(P )
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Table 2.Structural operational interleaving semantics of CCSP

aP
a−→ P

P
a

−→ P ′

P‖Q a−→ P ′‖Q
(a /∈ α(Q))

P
a

−→ P ′

R(P )
b−→ R(P ′)

((a, b) ∈R)

P
a

−→ P ′

P +Q
a

−→ P ′

P
a

−→ P ′, Q
a

−→ Q′

P‖Q
a

−→ P ′‖Q′
(a ∈ α(P ) ∩ α(Q))

Q
a

−→ Q′

P +Q
a−→ Q′

Q
a

−→ Q′

P‖Q a−→ P‖Q′
(a /∈ α(P ))

〈SXA
|S〉

a
−→ P ′

〈XA|S〉
a−→ P ′

– α(P +Q) = α(P‖Q) = α(P ) ∪ α(Q)
– α(R(P )) = {b | ∃a ∈ α(P ) : (a, b) ∈ R}.

Substitutions of expressions for variables are allowed only if the alphabets match. For
this reason a recursive specificationS is declared syntactically incorrect ifα(SYB

) 6=B
for someYB∈VS . The interleaving semantics of CCSP is given by the labelledtransition
relation→ ⊆ TCCSP ×Act× TCCSP on the setTCCSP of closed CCSP terms, where
the transitionsP a

−→ Q (on arbitrary CCSP expressions) are derived from the rules
of Table 2. Here〈P |S〉 for P an expression andS a recursive specification denotes
the expressionP in which 〈YB |SYB

〉 has been substituted for the variableYB for all
YB ∈ VS .

A CCSP expression iswell-typedif for any subexpression of the formaP one has
a ∈ α(P ) and for any subexpression of the formP + Q one hasα(P ) = α(Q). Thus
a0{a}+ bX∅ is not well-typed, although the equivalent expressiona0{a,b}+ bX{a,b} is.
A recursive specification〈XA|S〉 is guardedif each occurrence of a variableYB ∈ VS

in a termSZC
for someZC∈VS lays within a subterm ofSZC

of the formaP. Following
[27] I henceforth only consider well-typed CCSP expressions with guarded recursion.

In Olderog’s subset of CCSP, each recursive specification has only one equation,
and renamings must be functions instead of relations. Here Iallow mutual recursion and
relational renaming, where an action may be renamed into a choice of several actions—
or possibly none. This generalisation does not affect any ofthe proofs in [27].

Example 1.The behaviour of the customer from Section 1.4 could be givenby the
recursive specificationSCUS:

CUSCu = enter buy leaveCUSCu

indicating that the customer keeps coming back to the shop tobuy more things. Here
enter, buy, leave∈Act and CUS∈V . The customer’s alphabetCu is {enter, buy, leave}.
Likewise, the behaviour of the store clerk could be given by the specificationSCLK :

CLKCl = serveCLKCl

whereCl ={serve}. The CCSP processes representing the customer and the clerk, with
their reachable states and labelled transitions between them, are displayed in Figure 2.
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〈CUSCu |SCUS〉

buy leave〈CUSCu |SCUS〉

enter leave〈CUSCu |SCUS〉
buy

leave

〈CLKCl |SCLK 〉 serve

Fig. 2.Labelled transition semantics of customer and clerk

In order to ensure that the parallel composition synchronises thebuy-action of the cus-
tomer with theserve-action of the clerk, I apply renaming operatorsRCUS andRCLK

with RCUS(buy) = servesandRCLK (serve) = servesand leaving all other actions un-
changed, whereservesis a joint action of the renamed customer and the renamed clerk.
The total CCSP specification of a store with one clerk and one customer is

RCUS(〈CUSCu |SCUS〉)‖RCLK (〈CLKCl |SCLK 〉)

and the relevant part of the labelled transition system of CCSP is displayed below.

RCUS(〈CUSCu |SCUS〉)‖RCLK (〈CLKCl |SCLK 〉)

RCUS(buy leave〈CUSCu |SCUS〉)‖RCLK (〈CLKCl |SCLK 〉)

enter RCUS(leave〈CUSCu |SCUS〉)‖RCLK (〈CLKCl |SCLK 〉)

serves

leave

Fig. 3.Labelled transition semantics of the 1-customer 1-clerk store

One possible behaviour of this system is the sequence of actionsenter serves leave
enter, followed by eternal stagnation. This behaviour is ruled out by the progress as-
sumption of Section 1.4. The only behaviour compatible withthis assumption is the
infinite sequence of actions(enter serves leave)∞.

To model a store with two customers (A and B) and 2 clerks (I andII), I introduce
a relational renaming for each of them, defined by

RA(enter) =Aenters RA(buy) = {I servesA, II servesA} RA(leave) =A leaves
RB(enter) =B enters RB(buy) = {I servesB, II servesB} RB(leave) =B leaves

RI(serve) = {I servesA, I servesB}
RII(serve)= {II servesA, II servesB}.

The CCSP specification of a store with two clerks and two customers is
(
RA(〈CUSCu |SCUS〉)‖RB(〈CUSCu |SCUS〉)

)
‖
(
RI(〈CLKCl |SCLK 〉)‖RII(〈CLKCl |SCLK 〉)

)

and the part of the labelled transition system of CCSP reachable from that process has
3× 3× 1× 1 = 9 states and6× 4 = 24 transitions.
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3 Petri nets

A multisetover a setS is a functionC : S → IN, i.e.C ∈ INS ; let |C| :=
∑

x∈X C(x);
x ∈ S is anelement ofC, notationx ∈ C, iff C(x) > 0.
The function∅ :S → IN, given by∅(x) := 0 for all x ∈ S, is theemptymultiset overS.
For multisetsC andD overS one writesC ≤ D iff C(x) ≤ D(x) for all x ∈ S;
C ∩D denotes the multiset overS with (C ∩D)(x) := min(C(x), D(x)),
C +D denotes the multiset overS with (C +D)(x) := C(x) +D(x); and
the multisetC −D is only defined ifD ≤ C and then(C −D)(x) := C(x) −D(x).
A multisetC with C(x) ≤ 1 for all x is identified with the (plain) set{x | C(x) = 1}.
The constructionC := {f(x1, ..., xn) | xi ∈Di} of a setC out of setsDi (i= 1, ..., n)
generalises naturally to multisetsC andDi, taking the multiplicityC(x) of an element
x to be

∑
f(x1,...,xn)=x D1(x1) · ... ·Dn(xn).

Definition 1. A (typed) Petri netis a tupleN = (S, T, F,M0, A, ℓ) with
– S andT disjoint sets (ofplacesandtransitions),
– F : ((S × T ) ∪ (T × S)) → IN (theflow relationincludingarc weights),
– M0 : S → IN (the initial marking),
– A a set ofactions, thetypeof the net, and
– ℓ : T → A (the labelling function).

Petri nets are depicted by drawing the places as circles and the transitions as boxes,
containing their label. Identities of places and transitions are displayed next to the net
element. Forx, y ∈ S ∪ T there areF (x, y) arrows (arcs) from x to y. When a Petri
net represents a concurrent system, a global state of this system is given as amarking,
a multisetM of places, depicted by placingM(s) dots (tokens) in each places. The
initial state isM0.

The behaviour of a Petri net is defined by the possible moves between markings
M andM ′, which take place when a transitiont fires. In that case,t consumesF (s, t)
tokens from each places. Naturally, this can happen only ifM makes all these tokens
available in the first place. Moreover,t producesF (t, s) tokens in each places. Defini-
tion 2 formalises this notion of behaviour.

Definition 2. Let N = (S, T, F,M0, A, ℓ) be a Petri net andx ∈ S ∪ T . The multisets
•x, x•:S∪T → IN are given by•x(y) = F (y, x) andx•(y) = F (x, y) for all y∈S∪T ;
for t ∈ T , the elements of•t andt• are calledpre- andpostplacesof t, respectively.
Transitiont ∈ T is enabledfrom the markingM ∈ INS—notationM [t〉—if •t ≤ M .
In that case firingt yields the markingM ′ := M − •t+ t•—notationM [t〉M ′.

A pathπ of a Petri netN is an alternating sequenceM0t1M1t2M2t3 . . . of markings
and transitions, starting from the initial markingM0 and either being infinite or ending
in a markingMn, such thatMk[tk〉Mk+1 for all k (<n). A marking isreachableif it
occurs in such a path. The Petri netN is safeif all reachable markingsM are plain sets,
meaning thatM(s) ≤ 1 for all placess. It hasbounded parallelism[16] if there is no
reachable markingM and infinite multiset of transitionsU such that

∑
t∈U

•t ≤ M . In
this paper I consider Petri nets with bounded parallelism only, and call themnets.
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4 An operational Petri net semantics of CCSP

This section recalls the operational Petri net semantics ofCCSP, given by Olderog
[26,27]. It associates a net[[P ]] with each closed CCSP expressionP .

The standard operational semantics of CCSP, presented in Section 2, yields one big
labelled transition system for the entire language.1 Each individual closed CCSP ex-
pressionP appears as a state in this LTS. If desired, aprocess graph—an LTS enriched
with an initial state—forP can be extracted from this system-wide LTS by appointing
P as the initial state, and optionally deleting all states andtransitions not reachable from
P . In the same vein, an operational Petri net semantics yieldsone big Petri net for the
entire language, but without an initial marking. I call sucha Petri netunmarked. Each
processP ∈ TCCSP corresponds with a markingdex(P ) of that net. If desired, a Petri
net [[P ]] for P can be extracted from this system-wide net by appointingdex(P ) as its
initial marking, taking the type of[[P ]] to beα(P ), and optionally deleting all places
and transitions not reachable fromdex(P ).

The setSCCSP of places in the net is the smallest set including:

0A inaction aP prefixing µ+ ν choice
µ‖A left parallel component A‖µ right component R(µ) renaming

for A ⊆ Act, P ∈ TCCSP, a ∈ Act, µ, ν ∈ SCCSP and renamingsR. The mapping
dex : TCCSP → P(SCCSP) decomposing and expanding a process expression into a
set of places is inductively defined by:

dex(0A) = {0A}
dex(aP ) = {aP} dex(R(P )) = R(dex(P ))
dex(P +Q) = dex(P ) + dex(Q) dex(〈XA|S〉) = dex(〈SXA

|S〉)
dex(P‖Q) = dex(P )‖A ∪ A‖dex(Q) whereA = α(P ) ∩ α(Q).

HereH‖A, A‖H ,R(H) andH+K for H,K⊆SCCSP are defined element by element;
e.g.R(H) = {R(µ) | µ ∈ H}. The binding matters, so that(A‖H)‖B 6= A‖(H‖B).
Since I deal with guarded recursion only,dex is well-defined.

Following [27], I construct the unmarked Petri net(S, T, F,Act, ℓ) of CCSP with
S := SCCSP, specifying the triple(T, F, ℓ) as a ternary relation→ ⊆ INS ×Act× INS .
An elementH a

−→ J of this relation denotes a transitiont ∈ T with ℓ(t) = a such that
•t=H andt• = J . The transitionsH α

−→ J are derived from the rules of Table 3.
Note that there is no rule for recursion. The transitions of arecursive process〈XA|S〉

are taken care of indirectly by the decompositiondex(〈XA|S〉) = dex(〈SXA
|S〉),

which expands the decomposition of a recursive call into a decomposition of an ex-
pression in which each recursive call is guarded by an actionprefix.

Example 2.The Petri net semantics of the 2-customer 2-clerk store fromSection 2 is
displayed in Figure 4. It is more compact than the 9-state 24-transition labelled tran-
sition system. The name of the bottom-most place isSer‖ ∅‖RII(serve〈CLKCl |SCLK 〉)
whereSer is the alphabet{I servesA, I servesB, II servesA, II servesB}.

1 A labelled transition system(LTS) is given by a setS of statesand atransition relation
T ⊆ S × L × S for some set of labelsL . The LTS generated by CCSP hasS := TCCSP,
L := Act andT := →.
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Table 3.Operational Petri net semantics of CCSP

{aP}
a

−→ dex(P )

H
a

−→ J

R(H)
b

−→ R(J)
((a, b) ∈R)

H
a

−→ J

H‖A
a

−→ J‖A
(a /∈ A)

H ∪· K a−→ J

H ∪ (K + dex(Q))
a

−→ J

H
a−→ J K

a−→ L

H‖A ∪ A‖K
a

−→ J‖A ∪ A‖L
(a ∈ A)

H ∪· K a
−→ J

H ∪ (dex(P ) +K)
a

−→ J

H
a

−→ J

A‖H
a

−→ A‖J
(a /∈ A)

A progress assumption, as discussed in Section 1.4, disallows runs that stop after
finitely many actions. So in each run some of the actions fromSerwill occur infinitely
often. When assuming strong fairness, each of those actionswill occur infinitely often.
When assuming only weak fairness, it is possible that IIservesA and IIservesB will
never occur, as long as IservesA and IservesB each occur infinitely often, for in such
a run the actions IIservesA and IIservesB are not enabled in every state (from some
point onwards). However, it is not possible that IservesB and IIservesB never occur,
because in such a run, from some point onwards, the action IservesB is enabled in
every state.

When assuming justness but not weak fairness, a run that bypasses any two serv-
ing actions is possible, but a run that bypasses IservesB, II servesA and IIservesB
is excluded, because in such a run, from some point onwards, the action IIservesB is
perpetually enabled, in the sense that both tokens in its preplaces never move away.

A leaves • Aenters

I servesA

II servesA

B leaves • B enters

I servesB

II servesB

•

•

Fig. 4. Petri net semantics of the 2-customer 2-clerk store

Olderog [26,27] shows that the Petri net[[P ]] associated to a closed CCSP expres-
sionP is safe, and that all its reachable markings are finite; the latter implies that it
has bounded parallelism. The following result, from [26,27], shows that the standard
interleaving semantics of CCSP is retrievable from the net semantics; it establishes a
strong bisimulation relating any CCSP expression (seen as astate in a labelled transition
system) with its interpretation as a marking in the Petri netof CCSP.
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Theorem 1. There exists a relationB between closed CCSP expressions and markings
in the unmarked Petri net of CCSP, such that

– P B dex(P ) for each closed, well-typed CCSP expression with guarded recursion,

– if PBM andP a
−→ P ′ then there is a markingM ′ and transitiont with ℓ(t) = a,

M [t〉M ′ andPBM ′, and

– if PBM andM [t〉M ′ then there is CCSP processP ′ with P
ℓ(t)−−→ P ′ andPBM ′.

To formalise the concurrency requirement for his net semantics Olderog defines for
eachn-ary CCSP operatorop ann-ary operationopN on safe Petri nets, inspired by
proposals from [18,35,16], and requires that

(1) [[op(P1, . . . , Pn)]] ≈ opN ([[P1]], . . . , [[Pn]])
(2) [[〈XA|S〉]] ≈ [[〈SXA

|S〉]]

for a suitable relation≈. In fact, (2) turns out to hold taking for≈ the identity relation.
He establishes (1) taking for≈ a relation he callsstrong bisimilarity, whose definition
will be recalled in Section 6. When a relation≡ includes≈, and (1) holds for≈, then it
also holds for≡.

The operationsopN (i.e.(0A)N for A⊆Act, aN for a∈Act,RN for R⊆Act×Act,
‖N and+N ) are defined only up to isomorphism, but this is no problem as isomorphic
nets are strongly bisimilar. The definition is recalled below—it generalises verbatim
to non-safe nets, except that+N is defined only for nets whose initial markings are
nonempty plain sets.

Definition 3. [27] The net0A has typeA and consists of a single place, initially marked:
(0A)N := ({0A}, ∅, ∅, {0A}, A, ∅).

Given a netN = (S, T, F,M,A, ℓ) anda ∈ Act, takes0, ta 6∈ S ∪ T . Then the net
aNN is obtained fromN by the addition of the fresh places0 and the fresh transition
ta, labelleda, such that•ta = {s0} andta• = M . The type ofaNN will be A ∪ {a}
and the initial marking{s0}.

Given a netN = (S, T, F,M,A, ℓ) and a renaming operatorR( ), the netRN (N)
has typeR(A) := {b ∈ Act | ∃a ∈ A, (a, b) ∈R}, the same places and initial marking
asN , and transitionstb for eacht∈T andb∈Act with (ℓ(t), b)∈R. One has•tb := •t,
tb

• := t•, and the label oftb will be b.
Given two netsNi = (Si, Ti, Fi,Mi, Ai, ℓi) (i = 1, 2), their parallel composition

N1‖NN2 = (S, T, F,M,A, ℓ) is obtained from the disjoint union ofN1 andN2 by the
omission of all transitionst of T1 ∪· T2 with ℓ(t) ∈ A1 ∩ A2, and the addition of fresh
transitions(t1, t2) for all pairsti ∈ Ti (i= 1, 2) with ℓ1(t1) = ℓ2(t2) ∈ A1 ∩ A2. Take
•
(t1, t2) =

•t1 +
•t2, (t1, t2)

•
= t1

• + t2
•, ℓ(t1, t2) = ℓ(t1), andA := A1 ∪ A2.

Given netsNi = (Si, Ti, Fi,Mi, Ai, ℓi) with Mi 6= ∅ a plain set (i = 1, 2), the net
N1 +N N2 with typeA1 ∪ A2 is obtained from the disjoint union ofN1 andN2 by
the addition of the set of fresh placesM1 ×M2—this set will be the initial marking of
N1+NN2—and the addition of fresh transitionstKi for anyti∈Ti and∅ 6=K≤•ti∩Mi.
ℓ(tKi )= ℓi(t),

•
tK1 = •t1−K+(K×M2),

•
tK2 = •t2−K+(M1×K) and(tKi )

•
= ti

•.
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5 Structure preserving bisimulation equivalence

This section presents structure preserving bisimulation equivalence on nets.

Definition 4. Given two netsNi=(Si,Ti,Fi,Mi,Ai,ℓi), alink is a pair(s1, s2)∈S1×S2

of places. Alinking l∈INS1×S1 is a multiset of links; it can be seen as a pair of markings
with a bijection between them. Letπi(l)∈IN

Si be these markings, given byπ1(l)(s1) =∑
s2∈S2

l(s1, s2) for all s1 ∈ S1 andπ2(l)(s2) =
∑

s1∈S1
l(s1, s2) for all s2 ∈ S2.

A structure preserving bisimulation(sp-bisimulation) is a setB of linkings, such that
– if c ≤ l ∈ B andπ1(c) =

•t1 for t1 ∈ T1 then there are a transitiont2 ∈ T2 with
ℓ(t2) = ℓ(t1) andπ2(c) =

•t2, and a linkinḡc such thatπ1(c̄) = t1
•, π2(c̄) = t2

•

andl̄ := l − c+ c̄ ∈ B.
– if c ≤ l ∈ B andπ2(c) =

•t2 then there are at1 and ac̄ with the same properties.
N1 andN2 arestructure preserving bisimilar, notationN1↔spN2, if A1=A2 and there
is a linkingl in a structure preserving bisimulation withM1 = π1(l) andM2 = π2(l).

Note that ifB is an sp-bisimulation, then so is its downward closure{k | ∃l∈B. k ≤ l}.
Moreover, ifB is an sp-bisimulation between two nets, then the set of thoselinkings
l ∈ B for whichπ1(l) andπ2(l) are reachable markings is also an sp-bisimulation.

If B is a set of a links, letB be the set ofall linkings that are multisets overB.

Proposition 1. Structure preserving bisimilarity is an equivalence relation.

Proof. The relationId , with Id the identity relation on places, is an sp-bisimulation,
showing thatN ↔sp N for any netN .

Given an sp-bisimulationB, also{l−1 | l ∈ B} is an sp-bisimulation, showing
symmetry of↔sp.

Given linkingsh∈ INS1×S3 , k ∈ INS1×S2 andl∈ INS2×S3 , writeh ∈ k; l if there is
a multisetm∈ INS1×S2×S3 of triples of places, withk(s1, s2) =

∑
s3∈S m(s1, s2, s3),

l(s2, s3) =
∑

s1∈S m(s1, s2, s3) andh(s1, s3) =
∑

s2∈S m(s1, s2, s3). Now, for sp-
bisimulationsB andB′, alsoB;B′ := {h∈k; l | k∈B∧l∈B′} is an sp-bisimulation,
showing transitivity of↔sp. ⊓⊔

6 Strong bisimilarity

As discussed in the introduction and at the end of Section 4, Olderog defined a relation
of strong bisimilarityon safe Petri nets.

Definition 5. ForB ⊆ S1 × S2 a binary relation between the places of two safe nets
Ni = (Si, Ti, Fi,Mi, Ai, ℓi), write B̂ for the set of all linkingsl ⊆ B such thatπi(l)
is a reachable marking ofNi for i = 1, 2 andB ∩

(
π1(l) × π2(l)

)
= l. Now astrong

bisimulationas defined in [27] can be seen as a structure preserving bisimulation of the
form B̂. The netsN1 andN2 arestrongly bisimilarif A1 = A2 and there is a linkingl
in a strong bisimulation withM1 = π1(l) andM2 = π2(l).

This reformulation of the definition from [27] makes immediately clear that strong
bisimilarity of two safe Petri nets implies their structurepreserving bisimilarity. Conse-
quently, the concurrency requirement for the net semanticsfrom Olderog, as formalised
by Requirements (1) and (2) in Section 4, holds for structurepreserving bisimilarity.
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7 Compositionality

In this section I show that structure preserving bisimilarity is a congruence for the op-
erators of CCSP, or, in other words, that these operators arecompositional up to↔sp.

Theorem 2. If N1 ↔sp N2, a∈Act andR ⊆ Act×Act, thenaNN1 ↔sp aNN2 and
RN (N2)↔sp RN (N2). If N l

1
↔sp N

l
2 andN r

1
↔sp N

r
2 thenN l

1‖NN r
1
↔sp N

l
2‖NN r

2

and, if the initial markings ofN l
i andN r

i are nonempty sets,N l
1+NN r

1
↔spN

l
2+NN r

2 .

Proof. LetNi = (Si, Ti, Fi,Mi, Ai, ℓi) for i=1, 2, and letsi andui be the fresh place
and transition introduced in the definition ofaNNi. FromN1 ↔sp N2 it follows that
A1 = A2 and henceA1 ∪ {a} = A2 ∪ {a}.

Let B be an sp-bisimulation containing a linkingk with Mi = πi(k) for i = 1, 2.
Let Ba := B ∪ {h}, with h = {(s1, s2)}. Thenh links the initial markings ofaNN1

andaNN2. Hence it suffices to show thatBa is an sp-bisimulation. So supposec ≤ h
andπ1(c)=

•t1 for somet1∈T1. Thenc=h andt1=u1. Taket2 := u2 andh̄ := c̄ := k.
To show thatRN (N2) ↔sp RN (N2) it suffices to show thatB also is an sp-

bisimulation betweenRN (N2) andRN (N2), which is straightforward.
Now letN l

i=(Sl
i, T

l
i , F

l
i ,M

l
i , A

l
i, ℓ

l
i) andN r

i =(Sr
i , T

r
i , F

r
i ,M

r
i , A

r
i , ℓ

r
i ) for i=1, 2.

LetA := Al
1 ∩Ar

1 = Al
2 ∩Ar

2. Create the disjoint union ofN l
i andN r

i in the definition
of N l

i‖NN r
i by renaming all placess and transitionst of N l

i into s‖A andt‖A, and all
placess and transitionst of N r

i into A‖s andA‖t. Let Bl andBr be sp-bisimulations
containing linkingskl and kr, respectively, withM l

i
=πi(k

l) andM r
i
= πi(k

r), for
i=1, 2. TakeB := {(hl‖A)+(A‖hr) | hl∈Bl∧hr∈Br}, wherehl‖A:={(s1‖A, s2‖A)
| (s1, s2)∈hl}, andA‖hr is defined likewise. Thenπi((k

l‖A)+(A‖kr)) = πi(k
l)‖A+

A‖πi(k
r) = M l

i‖A+A‖M r
i is the initial marking ofN l

i‖NN r
i for i=1, 2, so it suffices

to show thatB is an sp-bisimulation.
So supposec≤ (hl‖A) + (A‖hr)∈B with hl ∈Bl ∧ hr ∈Br andπ1(c) =

•t1 for
t1 a transition ofN l

1‖NN r
1 . Thenc has the form(cl‖A) + (A‖cr) for cl ≤ hl ∈ Bl and

cr≤hr∈Br, andt1 has the form (i)tl1‖A for tl1 ∈ T l
1 with ℓl1(t

l
1)/∈A, or (ii) (tl1‖A,A‖t

r
1)

for tl1 ∈ T l
1 andtr1 ∈ T r

1 with ℓl1(t
l
1) = ℓr1(t

r
1) ∈ A, or (iii) A‖tr1 for tr1 ∈ T r

1 with
ℓr1(t

r
1) /∈A. In case (i) one hascr = ∅ andπ1(c

l)=
•
tl1, whereas in case (ii)π1(c

l)=
•
tl1

andπ1(c
r) = •tr1. I only elaborate case (ii); the other two proceed likewise.SinceBl

is an sp-bisimulation, there are a transitiontl2 with ℓl2(t
l
2) = ℓl1(t

l
1) andπ2(c

l) =
•
tl2,

and a linkingc̄l such thatπ1(c̄
l) = tl1

•
, π2(c̄

l) = tl2
•

and h̄l := hl − cl + c̄l ∈ Bl.
Likewise, sinceBr is an sp-bisimulation, there are a transitiontr2 with ℓr2(t

r
2) = ℓr1(t

r
1)

andπ2(c
r) = •tr2, and a linkingc̄r such thatπ1(c̄

r) = tr1
•, π2(c̄

r) = tr2
• and h̄r :=

hr − cr + c̄r ∈ Br. Taket2 := (tl2‖A,A‖t
r
2). This transition has the same label as

tl2, tr2, tl1, tr1 and (tl1‖A,A‖t
r
1) = t1. Moreover,π2(c) = π2(c

l)‖A + A‖π2(c
r) =

•
tl2‖A + A‖

•tr2 = •t2. Takec̄ := (c̄l‖A) + (A‖c̄r). Thenπ1(c̄) = t1
•, π2(c̄) = t2

• and
h̄ := (hl‖A) + (A‖hr)− c+ c̄ = (h̄l‖A) + (A‖h̄r) ∈ B.

LetN l
i=(Sl

i , T
l
i , F

l
i ,M

l
i , A

l
i, ℓ

l
i) andN r

i =(Sr
i , T

r
i , F

r
i ,M

r
i , A

r
i , ℓ

r
i ) for i=1, 2, with

M l
i andM r

i nonempty plain sets, but this time I assume the nets to already be disjoint,
and such that all the places and transitions added in the construction ofN l

i +N N r
i

are fresh. LetBl andBr be as above. Without loss of generality I may assume that
the linkingsh in Bl andBr have the property thatπi(h) is a reachable marking for
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i= 1, 2, so that the restriction ofπi(h) toM l
i orM r

i is a plain set. Define

B
+ := {hl

• + (hl
+ ⊗ kr) | hl

• + hl
+ ∈ Bl ∧ hl

+ � kl}
{hr

• + (kl ⊗ hr
+) | h

r
• + hr

+ ∈ Br ∧ hr
+ � kr} ∪ {kl ⊗ kr}

wherehl⊗hr := {((sl1, s
r
1), (s

l
2, s

r
2)) | (s

l
1, s

l
2)∈h

l∧(sr1, s
r
2)∈h

r}. Nowπi(k
l⊗kr) =

πi(k
l) × πi(k

r) = M l
i ×M r

i is the initial marking ofN l
i +N N r

i , so again it suffices
to show thatB+ is an sp-bisimulation.

So supposec ≤ hl
•+(hl

+⊗kr)∈B+ with hl
•+hl

+∈Bl, hl
+ � kl andπ1(c)=

•t1
for t1 a transition ofN l

1 +N N r
1 .

First consider the case thatc ≤ hl
•. Thenc ≤ hl

• ≤ hl
• + hl

+ ∈ Bl. SinceBl is an
sp-bisimulation, there are a transitiont2 ∈ T l

2 with ℓl2(t2) = ℓl1(t1) andπ2(c) = •t2,
and a linkingc̄ such thatπ1(c̄) = t1

•, π2(c̄) = t2
• andhl

• + hr
+ − c + c̄ ∈ Bl. Now

hl
•+(hl

+⊗kr)−c+ c̄ = (hl
•−c+ c̄)+(hr

+⊗k2)∈B+ because(hl
•−c+ c̄)+hr

+∈Bl.
In the remaining caseπ1(c) contains a place(sl1, s

r
1) ∈M l

1 ×M r
1 , sot1 must have

either the formtK1l with ∅ 6= K ≤
•
tl1 ∩ M l

1 for sometl1 ∈ T l
1, or tK1r with ∅ 6= K ≤

•tr1 ∩M r
1 for sometr1 ∈ T r

1 . First assume, towards a contradiction, thatt1 = tK1r. Then
M l

1×K≤
•
tK1r=π1(c)≤π1(h

l
•)+π1(h

l
+⊗kr). Since the places inM l

1×K⊆M l
1×M r

1

are fresh, it follows thatM l
1×K ≤ π1(h

l
+⊗kr) ≤ π1(h

l
+)×π1(k

r) ≤ π1(h
l
+)×M r

1 ,
implying thatM l

1 ≤ π1(h
l
+) andK ≤ M r

1—here I use thatM l
1 6=∅6=K andπ1(h

l
+) and

M r
1 are plain sets. However, the conditionhl

+ � kl implies thatπ1(h
l
+)�π1(k

l)=M l
1,

yielding a contradiction. Hencet1 is of the formtK1l .
Sinceπ1(c) =

•
tK1l =

•
tl1−K + (K ×M r

1 ), the linkingc must have the formc•+c′

with π1(c•) =
•
tl1 −K andπ1(c

′) = K × M r
1 . As no place in

•
tl1 − K can be in

M l
1 ×M r

1 ⊇ π1(h
l
+ ⊗ kr), it follows thatc• ≤ hl

•. Likewise, as none of the places in
K ×M r

1 can be inπ1(h
l
•), it follows thatc′ ≤ hl

+ ⊗ kr. ThusK ×M r
1 = π1(c

′) ≤
π1(h

l
+ ⊗ kr) ≤ π1(h

l
+) × π1(k

r) ≤ π1(h
l
+) × M r

1 , implying K ≤ π1(h
l
+)—again

using thatπ1(h
l
+) andM r

1 6= ∅ are plain sets. The linkinghl
+ ⊗ kr has the property

that its projectionπ1(h
l
+ ⊗ kr) is a plain set. Since a subsetc′′ of a such linking is

completely determined by its first projectionπ1(c
′′), it follows thatc′ = c+ ⊗ kr for

the unique linkingc+ ≤ hl
+ with π1(c+) = K.

Now c•+c+ ≤ hl
•+hl

+∈Bl andπ1(c•+c+)=(
•
tl1−K)+K=

•
tl1. SinceBl is an

sp-bisimulation, there are a transitiontl2∈T l
2 with ℓl2(t

l
2)=ℓl1(t

l
1) andπ2(c•+c+)=

•
tl2,

and a linkinḡc such thatπ1(c̄) = tl1
•
, π2(c̄) = tl2

•
andhl

• + hl
+ − (c• + c+) + c̄ ∈ B

l.
LetL :=π2(c+). ThenL 6=∅ sinceK 6= ∅,L = π2(c+) ≤ π2(h

l
+) ≤ π2(k

l) = M l
2 and

L = π2(c+) ≤ π2(c• + c+) =
•
tl2. By Definition 3N l

2+N N r
2 has a transitiontL2l with

ℓ(tL2l)= ℓl2(t
l
2)= ℓl1(t

l
1)= ℓ(tL1l),

•
tL2l =

•
tl2−L+(L×M l

2) = π2(c•+ c+)−π2(c+)+

(π2(c+)× π1(k
r)) = π2(c• + (c+ ⊗ kr)) = π2(c) andtL2l

•
= tl2

•
= π2(c̄). Moreover,

π1(c̄)=tl1
•
=tK1

•
. Finally,hl

•+(hl
+⊗kr)−c+c̄ = (hl

•−c•+c̄)+((hl
+−c+)⊗kr) ∈ B+

since(hl
• − c• + c′) + (hl

+−c+) ∈ Bl andhl
+−c+ ≤ hl

+ � kl.
The case supposingc ≤ hr

• + (kr ⊗ hr
+) ∈ B+ follows by symmetry, whereas the

casec ≤ kl ⊗ kr proceeds by simplification of the other two cases. ⊓⊔
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8 Processes of nets and causal equivalence

A processof a netN [29,9,19] is essentially a conflict-free, acyclic net together with
a mapping function toN . It can be obtained by unwindingN , choosing one of the
alternatives in case of conflict. It models a run, or concurrent computation, ofN . The
acyclic nature of the process gives rise to a notion of causality for transition firings in
the original net via the mapping function. A conflict presentin the original net is rep-
resented by the existence of multiple processes, each representing one possible way to
decide the conflict. This notion of process differs from the one used in process algebra;
there a “process” refers to the entire behaviour of a system,including all its choices.

Definition 6. A causal net2 is a netN = (S,T,F,M0,A, ℓN) satisfying

– ∀s ∈ S.|•s| ≤1≥ |s•| ∧ M0(s) =

{
1 if •s = ∅
0 otherwise,

– F is acyclic, i.e.,∀x ∈ S ∪ T.(x, x) 6∈ F
+, whereF+ is the transitive closure of

{(x, y) | F(x, y) > 0},
– and{t ∈ T | (t, u) ∈ F

+
} is finite for allu ∈ T.

A folding from a netN = (S,T,F,M0,A, ℓN) into a netN = (S, T, F,M0, A, ℓ) is a
functionρ : S ∪ T → S ∪ T with ρ(S) ⊆ S andρ(T) ⊆ T , satisfying

– A = A andℓN(t) = ℓ(ρ(t)) for all t ∈ T,
– ρ(M0) = M0, i.e.M0(s) = |ρ−1(s) ∩M0| for all s ∈ S, and
– ∀t ∈ T, s ∈ S. F (s, ρ(t)) = |ρ−1(s) ∩ •t| ∧ F (ρ(t), s) = |ρ−1(s) ∩ t•|. 3

A pairP = (N, ρ) of a causal netN and a folding ofN into a netN is aprocessof N .
P is calledfinite if T is finite.

Note that ifN has bounded parallelism, than so do all of its processes.

Definition 7. [27] A netN is called a causal netof a netN if it is the first component
of a process(N, ρ) of N . Two netsN1 andN2 arecausal equivalent, notation≡caus, if
they have the same causal nets.

Olderog shows that his relation of strong bisimilarity is included in≡caus [27], and
thereby establishes the concurrency requirement (1) from Section 4 for≡caus.

For N = (S,T,F,M0,A, ℓN) a causal net, letN◦
:= {s ∈ S | s• = ∅}. The

following result supports the claim that finite processes model finite runs.

Proposition 2. [19, Theorems 3.5 and 3.6]M is a reachable marking of a netN iff N
has a finite process(N, ρ) with ρ(N

◦
) = M . Hereρ(N◦

)(s) = |ρ−1(s) ∩N
◦
|.

2 A causal net [29,34] is traditionally called anoccurrence net[9,19,33]. Here, following [27], I
will not use the terminology “occurrence net” in order to avoid confusion with the occurrence
nets of [25,36]; the latter extend causal nets with forward branching places, thereby capturing
all runs of the represented system, together with the branching structure between them.

3 ForH ⊆ S, the multisetρ(H)∈ INS is defined byρ(H)(s) = |ρ−1(s)∩H |. Using this, these
conditions can be reformulated asρ(•t) = •ρ(t) andρ(t•) = ρ(t)•.
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A process is not required to represent a completed run of the original net. It might just
as well stop early. In those cases, some set of transitions can be added to the process
such that another (larger) process is obtained. This corresponds to the system taking
some more steps and gives rise to a natural order between processes.

Definition 8. Let P = ((S,T,F,M0,A, ℓ), ρ) andP′
= ((S

′
,T ′,F ′,M

′
0,A

′
, ℓ′), ρ′)

be two processes of the same net.P
′ is a prefix of P, notationP′

≤ P, andP an
extensionof P′, iff S′

⊆ S, T ′ ⊆ T, M′
0 = M0, F ′ = F ↾(S

′
×T ′ ∪ T ′×S

′
) and

ρ′ = ρ ↾(S
′
∪ T ′). (This implies thatA′

= A andℓ′ = ℓ ↾T.)

The requirements above imply that ifP′
≤ P, (x, y) ∈ F

+ andy ∈ S
′
∪ T ′ thenx ∈

S
′
∪ T ′. Conversely, any subsetT ′ ⊆ T satisfying(t, u) ∈ F

+
∧ u ∈ T ′ ⇒ t ∈ T ′

uniquely determines a prefix ofP. A process(N, ρ) of a netN is initial if N contains
no transitions; thenρ(N◦

) is the initial marking ofN . Any process has an initial prefix.

Proposition 3. [19, Theorem 3.17] IfPi = ((Si,Ti,Fi,M0i,Ai, ℓi), ρi) (i ∈ IN) is a
chain of processes of a netN , satisfyingPi ≤ Pj for i ≤ j, then there exists a unique
processP = ((S,T,F,M0,A, ℓ), ρ) of N with S =

⋃
i∈IN Si andT =

⋃
i∈IN Ti—the

limit of this chain—such thatPi ≤ P for all i ∈ IN. ⊓⊔

In [29,9,19] processes were defined without the third requirement of Definition 6. Goltz
and Reisig [19] observed that certain processes did not correspond with runs of systems,
and proposed to restrict the notion of a process to those thatcan be obtained as the limit
of a chain of finite processes [19, end of Section 3]. By [19, Theorems 3.18 and 2.14],
for processes of finite nets this limitation is equivalent with imposing the third bullet
point of Definition 6. My restriction to nets with bounded parallelism serves to recreate
this result for processes of infinite nets.

Proposition 4. Any process of a net can be obtained as the limit of a chain of finite
approximations.

Proof. Define thedepthof a transitionu in a causal net as one more than the maximum
of the depth of all transitionst with tF+u. Since the set of such transitionst is finite,
the depth of a transitionu is a finite integer. Now, given a processP, the approximation
Pi is obtained by restricting to those transitions inP of depth≤ i, together with all their
pre- and postplaces, and keeping the initial marking. Clearly, these approximations form
a chain, with limitP. By induction oni one shows thatPi is finite. ForP0 this is trivial,
as it has no transitions. Now assumePi is finite butPi+1 is not. Executing, inPi+1,
all transitions ofPi one by one leads to a marking ofPi+1 in which all remaining
transitions ofPi+1 are enabled. As these transitions cannot have common preplaces,
this violates the assumption thatPi+1 has bounded parallelism. ⊓⊔

9 A process-based characterisation of sp-bisimilarity

This section presents an alternative characterisation of sp-bisimilarity that will be instru-
mental in obtaining Theorems 4 and 5, saying that↔sp is a finer semantic equivalence
than≡caus and≈h. This characterisation could have been presented as the original def-
inition; however, the latter is instrumental in showing that ↔sp is coarser than≈pb and
≡occ, and implied by Olderog’s strong bisimilarity.
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Definition 9. A process-based sp-bisimulationbetween two netsN1 andN2 is a setR
of triples(ρ1,N, ρ2) with (N, ρi) a finite process ofNi, for i= 1, 2, such that

– R contains a triple(ρ1,N, ρ2) with N a causal net containing no transitions,
– if (ρ1,N, ρ2)∈R and(N′

, ρ′i) with i∈{1, 2} is a fin. proc. ofNi extending(N, ρi)
thenNj with j :=3−i has a process(N′

, ρ′j) ≥ (N, ρj) such that(ρ′1,N
′
, ρ′2) ∈ R.

Theorem 3. Two nets are sp-bisimilar iff there exists a process-based sp-bisimulation
between them.

Proof. Let R be a process-based sp-bisimulation between netsN1 andN2. Define
B := {{(ρ1(s), ρ2(s)) | s ∈ N

◦
} | (ρ1,N, ρ2) ∈ R}. ThenB is an sp-bisimulation:

– Let c ≤ l ∈ B andπ1(c) = •t1 for t1 ∈ T1. Thenl = {(ρ1(s), ρ2(s) | s ∈ N
◦
}

for some(ρ1,N, ρ2) ∈ R. ExtendN toN
′ by adding a fresh transitiont and fresh

placessi for s ∈ S1 andi ∈ IN with F1(t1, s) > i; let •t = {s ∈ N
◦
| ρ1(s) ∈ •t1}

andt• = {si | s ∈ S1 ∧ i ∈ IN∧F1(t1, s) > i}. Furthermore, extendρ1 to ρ′1 by
ρ′1(t) := t1 andρ′1(si) := s. Then•ρ′1(t) =

•t1 = ρ′1(
•
t) andρ′1(t)

•
= t1

• = ρ′1(t
•),

so (N′
, ρ′1) is a process ofN1, extending(N, ρ1). SinceR is a process-based sp-

bisimulation,N2 has a process(N′
, ρ′2) ≥ (N, ρ2) such that(ρ′1,N

′
, ρ′2) ∈ R.

Taket2 := ρ′2(t). Thenℓ2(t2) = ℓN(t) = ℓ1(t1) andc = {(ρ1(s), ρ2(s) | s ∈
•
t},

so π2(c) = {ρ2(s) | s ∈ •
t} = ρ2(

•
t) = ρ′2(

•
t) =

•
ρ′2(t) = •t2. Takec′ :=

{(ρ′1(s), ρ
′
2(s)) | s ∈ t

•}. Thenπ1(c
′) = t1

•, π2(c
′) = t2

• andl′ := l − c+ c′ =

{(ρ′1(s), ρ
′
2(s)) | s ∈ N

◦
−•

t+t
•} = {(ρ′1(s), ρ

′
2(s)) | s ∈ N

′◦
} ∈ B.

– The other clause follows by symmetry.
SinceR contains a triple(ρ1,N, ρ2) with N a causal net containing no transitions,B

contains a linkingl := {(ρ1(s), ρ2(s)) | s ∈ N
◦ such thatπi(l) = ρi(N

◦
) = Mi for

i = 1, 2, whereMi is the initial marking ofNi. Since(N, ρi) is a process ofNi, Ni

must have the the same type asN, for i= 1, 2. It follows thatN1 ↔sp N2.
Now letB be an sp-bisimulation between netsN1 andN2. LetR := {(ρ1,N, ρ2) |

(N, ρi) is a finite process ofNi (i = 1, 2) and{(ρ1(s), ρ2(s)) | s ∈ N
◦
} ∈ B}. Then

R is a process-based sp-bisimulation.
– B must contain a linkingl with πi(l) = Mi for i = 1, 2, whereMi is the initial

marking ofNi; let l = {(sk1 , s
k
2) | k ∈ K}. Let N be a causal net with placessk

for k ∈K and no transitions, and defineρi for i = 1, 2 by ρi(s
k) = ski for k ∈K.

Then(N, ρi) is an initial process ofNi (i= 1, 2) and(ρ1,N, ρ2) ∈ R.
– Suppose(ρ1,N, ρ2) ∈ R and(N′

, ρ′1) is a finite process ofN1 extending(N, ρ1).
(The case of a finite process ofN2 extending(N, ρ1) will follow by symmetry.)
Thenl := {(ρ1(s), ρ2(s)) | s∈N

◦
}∈B. Without loss of generality, I may assume

thatN′ extendsN by just one transition,t. The definition of a causal net ensures that
•
t ⊆ N

◦, and the definition of a process givesρ′1(
•
t) = •t1, wheret1 := ρ′1(t). Let

c := {(ρ1(s), ρ2(s)) | s ∈
•
t}. Thenc ≤ l andπ1(c)=ρ1(

•
t)=ρ′1(

•
t)= •t1. Since

B is an sp-bisimulation, there are a transitiont2 with ℓ(t2)= ℓ(t1) andπ2(c)=
•t2,

and a linkingc′ such thatπ1(c
′) = t1

•, π2(c
′) = t2

• and l′ := l − c + c′ ∈ B.
The definition of a process givesρ′1(t

•) = t1
•. This makes it possible to extend

ρ2 to ρ′2 so thatρ′2(t) := t2, ρ′2(t
•) = t2

• andc′ = {(ρ′1(s), ρ
′
2(s)) | s ∈ t

•}.
Moreover,ρ′2(

•
t) = ρ2(

•
t) = π2(c) =

•t2. Thus(N′
, ρ′2) is a finite process ofN2

extending(N, ρ2). Furthermore,{(ρ′1(s), ρ
′
2(s)) | s ∈ N

′◦
} = {(ρ′1(s), ρ

′
2(s)) |

s ∈ N
◦
− •

t+ t
•} = l − c+ c′ ∈ B. Hence(ρ′1,N

′
, ρ′2) ∈ R. ⊓⊔
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10 Relating sp-bisimilarity to other semantic equivalences

In this section I place sp-bisimilarity in the spectrum of existing semantic equivalences
for nets, as indicated in Figure 1.

10.1 Place bisimilarity

The notion of a place bisimulation, defined in [1], can be reformulated as follows.

Definition 10. A place bisimulationis a structure preserving bisimulation of the form
B (whereB is defined in Section 5). Two netsNi = (Si, Ti, Fi,Mi, Ai, ℓi) (i=1, 2) are
strongly bisimilar, notationN1 ≈pb N2, if A1 = A2 and there is a linkingl in a place
bisimulation withM1 = π1(l) andM2 = π2(l).

It follows that≈pb is finer than↔sp, in the sense that place bisimilarity of two nets
implies their structure preserving bisimilarity.

10.2 Occurrence net equivalence

Definitions of theunfolding for various classes of Petri nets into anoccurrence net
appear in [25,35,36,16,7,23,12]—I will not repeat them here. In all these cases, the
definition directly implies that if an occurrence netN results from unfolding a netN
thenN is safe and there exists a folding ofN intoN (recall Definition 6) satisfying

– if M is a reachable marking ofN, andt ∈ T is a transition ofN with •t ≤ ρ(M)
then there is at ∈ T with ρ(t) = t.

Proposition 5. If such a folding fromN to N exists, thenN ↔sp N .

Proof. The set of linkingsB := {{(s, ρ(s)) | s ∈M} | M a reachable marking ofN}
is an sp-bisimulation betweenN andN . Checking this is trivial. ⊓⊔

Two netsN1 andN2 areoccurrence net equivalent[16] if they have isomorphic unfold-
ings. Since isomorphic nets are strongly bisimilar [27] andhence structure preserving
bisimilar, it follows that occurrence net equivalence between nets is finer than structure
preserving bisimilarity.

In [1] it is pointed out that the strong bisimilarity of Olderog “is not compatible with
unfoldings”: they show two nets that have isomorphic unfoldings, yet are not strongly
bisimilar. However, when the netN is safe, the sp-bisimulation displayed in the proof of
Proposition 5 is in fact a strong bisimulation, showing thateach net is strongly bisimilar
with its unfolding. This is compatible with the observationof [1] because of the non-
transitivity of strong bisimilarity.
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10.3 Causal equivalence

Causal equivalence is coarser than structure preserving bisimilarity.

Theorem 4. If N1 ↔sp N2 for netsN1 andN2, thenN1 ≡caus N2.

Proof. By Theorem 3 there exists a process-based sp-bisimulationR betweenN1 and
N2. R must contain a triple(ρ01,N

0
, ρ02) with N

0 a causal net containing no transitions.
So (N0

, ρ01) and(N0
, ρ02) are initial processes ofN1 andN2, respectively. The netN0

contains isolated places only, as many as the size of the initial markings ofN1 andN2.
Let N be a causal net ofN1. I have to prove thatN is also a causal net ofN2.

Without loss of generality I may assume thatN
0 is a prefix ofN, as being a causal net

of a given Petri net is invariant under renaming of its placesand transitions.
SoN1 has a processP1 = (N, ρ1). By Proposition 4,P1 is the limit of a chain

P
0
1 ≤P

1
1 ≤P

2
1 ≤ . . . of finite processes ofN1. Moreover, forP0

1 one can take(N0
, ρ01).

LetPi
1 = (N

i
, ρi1) for i∈ IN. By induction oni∈ IN, it now follows from the properties

of a process-based sp-bisimulation thatN2 has processesPi+1
2 = (N

i+1
, ρi+1

2 ), such
that(Ni

, ρi2)≤ (N
i+1

, ρi+1
2 ) and(ρi+1

1 ,N
i+1

, ρi+1
2 )∈R. Using Proposition 3, the limit

P2 = (N, ρ2) of this chain is a process ofN2, contributing the causal netN. ⊓⊔

10.4 History preserving bisimilarity

The notion ofhistory preserving bisimilaritywas originally proposed in [32] under
the namebehavior structure bisimilarity, studied on event structures in [13], and first
defined on Petri nets, under to the individual token interpretation, in [2], under the name
fully concurrent bisimulationequivalence.

Definition 11. [2] Let Ni = (Si,Ti,Fi,M0i,Ai, ℓi) (i= 1, 2) be two causal nets. An
order-isomorphismbetween them is a bijectionβ : T1 → T2 such thatA1 = A2,
ℓ2(β(t)) = ℓ1(t) for all t ∈ T1, andt F+

1 u iff β(t) F+
2 β(u) for all t, u ∈ T1.

Definition 12. [2] A fully concurrent bisimulationbetween two netsN1 andN2 is a
setR of triples((ρ1,N1), β, (N2, ρ2)) with (Ni, ρi) a finite process ofNi, for i=1, 2,
andβ an order-isomorphism betweenN1 andN2, such that

– R contains a triple((ρ1,N1), β, (N2, ρ2)) with N1 containing no transitions,
– if (P1, β,P2)∈R andP′

i with i∈{1, 2} is a fin. proc. ofNi extendingPi, thenNj

with j := 3−i has a processP′
j ≥ Pj such that(P′

1, β
′,P

′
2) ∈ R for someβ′ ⊇ β.

Write N1 ≈h N2 orN1 ≈fcb N2 iff such a bisimulation exists.

It follows immediately from the process-based characterisation of sp-bisimilarity in
Section 9 that fully concurrent bisimilarity (or history preserving bisimilarity based on
the individual token interpretation of nets) is coarser than sp-bisimilarity.

Theorem 5. If N1 ↔sp N2 for netsN1 andN2, thenN1 ≈fcb N2.

Proof. A process-based sp-bisimulation is simply a fully concurrent bisimulation with
the extra requirement thatβ must be the identity relation. ⊓⊔
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11 Inevitability for non-reactive systems

A run or execution of a system modelled as Petri netN can be formalised as a path of
N (defined in Section 3) or a process ofN (defined in Section 8). A path or process
representing a complete run of the represented system—one that is not just the first
part of a larger run—is sometimes called acompletepath or process. Once a formal
definition of a complete path or process is agreed upon, an action b is inevitablein a net
N iff each complete path (or each complete process) ofN contains a transition labelled
b. In case completeness is defined both for paths and processes, the definitions ought to
be such that they give rise to the same concept of inevitability.

The definition of which paths or processes count as being complete depends on
two factors: (1) whether actions that a net can perform by firing a transition are fully
under control of the represented system itself or (also) of the environment in which it
will be running, and (2) what type of progress or fairness assumption one postulates to
guarantee that actions that are due to occur will actually happen. In order to address (2)
first, in this section I deal only with nets in which all activity is fully under control of the
represented system. In Section 14 I will generalise the conclusions to reactive systems.

When making no progress or fairness assumptions, a system always has the option
not to progress further, and all paths and all processes are complete—in particular initial
paths and processes, containing no transitions. Consequently, no action is inevitable in
any net, so each semantic equivalence respects inevitability.

When assuming progress, but not justness or fairness, any infinite path or process is
complete, and a finite path or process is complete iff it is maximal, in the sense that it has
no proper extension. In this setting, interleaving bisimilarity, and hence also each finer
equivalence, respects inevitability. The argument is thatan interleaving bisimulation
induces a relation between the paths of two related netsN1 andN2, such that

– each path ofN1 is related to a path ofN2 and vice versa,
– if two paths are related, either both or neither contain a transition labelledb,
– if two paths are related, either both or neither of them are complete.

In the rest of this paper I will assume justness, and hence also progress, but not
(weak or strong) fairness, as explained in Section 1.4. In this setting a process isjust or
complete4 iff it is maximal, in the sense that it has no proper extension.

•• a

ta
b

tb
•

Example 3.The net depicted on the right has a
complete process performing the actiona infinitely
often, but never the actionb. It consumes each to-
ken that is initially present or stems from any firing of the transitionta. Henceb is not
inevitable. This fits with the intuition that if a transitionoccurrence is perpetually en-
abled it will eventually happen—but only when strictly adhering to the individual token
interpretation of nets. Under this interpretation, each firing of tb using a particular token
is a different transition occurrence. It is possible to schedule an infinite sequence ofas
in such a way that none such transition occurrence is perpetually enabled from some
point onwards.

4 The term “complete” is meant to vary with the choice of a progress or fairness assumption;
when assuming only justness, it is set to the value “just”.
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When adhering to the collective token interpretation of nets, the actionb could be
considered inevitable, as in any execution schedulingas only, transitiontb is perpetually
enabled. Since my structure preserving bisimulation fits within the individual token
interpretation, here one either should adhere to that interpretation, or restrict attention
to safe nets, where there is no difference between both interpretations.

12 History preserving bisimilarity does not respect inevitability

•
s0

•
s4

•
s20

atr1 •
s30

a tl1•
s10

b

tb1

s21

atr2 •
s31

a tl2•
s11

b

tb2

s22

.

.

.

.

.

.

Fig. 5. A net in which the actionb is not inevitable

Consider the safe netN1 depicted in Figure 5, and the netN2 obtained fromN1 by
exchanging for any transitiontbi (i>0) the preplaces1i−1 for s4. The netN2 performs in
parallel an infinite sequence ofa-transitions (where at each stepi>0 there is a choice
betweentli andtri ) and a singleb-transition (where there is a choice betweentbi for i>0).
In N2 the actionb is inevitable. InN1, on the other hand,b is not inevitable, for the run
of N1 in which tli is chosen overtri for all i>0 is complete, and cannot be extended
which ab-transition. Thus, each semantic equivalence that equatesN1 andN2 fails to
respect inevitability.

Theorem 6. Causal equivalence does not respect inevitability.

Proof. N1 ≡caus N2, because both nets have the same causal nets. One of these nets is
depicted in Figure 6; the others are obtained by omitting theb-transition, and/or omitting
all but a finite prefix of thea-transitions. ⊓⊔
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• •

b

•

a

•

•

a

•

•

. . .

Fig. 6. A causal net ofN1 andN2

Theorem 7. History preserving bisimilarity does not respect inevitability.

Proof. Recall thatN1 andN2 differ only in their flow relations, and have the same set
of transitions. I need to describe a fully concurrent bisimulationR betweenN1 andN2.
R consists of a set of triples, each consisting of a process ofN1, a related process of
N2, and an order isomorphism between them. First of all I include all triples(P1, β,P2)
whereP1 is an arbitrary process ofN1,P2 is the unique process ofN2 that induces the
same set of transitions asP1, andβ relates transition ofP1 andP2 when they map
to the same transition ofNi (i=1, 2). Secondly, I include all triples(P1, β,P2) where
P2 is an arbitrary process ofN2 inducing bothtbk and tlk for somek>0, andP1 is
any process ofN1 that induces the same transitions asP2 except that, for someh≥k
the induced transitiontlh, if present, is replaced bytrh, and tbk is replaced bytbh. (β
should be obvious.) It is trivial to check that the resultingrelation is a fully concurrent
bisimulation indeed. ⊓⊔

13 Structure preserving bisimilarity respects inevitability

Definition 13. A netN is called acompletecausal net of a netN if it is the first com-
ponent of a maximal process(N, ρ) of N . Two netsN1 andN2 arecomplete causal net
equivalent, notation≡cc, if they have the same complete causal nets.

Since the causal nets of a netN are completely determined by the complete causal
nets ofN , namely as their prefixes,N1 ≡cc N2 impliesN1 ≡caus. N2. It follows
immediately from the definition of inevitability that≡cc respects inevitability. Thus, to
prove that↔sp respects inevitability it suffices to show that↔sp is finer than≡cc.

Theorem 8. If N1 ↔sp N2 for netsN1 andN2, thenN1 ≡cc N2.

Proof. SupposeN1↔spN2. By Theorem 3 there exists a process-based sp-bisimulation
R betweenN1 andN2. R must contain a triple(ρ01,N

0
, ρ02) with N

0 a causal net
containing no transitions. So(N0

, ρ01) and(N0
, ρ02) are initial processes ofN1 andN2,

respectively. The netN0 contains isolated places only.
Let N be a complete causal net ofN1. I have to prove thatN is also a complete

causal net ofN2. Without loss of generality I may assume thatN
0 is a prefix ofN, as

being a complete causal net of a given Petri net is invariant under renaming of its places.
So N1 has a complete processP1 = (N, ρ1). By Proposition 4,P1 is the limit

of a chainP0
1 ≤ P

1
1 ≤ P

2
1 ≤ . . . of finite processes ofN1. Moreover, forP0

1 one
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can take(N0
, ρ01). Let Pi

1 = (N
i
, ρi1) for i ∈ IN. By induction oni ∈ IN, it now fol-

lows from the properties of a process-based sp-bisimulation that N2 has processes
P

i+1
2 = (N

i+1
, ρi+1

2 ), such that(Ni
, ρi2) ≤ (N

i+1
, ρi+1

2 ) and (ρi+1
1 ,N

i+1
, ρi+1

2 ) ∈ R.
Using Proposition 3, the limitP2 = (N, ρ2) of this chain is a process ofN2. It remains
to show thatP2 is complete.

Towards a contradiction, letP2u =(Nu, ρ2u) be a proper extension ofP2, say with
just one transition,u. Then•u ⊆ N

◦. By the third requirement on occurrence nets of
Definition 6, their are only finitely many transitionst with (t, u) ∈ F

+
2u. Hence one

of the finite approximationsNk of N contains all these transitions. So•u ⊆ (N
k
)◦.

Let, for all i ≥ k, Pi
2u = (N

i
u, ρ

i
2u) be the finite prefix ofP2u that extendsPi

2 with
the single transitionu. ThenPi

2u ≤ P
i+1
2u for all i ≥ k, and the limit of the chain

P
k
2u ≤P

k+1
2u ≤ . . . isP2u. By induction oni∈ IN, it now follows from the properties of

a process-based sp-bisimulation thatN1 has processesPi
1u = (N

i
u, ρ

i
1u) for all i ≥ k,

such that(ρi1u,N
i
u, ρ

i
2u) ∈ R, (Nk

, ρk1) ≤ (N
k
u, ρ

k
1u) and (Ni

u, ρ
i
1u) ≤ (N

i+1
u , ρi+1

1u ).
Using Proposition 3, the limitP1u = (Nu, ρ1u) of this chain is a process ofN1. It
extendsP1 with the single transitionu, contradicting the maximality ofP1. ⊓⊔

14 Inevitability for reactive systems

In the modelling of reactive systems, an action performed bya net is typically a syn-
chronisation between the net itself and its environment. Such an action can take place
only when the net is ready to perform it, as well as its environment. In this setting, an ad-
equate formalisation of the concepts of justness and inevitability requires keeping track
of the set of actions that from some point onwards are blockedby the environment—e.g.
because the environment is not ready to partake in the synchronisation. Such actions are
not required to occur eventually, even when they are perpetually enabled by the net it-
self. Let’s speak of aY -environmentif Y is this set of actions. In Section 11 I restricted
attention to∅-environments, in which an action can happen as soon as it is enabled
by the net in question. In [15] a path is calledY -just iff, when assuming justness, it
models a complete run of the represented system in aY -environment. The below is a
formalisation for this concept for Petri nets under the individual token interpretation.

Definition 14. A process of a net isY -just or Y -completeit each of its proper exten-
sions adds a transition with a label inY .

Note that a just or complete process as defined in Section 11 isa ∅-just or∅-complete
process. In applications there often is a subset of actions that are known to be fully
controlled by the system under consideration, and not by itsenvironment. Such actions
are often callednon-blocking. A typical example from process algebra [24] is the inter-
nal actionτ . In such a setting,Y -environments exists only for sets of actionsY ⊆ C ,
whereC is the set of all non-non-blocking actions.

A process of a net iscompleteif it models a complete run of the represented system
in some environment. This is the case iff it isY -complete for some setY ⊆ C , which
is the case iff it isC -complete.

In [34], non-blocking is a property of transitions rather than actions, and non-
blocking transitions are calledhot. Transitions that are not hot arecold, which inspired
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my choice of the latterC above. In this setting, a processP = (N, ρ) is complete iff
the markingρ(N◦

) enables cold transitions only [34].

Definition 15. A actionb is Y -inevitablein a net if eachY -complete process contains
a transition labelledb. A semantic equivalence≈ respectsY -inevitability if whenever
N1 ≈ N2 and b is Y -inevitable inN1, thenb is Y -inevitable inN2. It respects in-
evitability iff it respectsY -inevitability for eachY ⊆ C .

In Section 12 it is shown that≡caus and≈h do not respect∅-inevitability. From this
it follows that they do not respect inevitability. In Section 13 it is shown that↔sp

does respect∅-inevitability. By means of a trivial adaptation the same proof shows that
↔sp respectsY -inevitability, for arbitraryY . All that is needed is to assume that the
transitionu in that proof has a label/∈ Y . Thus↔sp respects inevitability.

15 Conclusion

This paper proposes a novel semantic equivalence for current systems represented as
Petri nets:structure preserving bisimilarity. As a major application—the one that in-
spired this work—it is used to establish the agreement between the operational Petri net
semantics of the process algebra CCSP as proposed by Olderog, and its denotational
counterpart. An earlier semantic relation used for this purpose was Olderog’sstrong
bisimilarity on safe Petri nets, but that relation failed to be transitive. I hereby conjec-
ture that on the subclass of occurrence nets, strong bisimilarity and structure preserving
bisimilarity coincide. If this it true, it follows, together with the observations of Sec-
tion 6 that strong bisimilarity is included in structure preserving bisimilarity, and of
Section 10.2 that each safe net is strongly bisimilar with its unfolding into an occur-
rence net, that on safe nets structure preserving bisimilarity is the transitive closure of
strong bisimilarity.

Section 1.2 proposes nine requirements on a semantic equivalence that is used for
purposes like the one above. I have shown that structure preserving bisimilarity meets
eight of these requirements and conjecture that it meets theremaining one as well.
– It meets Requirement 1, that it respects branching time, as aconsequence of Theo-

rem 5, saying that it is finer than history preserving bisimilarity, which is known to
be finer than interleaving bisimilarity.

– It meets Requirement 2, that it fully captures causality andconcurrency (and their
interplay with branching time),5 also as a consequence of Theorem 5.

– It meets Requirement 3, that it respects inevitability (under the standard interpreta-
tion of Petri nets that assumes justness but not fairness),5 as shown in Section 13.

– It meets Requirement 4, that it is real-time consistent, as aresult of Theorem 5.
– I conjecture that it meets Requirement 5, that it is preserved under action refinement.
– It meets Requirement 6, that it is finer than causal equivalence, by Theorem 4.
– It meets Requirement 7, that it is coarser than≡occ, as shown in Section 10.2.
– It meets Requirement 8, that it is a congruence for the CCSP operators, by Thm. 2.
– It meets Requirement 9, that it allows to establish agreement between the opera-

tional and denotational interpretations of CCSP operators, since it is coarser than
Olderog’s strong bisimilarity, as shown in Section 6.

5 when taking the individual token interpretation of nets, orrestricting attention to safe ones
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Moreover, structure preserving bisimilarity is the first known equivalence that meets
these requirements. In fact, it is the first that meets the keyRequirements 3, 4, 7 and 9.

AcknowledgementMy thanks to Ursula Goltz for proofreading and valuable feedback.

References

1. C. Autant, Z. Belmesk & P. Schnoebelen (1991):Strong Bisimilarity on Nets Revisited. In
E.H.L. Aarts, J. van Leeuwen & M. Rem, editors: Proc.PARLE ’91,Eindhoven, The Nether-
lands, 1991, LNCS 506, Springer, pp. 295–312, doi:10.1007/3-540-54152-7_71.

2. E. Best, R. Devillers, A. Kiehn & L. Pomello (1991):Concurrent Bisimulations in Petri nets.
Acta Informatica28, pp. 231–264, doi:10.1007/BF01178506.

3. S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984):A theory of communicating sequential
processes. Journal of the ACM31(3), pp. 560–599, doi:10.1145/828.833.

4. L. Castellano, G. De Michelis & L. Pomello (1987):Concurrency vs interleaving: an in-
structive example. Bulletin of the EATCS31, pp. 12–15.

5. P. Degano, R. De Nicola & U. Montanari (1987):CCS is an (Augmented) Contact Free C/E
System. In M.V. Zilli, editor: Mathematical Models for the Semantics of Parallelism, LNCS
280, Springer, pp. 144–165, doi:10.1007/3-540-18419-8_13.

6. E.A. Emerson & E.M. Clarke (1982):Using Branching Time Temporal Logic to Synthesize
Synchronization Skeletons.Science of Computer Programming2(3), pp. 241–266, doi:10.
1016/0167-6423(83)90017-5.

7. J. Engelfriet (1991):Branching Processes of Petri Nets. Acta Informatica28(6), pp. 575–
591, doi:10.1007/BF01463946.
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