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1 LISTIC Laboratory, Université Savoie Mont Blanc, Polytech Annecy-Chambéry,
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Abstract. Swap randomization has been shown to be an effective tech-
nique for assessing the significance of data mining results such as Boolean
matrices, frequent itemsets, correlations or clusterings. Basically, instead
of applying statistical tests on selected attributes, the global structure
of the actual dataset is taken into account by checking whether obtained
results are likely or not to occur in randomized datasets whose column
and row margins are equal to the ones of the actual dataset. In this paper,
a swap randomization approach for bases of sequences is proposed with
the aim of assessing sequential patterns extracted from Satellite Image
Time Series (SITS). This assessment relies on the spatiotemporal loca-
tions of the extracted patterns. Using an entropy-based measure, the
locations obtained on the actual dataset and a single swap randomized
dataset are compared. The potential and generality of the proposed app-
roach is evidenced by experiments on both optical and radar SITS.

1 Introduction

Earth observation satellite technology is continuously being enhanced, providing
end users with ever ever-growing data volumes. Improvements relate to the num-
ber of acquisition channels, the spatial resolution and the revisit frequency. The
revisit capability makes possible to gather acquisitions of a same geographical
zone through time and form Satellite Image Time Series (SITS). SITS are large
datasets containing complex spatiotemporal information that can be affected
both by atmospheric perturbations and sensor problems. In order to fully exploit
such SITS, information retrieval and data mining techniques are being developed.
Among them, unsupervised data mining techniques demonstrate their potential
when it comes to describe and discover spatiotemporal phenomena. They rely
either on global models such as clusterings (e.g., [13] or [21]) or on local patterns
such as sequential patterns (e.g., [16] or [14]). In particular, a SITS can be con-
sidered as a special kind of base of sequences, as first introduced in [1]. In that
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initial context, each sequence gives the transactions of a customer whereas, in
the case of a SITS, each sequence contains the descriptions of the values of a
pixel through time and is thus located spatially. As proposed in [17], Grouped
Fequent Sequential patterns (GFS-patterns) can be extracted from such a base of
sequences. Besides expressing pixel temporal evolutions, these sequential patterns
also take into account the spatial information brought by SITS: each GFS-pattern
is required to affect a group of pixels that are sufficiently numerous and connected
to each other. Reciprocally, each pixel can be affected by different GFS-patterns.
As a consequence, pixel groups corresponding to extracted GFS-patterns can par-
tially or fully overlap each other: they can refine each other. Extracting GFS-
patterns thus differs from segmenting or clustering a SITS. Experiments reported
in [17] or [22] show that GFS-patterns can be used both on radar and optical data,
for various applications ranging from agricultural to crustal deformation moni-
toring. Despite their ability to address various types of datasets and applications,
these patterns can be numerous, even if maximal ones are focused on. How to select
the most significant ones without making any assumption? We aim to answer that
question by adapting swap randomization to the SITS mining context.

In statistics, the significance of a result (e.g., the number of correlations found
in a dataset) can be assessed via randomization testing methods [12]. Basically,
they check whether the result observed on the actual dataset is likely to be
obtained or not on randomized datasets. These datasets are meant to sufficiently
differ from the actual one while sharing some of its structural properties such
as the number of 0’s and 1’s in the case of a Boolean matrix. With this aim in
view, randomized datasets are built by shuffling the actual dataset. Considering
randomized datasets avoids generating random ones by sampling a distribution
law that has to be defined a priori. Swap randomization follows these guidelines
and focuses on more fined-grained structural properties such as the column and
row margins of a Boolean matrix [5]. In data mining, as evidenced in [9], [10]
or [15], swap randomization can be exploited to assess the significance of global
models characterizing the whole actual dataset. These models can be clusterings,
sets of frequent itemsets, sets of correlations or singular values. Even if they do
not describe the entire dataset, local patterns such as frequent itemsets can also
be evaluated individually (e.g., [10] or [15]).

To our knowledge, no swap randomization techniques handling bases of
sequences or SITS have been proposed so far. In this paper, such a proposal is made
with the aim of evaluating GFS-patterns [17] individually. While being dedicated
to GFS-patterns, the presented approach could also be used for any kind of sequen-
tial patterns or episodes. Assessing GFS-patterns is not a trivial task. Their spa-
tiotemporal nature must be taken into consideration and the following questions
must be answered: which fine-grained structure should be maintained when ran-
domizing the base of sequences representing a SITS? Which GFS-pattern-related
information should be considered for their individual assessment? How to com-
pare the information observed on the actual dataset with the one obtained for
the randomized datasets? How to be efficient when considering a SITS containing
millions of pixel values? Our answers are as follows: with regards to the structure
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to be maintained while randomizing, the distributions of the values of each image
and each pixel sequence are preserved. The assessment of a GFS-pattern is then
performed by comparing its spatiotemporal locations on the actual dataset with
the ones on the randomized datasets. This comparison relies on the Normalised
Mutual Information (NMI) [6], an entropy-based measure. Efficiency is achieved
by performing the comparison using a single randomized dataset, as opposed to
hundreds of randomized datasets when considering the standard swap random-
ization approach. This paper is organized as follows: Section 2 gives some pre-
liminary definitions regarding SITS and GFS-patterns. The swap randomization
approach proposed to shuffle bases of sequences representing a SITS is detailed in
Sect. 3. Section 4 explicates GFS-pattern assessment and its use for SITS sum-
marization. Experiments are presented in Sect. 5. They show that the proposed
approach is general enough to mine either radar or optical SITS, yields relevant
patterns on real datasets and can support different applications such as land cover
or crustal deformation monitoring. Section 6 concludes this paper and gives future
work directions.

2 Grouped Frequent Sequential Patterns

In this section, the definition of Grouped Frequent Sequential Patterns (GFS-
patterns), as first introduced in [17], is recalled. Let us consider a SITS, i.e., a
satellite image time series covering the same area at n different dates. Within
each image, each pixel is associated with a value, e.g., the reflectance intensity
of the geographical zone it represents. These values are discretized to get event
types (symbols) encoding events under the form of a pair (t, e) with e an event
type and t its occurrence date (here the date will be the index of the image in the
series). Event types can correspond to ranges obtained by image quantization or
to pixel clusters. A symbolic SITS is a set of pixel evolution sequences, each one
containing the coordinates (x, y) of a pixel and its corresponding event sequence,
i.e., a tuple of events 〈(t1, e1), (t2, e2), ..., (tn, en)〉. In pattern mining, a typical
base of sequences is a set of sequences of discrete events, in which each sequence
has a unique sequence identifier. Each location (x, y) being unique, a symbolic
SITS is a base of sequences and the standard notions of sequential patterns,
support and frequent sequential patterns introduced in [1] can be easily reused
as follows1. A sequential pattern α is a tuple of m event types 〈α1, α2, . . . , αm〉.
The support of α in a SITS, denoted by support(α), is the number of pixel evolu-
tion sequences in which α occurs at least once. Note that the event types do not
need to occur contiguously. Sequential pattern α is a frequent sequential pattern if
support(α) ≥ σ with σ a support threshold. Reusing the definitions of sequential
patterns permits to take advantage of the efficient extraction techniques devel-
oped in this domain (e.g., [1], [25] or [20]). The pixels where a pattern α occurs
are said to be covered by α. For a SITS, the notion of support can be interpreted
very naturally as an area. In order to obtain pixels forming regions in space, an
average connectivity measure is also used. It is based on the 8-nearest neighbors
1 Sequences are simpler here since there is a single event type for each timestamp.
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(8-NN) convention [8]. For α, the connectivity of a pixel (x, y) is the number
of pixels covered by α among the 8 nearest neighbors of (x, y) (i.e., the pixels
surrounding (x, y)). The average connectivity of α, denoted AC(α), is simply
the average of the connectivity over all pixels covered by α. Finally, a Grouped
Frequent Sequential pattern (GFS-pattern) α is a frequent sequential pattern
such that AC(α) ≥ κ with κ a positive real number termed average connectiv-
ity threshold. Depending on the parameter settings and the dataset, numerous
GFS-patterns can be produced. In order to reduce the redundancy among the
patterns, a standard method is to retain only the maximal ones (e.g., [19]). This
approach is also used here. The maximal GFS-patterns of a collection of GFS-
patterns C are the elements in C that are not subpattern of any other pattern
in C. In other words, the GFS-patterns focusing on the most specific evolutions
are retained. Though the number of GFS-patterns can be drastically reduced
by adopting such a strategy, it can still be large. How to select the most signif-
icant ones without making any additional assumption with respect to covered
pixels (e.g., assumptions about the shape or the texture of pixel groups)? We
propose to answer that question by adapting the swap randomization of Boolean
matrices to the SITS mining context.

3 Swap Randomization of Base of Sequences
Representing SITS

Swap randomization is aimed at generating Boolean matrices having the same
row and column margins without assuming any underlying distribution law.
To this end, the elements of the matrices are swapped. A swap is defined as
follows [23]: let B be a m × n Boolean matrix. Let u and v be two rows. Let i
and j be two columns. If Bu,i = Bv,j = 0 and Bu,j = Bv,i = 1 then rows (or
columns) are changed so that Bu,i = Bv,j = 1 and Bu,j = Bv,i = 0 : values 0
and 1 are swapped. By construction, such a swap does not modify column and
row margins. These margins give the number of occurrences of symbol ’1’ (or
symbol ’0’, its dual symbol) for each column and each row. An example is given
in Fig. 1. Boolean matrix B′ is obtained from matrix B via a single swap such
that u = 2, v = 4, i = 1 and j = 3. Swapped 0’s and 1’s are underlined.

In [23], Ryser shows that it is possible, starting from a given Boolean matrix,
to generate all possible Boolean matrices having the same row and column mar-
gins by applying a series of swaps, each swap being applied to the latest matrix
that had been obtained. In [5], on the basis of this result, the authors show that it
is possible to randomly generate equiprobable matrices having the same row and
column margins. More precisely, starting from a given Boolean matrix, a series of
swap is performed by choosing rows and columns at random. Rows and columns
can be chose more than once. As a consequence, swaps can be undone. Each swap
can be seen as a random step from a vertex to another one in a graph whose ver-
tices represent all possible matrices and whose edges represent transitions that
can be performed by swapping 0’ s and 1’s. The series of swaps can thus be inter-
preted as a random walk on a graph that, in turn, can be formalized as a Markov
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B =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 1
1 0 1 1
0 0 1 0

⎞
⎟⎟⎠ , B′ =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 1
1 0 1 1
1 0 0 0

⎞
⎟⎟⎠

Fig. 1. Boolean matrix B′ is obtained from B by swapping underlined values. Both
matrices have the same row and column margins.

chain. In such a chain, the authors explain that the probability of state (i.e., each
vertex/matrix when considering the graph) to be reached by a sequence of tran-
sitions can differ from one state to another. The proposed solution consists in
adding self-loops to have all vertices being reached by the same amount of edges,
which guarantees that vertices, and thus Boolean matrices are equiprobable [5].
One important question remains: how many random walk steps are needed to
get a Boolean matrix that is sufficiently randomized, i.e., that sufficiently differs
from the actual dataset? This is still an open research question. See [3] and [2] for
discussions regarding the obtention of p-values using a Markov chain. Neverthe-
less, empirical results are available (e.g., [10]). Holding in place with self-loops
is not efficient when trying to get data sets that are sufficiently randomized. An
optimization can be achieved by relying on the Metropolis-Hastings algorithm
(e.g., [5] or [10]). Another simpler and efficient optimization is proposed in [10].
It is based on the same approach than [5] but requires less self-loops. It relies
on a set P containing all pairs (u, i) such that Bu,i = 1. This structure is made
available throughout the whole algorithm. The swapping procedure differs from
the standard one: u, v, i and j are not fully chosen at random. They are chosen
by randomly selecting two pairs (u, i) and (v, j) in P . If pairs (u, j) and (v, i)
are not in P , then Bu,j = Bv,i = 0 and the swap is made effective. Otherwise,
the swap attempt is counted as a self-loop. By avoiding a full random walk, the
convergence is accelerated and the overhead induced by the management of P
is absorbed. In [10], using this algorithm, it is empirically estimated that the
number of random walk steps should be in order of the number of 1’s of the
matrix to converge to a sufficiently randomized Boolean matrix.

Swap randomization is basically applied to Boolean matrices to assess data
mining results using p-values. The bottom line is to define a null hypothesis
stating that the result observed for the actual dataset is likely to be observed
on randomized datasets having the same structure, i.e., the same column and
row margins. If the null hypothesis is rejected then the result is considered to
be significant. In order to run such a test, a metric of interest has to be chosen.
With regards to correlations, it is proposed in [10] to compute the number of
correlations or the maximum and the minimum correlation values. The same
kind of strategy is also used to analyze sets of frequent itemsets by consider-
ing the number of extracted frequent itemsets, the fraction of frequent itemsets
that are preserved and the fraction of frequent itemsets that disappear. For this
latter case, the analysis is run by directly comparing these numbers and frac-
tions, without using p-values. Still, if required, it would be possible to compute
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them. Finally, clusterings are studied through clustering errors. Besides global
models, local patterns such as frequent itemsets can also be evaluated individu-
ally through their support measure directly or via p-values (e.g., [10]) or [15]).
The ratio between the support observed on the actual dataset and the mean
support observed for randomized datasets is also mentionned as an interesting
alternative. The experiments reported in [5], [9], [10] or [15] all demonstrate the
potential of the swap randomization approach in the case of Boolean matrices.

With regard to a m × n non-Boolean symbolic matrix S, i.e., a matrix con-
taining elements defined with more than two distinct symbols such as ‘0’ and
‘1’, the standard Boolean swap defined in [23] can be extended as follows : let
u and v be two rows, and let i and j be two columns. If Su,i = Sv,j = α and
Su,j = Sv,i = β with α and β two distinct symbols, then rows (or columns)
are changed so that Su,i = Sv,j = β and Su,j = Sv,i = α: symbols α and β
are swapped. This symbolic swap preserves row and column margins. For each
symbol used to define S, these margins give the number of its occurrences for
each row and each column. A symbolic swap is illustrated in Fig. 2. Non-boolean
symbolic matrix C ′ is obtained from C via a single swap such that u = 1, v = 3,
i = 1 and j = 2. Swapped symbols ‘2’ and ‘3’ are underlined. Both matrices
share the same row and column margins. Sadly, it is not possible to generate
all non-Boolean symbolic matrices having the same row and column margins by
swapping data. Fig. 2 gives an example: no swap series can be found to trans-
form D into D′ though both matrices have the same row and column margins.
Consequently, if swap randomization is performed on such matrices, then swap
randomized datasets must be compared with the actual dataset to check whether
they sufficiently differ from each other.

Following the principles of swap randomization as defined for Boolean matri-
ces, we aim to assess GFS-patterns by randomizing bases of sequences, and more
specifically symbolic SITS. This randomization is thus required to maintain a
fine-grained structure of the dataset while breaking event connectivity within
each image and event ordering within each pixel evolution sequence. This raises
the following question: which structure can be preserved? In order to break event
connectivity and ordering only, we propose to maintain event type frequencies
within each image and each pixel evolution sequence. This can be achieved by
considering spatiotemporal swaps, i.e symbolic swaps. Indeed, as long as more
than two even types are considered, a symbolic SITS representing n acquisitions
of m pixels can be transformed into a m × n non-Boolean symbolic matrix (and

C =

⎛
⎝

3 2
1 1
2 3

⎞
⎠ , C′ =

⎛
⎝

2 3
1 1
3 2

⎞
⎠ , D =

⎛
⎝

1 2
2 3
3 1

⎞
⎠ , D′ =

⎛
⎝

2 1
3 2
1 3

⎞
⎠

Fig. 2. Non-boolean symbolic matrix C′ is obtained from C by swapping underlined
values. C and C′ have the same row and column margins. D′ can not obtained from
D by swapping data though they share the same column and row margins.
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vice versa). In such a matrix, an element located at row k and column l gives
the event type describing a pixel whose coordinates are mapped bijectively to k
in the lth image. Consequently, in order to swap randomize a symbolic SITS, we
propose to adapt the algorithm described in [10] by performing a series of swap
attempts which are defined as follows:

Definition 1. (swap attempt) Let S be a m × n non-Boolean symbolic
matrix representing a symbolic SITS defined over E, the set of event types. Let
P = {{(u, i), (v, j)}|Su,i = Sv,j = α, ∀α ∈ E}. A swap attempt is selecting
p = {(u, i), (v, j)} = α ∈ P randomly. If ∃ p′ ∈ P such that p′ = {(u, j), (v, i)} =
β | β �= α, then a symbolic swap is performed so that Su,i = Sv,j = β and
Su,j = Sv,i = α. Otherwise no swap is performed but it is still counted as a
self-loop.

By performing such spatiotemporal swaps, a first structure level of SITS
is maintained, i.e., event type frequencies. Maintaining event type frequencies
in images is equivalent to preserving their histograms which are standard first
level image descriptors [11]. With respect to pixel evolution sequences, their first
structure level can also be given by event type frequencies. From the application
point of view, this makes sense. At the image level, an image affected by clouds
should not be converted into an image expressing the presence of vegetation (and
vice versa). Similarly, vegetation should not be transformed into a glacier. At the
pixel evolution sequence level, since each sequence relates to a specific location,
if the presence of water is expressed through a sequence, then there is no reason
to change it to a sequence relating to bare soils. The same holds for a pixel whose
sequence is giving variations between snow and rocks with little vegetation: swap
randomization should not transform it into a sequence of permanent vegetation.
Maintaining the spatiotemporal structure of a SITS is a strategy similar to the
one adopted in [24] to randomize time series collections. In that case, a time
series collection is represented by J real-valued matrices, where J is the number
of wavelet coefficients used to describe the series, i.e., the maximum detail level.
An element located at position (i, j) of the f th matrix gives the value of the f th

wavelet coefficient for series i at time point j. These matrices are independen-
tely randomized by approximately preserving the temporal distributions (row
distributions) and the series domain distributions (column distributions) of the
wavelet coefficients. Hence, this approach could be adapted to SITS random-
ization. Nevertheless, in addition to performing a discrete wavelet transform of
the original time series and randomizing several matrices (one per coefficient),
an inverse discrete wavelet transform is required to transform each random-
ized dataset back to the original representation. Finally, if one were to assess
GFS-patterns using this approach, then every randomized dataset should also
be quantized. Back to our approach, even if the SITS first structure level is pre-
served, the connectivity and the order of the event types forming GFS-patterns
is affected. This allows to detect the GFS-patterns that are due or not to such
a structure. As for the algorithm of [10], convergence is accelerated through the
use of set P and self-loops allow to generate equiprobable datasets. However, in
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practice, as already stated previously in this section, it is not possible to gener-
ate all m × n non Boolean symbolic matrices (and thus symbolic SITS) having
the same row and column margins. Still, as shown empirically in Sect. 5, it is
possible to generate and explore randomized datasets that differ from each other
and that also differ from the actual SITS sufficiently. As long as it makes sense
to preserve row and column margins, this kind of technique can also be applied
to other types of bases of sequences.

4 GFS-Pattern Assessment and SITS Summarization

Using the SITS swap randomization approach proposed in Sect. 3, we aim to
assess GFS-patterns individually. As explained in Sect. 3, when considering the
swap randomization of Booleean matrices, frequent itemsets can be assessed
through their support measures directly, support ratios or p-values (e.g., [10])
or [15]). With regard to GFS-patterns, considering their support measure only
is not sufficient since their spatiotemporal nature is not taken into account fully.
The coordinates and the temporal locations (starting dates, ending dates, times-
pans, etc.) of the pixels affected by a GFS-pattern must also be considered.
Therefore, we propose to focus on pixel coordinates and ending dates by rely-
ing on SpatioTemporal Localization Map (STL-maps). An STL-map is an image
generated for each GFS-pattern given a symbolic SITS (randomized or not). In
such an image, if a pixel is covered by the GFS-pattern for which the image was
generated, then its value gives the ending date of the earliest occurrence available
for the corresponding coordinates. Otherwise, no ending date is stored (a black
pixel value is used). By construction, STL-maps also include the information
related to the support of GFS-pattern. As shown in Sect. 5, and though other
types of temporal locations are also interesting, considering ending dates only
allows to perform an efficient and reliable GFS-pattern assessment. Efficiency is
also achieved by considering a single swap randomized symbolic SITS only: this
avoid generating lots of STL-maps and running numerous comparisons.

How to compare the STL-map M , obtained on the actual SITS for a pattern
α, with M ′, the STL-map obtained for α on a single swap-randomized SITS?
How to compare them without having to make any assumption about their rela-
tion? At this stage, we are interested by the following two settings:

– M and M ′ are dissimilar: M is singular as it can not be obtained for a ran-
domized dataset with the same structure in terms of event type frequencies,

– M and M ′ are similar: the swap-randomization does not destroy the occur-
rences of α and thus C expresses a prominent phenomena explained by the
margins.

The first setting is in line with the standard swap randomization approach while
the second one is usually not considered since one-tailed tests are focused on.
Still, the second setting is of primary interest. Geographical zones affected by few
changes are expressed through event types that are sowewhat always the same.
Hence, the corresponding events are hardly randomized. If we were to reject



198 N. Méger et al.

them, the SITS exploration would be biased towards GFS-patterns expressing
changes and interesting areas such as deserts, lakes or cities would disappear
from extracted descriptions. How to assess and distinguish the latter two settings
using a single measure? Let Ω be the sample space containing all ending dates.
Let us consider each ending date x of M as the realization of a discrete random
variable X and each ending date y of M ′ as the realization of a discrete random
variable Y . We propose to rely on the Normalized Mutual Information (NMI)
as presented in details in [6].

NMI(X;Y ) =

∑
x,y∈Ω2 P (x, y) log P (x,y)

P (x)P (y)

min(H(X),H(Y ))
(1)

where H(X) = −∑
x∈Ω P (x) log P (x) and P (x, y) represents the probability of

co-occurrence of the two ending dates x and y at the same pixel position, in M
and M ′. The NMI quantifies the information content shared by two random vari-
ables. In other words, knowing the realizations of two random variables X and
Y , it measures the extent to which the realizations of variable X can be deduced
from the ones of Y , and vice versa. It can been therefore seen as a measure of
the mutual dependence between X and Y . The more X and Y are independent
(respectively dependent), the more the NMI tends to 0 (respectively 1) since
no bit is shared between the two variables. A particular case must be handled:
the black pixels. These pixels show no realizations, no ending dates. Since we
extract GFS-patterns that may only cover little fractions of the observed zone,
black pixels can be numerous with respect to non-black ones. If these numerous
black pixels were to be considered as showing another special ending date, a
lot of black pixels in M could be associated to other black pixels in M ′: their
joint probability would be high, raising the NMI measure artificially and mask-
ing the other, but more important, joint probabilities. Consequently, the joint
probability of black pixels is not considered. Nevertheless, because of the swap-
randomization, black pixels can differ from M to M ′: these other cases are taken
into account thanks to joint probabilities having one of the two values set to a
black pixel value.

Once the NMI is computed for each STL-map/GFS-pattern, then STL-
maps/GFS-patterns are ranked accordingly. The NMI-based ranking that is
obtained can be easily browsed to build a SITS summary by focusing on both
ends of the ranking. Phenomena that can not be obtained on a swap-randomized
SITS have low NMI scores and prominent phenomena that are still present in
a swap-randomized STIS have high NMI scores. As shown in Sect. 5, if several
swap randomized SITS are computed, then rankings are stable for high and low
NMI GFS-patterns: a single swap randomized SITS can thus be considered. By
relying on the NMI, no assumption about the relation between the ending dates
is done. Beside extracting GFS-patterns, this allows us to produce summaries
which are as unsupervised as possible.
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5 Experiments

The swap randomization approach presented in this paper was assessed by con-
ducting experiments on two different SITS, a radar one and an optical one. Their
characteristics are given by Table 1. For each SITS, raw data are transformed into
a single synthesized channel dedicated to the application domain. Regarding Etna,
phase delays were computed [7] by Marie-Pierre Doin (ISTerre laboratory, CNRS).
These floats express vertical and/or lateral displacements w.r.t. a master acquis-
tion. An example is given by Fig. 9 where Mount Etna is revealed in the upper part
of the image. For NC, the Normalized Difference Vegetation Index (NDVI) [4] was
generated by Rémi Andréoli (Bluecham S.A.S. www.bluecham.net). It expresses
the presence of biomass. An example is shown in Fig. 10: the ocean (resp. land) is
mainly located in the lower right part (resp. upper left part) of the image. Radar
shadows, atmospheric perturbations, clouds and sensor defaults are still present in
these synthesized channels. Preprocessing details are available in Table 1.

The experiments were run on a standard computing platform (a single core on
a 2.7 GHz Intel Core i7) using our own prototype SITS-miner implemented in C
and Python. On the side of parameter settings, average connectivity threshold κ
is set to 5 neighbors to extract zones making sense spatially. This is a standard
setting [17]. In order to assess reasonable amounts of GFS-patterns, we focus
on maximal ones, as explained in Sect. 2. With regard to minimum support
threshold σ, it is set such that the richest/most diverse description is obtained.
This achieved by finding the lowest value of σ such that the number of maximal
GFS-patterns is maximum: the widest possible range of surfaces, from σ to
the surface of the image itself, is considered. Following this strategy, minimum
support threshold σ was found to be 7000 for both SITS (covering about 2.11%
of an image in Etna and 2.66% in NC). By consuming no more than 655 MB
of RAM and in less than one minute, 508 maximal GFS-patterns are extracted
from Etna and 297 maximal GFS-patterns are mined in NC2.

These patterns were assessed using the swap randomization approach and the
NMI ranking procedure described in this paper. Regarding swap randomization,
the parameter to be set is Ns, the number of swap attempts to be performed. In
[10], it is empirically estimated that Ns should be in order of the number 1’s of the
matrix to converge to a sufficiently randomized Boolean matrix. In our case, we will
consider the number of events multiplied by about 20 to adopt a very conservative
setting: Ns = 100.000.000. This setting makes sense since it can be empirically
shown that the two SITS are sufficiently randomized to get stable NMI values for
the patterns we are interested in, i.e., those located at both ends of the NMI rank-
ings (see Sect. 4). Let us the consider the 20 highest and the 20 lowest NMI pat-
terns obtained for 100M swaps. Their respective NMI values were also computed
for Ns = 20M, 40M, . . ., 140M, and are reported as randomizations labelled 0 to
6 in the figures 3, 4, 5 and 6. As it can be observed, they rapidly converge to levels
that are quite stable, especially around 100M of swaps. With regard to swapped

2 The reader is referred to [17] and [18] for discussions regarding the impact of σ and
of the number of event types on the number of extracted patterns.



200 N. Méger et al.

Table 1. SITS properties, preprocessing and extraction settings.

SITS name Etna NC

provider/credit ESA USGS/NASA Landsat

satellite ENVISAT LANDSAT 7

SITS type Synthetic Aperture Radar Multispectral

time period 16 images 2003-2010 16 images 2000-2011

site Geohazards Supersite:
Mount Etna

UNESCO World Heritage Site:
lagoons of New Caledonia

application crustal deformation monitoring soil erosion monitoring

data quality pixel values are not always avail-
able (radar shadows), atmo-
pheric perturbations

a lot of clouds, sensor defaults

image size 598 × 553 513 × 513

resolution 160 m 30 m

synthesized channel phase delays NDVI

discretization quantization/all images
(33rd and 66th centiles)

quantization/each image
(33rd and 66th centiles)

event types ‘1’: motion towards satellite
(satellite on the left)
‘2’: stable
‘3’: motion away from satellite

‘1’: few biomass
‘2’: average biomass
‘3’: lot of biomass

parameters σ = 7000, κ = 5 σ = 7000, κ = 5

randomized SITS themselves, we generated 1000 swap randomized datasets for
each SITS to evaluate them. Though 73.9% of the Etna events and 16.2% of the
NC events can not be swapped, in average, 6.5% of the Etna events and 32.9%
of the NC events were swapped. The standard deviation of these swapped event
rates tends to 0, which shows the stability of our swap randomization process.
Finally, if we consider a single randomization and focus on effective swaps (self-
loops are not counted), it should be mentioned that 1.070.219 different swap ran-
domized datasets are explored when randomizing Etna. Among them, one dataset
is generated 8 times and others are obtained only once. In the case of SITS NC,
8.911.591 different datasets are generated once, one dataset is obtained 4189 times
and another one is reach 44 times. Consequently, and though no all SITS having
the same column and row margins can be reached (see Sect. 3), the proposed swap
randomization approach does explore a lot of different SITS having the same struc-
ture. As proposed in Sect. 4, for efficiency reasons, rankings are established using
a single swap randomized dataset. This makes sense for both SITS since rankings
are stable for high and low NMI GFS-patterns. As shown by Fig. 7 and Fig. 8, the
rank standard deviation is less than 1 for both ends of the ranking. It was computed
using the rankings obtained for the 1000 swap randomized datasets we generated
for both SITS. Similar results are obtained when plotting the rank standard devi-
ation against the rank mode or a reference ranking. For both SITS, memory con-
sumption and execution times do no not exceed 1.66 GB of RAM and 700 seconds
to perform the pattern extraction, the STL-map computation for the maximal pat-
terns, a single randomization and the final ranking of STL-maps.
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Fig. 3. 20 highest NMI values vs. Ns,
Etna.

Fig. 4. 20 lowest NMI values vs. Ns,
Etna.

Fig. 5. 20 highest NMI values vs. Ns,
NC.

Fig. 6. 20 lowest NMI values vs. Ns, NC.

Fig. 7. Rank std. vs. rank mean, Etna. Fig. 8. Rank std. vs. rank mean, NC.
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Fig. 9. Total phase delays, from negative
values (black) to positive values (white),
2003/01/22, Marie-Pierre Doin, Etna.

Fig. 10. NDVI, from low values (black)
to high values (white), 2004/01/13,
Bluecham S.A.S., NC.

Fig. 11. STL-map: 1st lowest NMI pat-
tern 〈1,1,2,1,1,1,1,3〉, Etna.

Fig. 12. STL-map: 1st highest NMI pat-
tern 〈1,2,3,3,3,3,3,3,3,3,3,3,3,3,3〉, Etna.

Fig. 13. STL-map: 6th lowest NMI pat-
tern 〈2,2,1,1,1,2〉, NC.

Fig. 14. STL-map: 2nd highest NMI pat-
tern 〈3,3,3,3,3,3,3,3,3,3,3,3,3,3〉, NC.
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Fig. 15. Color scale: from the SITS starting date in red to the SITS ending date in
violet.

Regarding qualitative results, it is possible to extract known and unknown
meaningful phenomena, at both ends of the NMI rankings and for both datasets.
Different STL-maps, representative of the well ranked ones, are shown in
figures 11-12 (for the Etna SITS) and in figures 13-14 (for the NC SITS). Pixels
where there is no occurence of the pattern are represented in black for NC and
in gray for Etna (depicting a digital elevation model available for the area). The
color scale used to represent the occurrence dates is given Fig. 15. In Fig. 11,
pattern 〈1,1,2,1,1,1,1,3〉 (1st lowest NMI pattern) shows, at the foot of the vol-
cano, a zone moving towards the satellite before going away from the satellite
(for this SITS the location of the satellite is on the left side of the image). It
matches a sedimentary zone that is affected by movements due to subduction
plates. In Fig. 12, pattern 〈1,2,3,3,3,3,3,3,3,3,3,3,3,3,3〉 (1st highest NMI pattern)
denotes a short motion towards the satellite and then a very long motion away
from the satellite. It covers a part of the east flank of the volcano, called the
Valle del Bove, which is known to be slipping into the sea. In Fig. 13, pattern
〈2,2,1,1,1,2〉 (6th lowest NMI pattern) traces losses of vegetation due to anthropic
activities (mining area at center and middle-left, mining facilities bottom-left).
It also uncovers the impact of drought on a lakeshore (top-left) and exhibits sed-
iment deposition (top-right). Notice that the color scale shows clear differences
among the dates of occurrence of the phenomena. In Fig. 14, the simple pattern
〈3,3,3,3,3,3,3,3,3,3,3,3,3,3〉 (2nd highest NMI pattern) locates dense vegetation
along the coastline. The STL-maps obtained on the NC SITS are commercial-
ized through the web-based decision support system operated by Bluecham S.A.S
(Qëhnelö plateform www.yate.nc). Finally, the fact that encouraging results are
obtained for very different datasets (radar or optical, different spatiotemporal
resolutions and different rates of swappable events) shows the general nature of
the approach.

6 Conclusion

This paper extends the swap randomization of Boolean matrices to the swap
randomization of a base of sequences representing a Satellite Image Time Series
(SITS). The proposed approach is aimed at assessing spatiotemporal patterns
extracted from SITS. It preserves event frequencies, spatially and temporally,
while breaking event connectivity and ordering. Once swap randomized datasets
are generated, patterns are ranked using the Normalized Mutual Information
(NMI). Low NMI patterns underline singular phenomena that are unlikely in
randomized datasets while high NMI patterns express prominent phenomena
that cannot be destroyed via swap randomization. Experiments on an optical
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and a radar SITS evidence the stability of the swap randomization approach and
its ability to explore a lot of different datasets. They also confirm that efficiency
can be achieved by considering a single swap randomized dataset. Since the
method is made as unsupervised as possible, extracted patterns allow to explore
known and unknown phenomena, which gives access to different application
domains ranging from agricultural monitoring to crustal deformation monitoring.
Results regarding soil erosion monitoring are already commercialized. Future
work include handling multispectral SITS, building clustering on top of extracted
patterns and pushing NMI constraints within the extraction process.
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