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Abstract. Survival analysis is a commonly used technique to iden-
tify important predictors of adverse events and develop guidelines for
patient’s treatment in medical research. When applied to large amounts
of patient data, efficient optimization routines become a necessity. We
propose efficient training algorithms for three kinds of linear survival
support vector machines: 1) ranking-based, 2) regression-based, and 3)
combined ranking and regression. We perform optimization in the pri-
mal using truncated Newton optimization and use order statistic trees to
lower computational costs of training. We employ the same optimization
technique and extend it for non-linear models too. Our results demon-
strate the superiority of our proposed optimization scheme over existing
training algorithms, which fail due to their inherently high time and space
complexities when applied to large datasets. We validate the proposed
survival models on 6 real-world datasets, and show that pure ranking-
based approaches outperform regression and hybrid models.
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1 Introduction

Recently, researchers have become interested in studying the effective use of
electronic health records to improve outcomes of medical procedures, reduce
health care costs, evaluate the efficiency of newly developed drugs, and predict
health trends or adverse events (see e.g. [13] for an overview). In the latter case,
survival analysis is employed to examine how a particular set of covariates affects
the time until the occurrence of an event of interest, such as death or reaching
a specific state of disease progression. The objective in survival analysis is to
establish a connection between covariates and the time between the start of
the study and an event. What makes survival analysis differ from traditional
machine learning is the fact that parts of the training data can only be partially
observed – they are censored. In a clinical study, patients are often monitored
for a particular time period, and events occurring in this particular period are
recorded. If a patient experiences an event, the exact time of the event can
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be recorded – the patient’s record is uncensored. In contrast, right censored
records refer to patients that remained event-free during the study period and
it is unknown whether an event has or has not occurred after the study ended.
Consequently, survival models demand for proper training algorithms that take
this unique characteristic of such a dataset into account.

Cox’s proportional hazards model [6] is the standard for analyzing time-
to-event data, despite having several shortcomings: 1) it assumes that hazard
functions for any two individuals are proportional, i.e., their ratio is constant
over time, 2) it is not applicable to data with more features than samples, 3)
it fails if features are highly correlated, and 4) its decision function is linear
in the covariates. The advantage of large-margin methods for classification and
regression has motivated researchers to adapt these models for survival analysis.
Authors in [17,22] cast survival analysis as a regression problem and adapted
support vector regression, whereas Eleuteri et al. [9] formulated a loss function
derived from quantile regression. Steck et al. [23] observed that survival analysis
can be expressed as a ranking problem, which led to extensions of Rank Support
Vector Machines (RankSVMs) [10,24]. Finally, Van Belle et al. [26] proposed a
hybrid solution between the ranking and regression approach.

The main disadvantage of ranking-based techniques is that their objective
function depends on a quadratic number of constraints with respect to the num-
ber of training samples, which makes training intractable with medium to large
sized datasets. By clustering data according to survival times, authors in [25]
showed that the computational complexity can be lowered without considerable
loss in performance. For regular RankSVMs, which do not account for censor-
ing, authors in [2,19] proposed the use of order statistic trees to alleviate this
problem.

In this paper, we extend the work of Lee et al. [19] to efficiently train rank-
ing, and regression-based survival models by re-formulating their approach to
be applicable to survival analysis in the presence of right censoring. In [10,24],
ranking-based survival support vector machines were based on the hinge loss
and optimization was carried out in the dual using a generic quadratic program-
ming solver. In contrast, we use the squared hinge loss and perform truncated
Newton optimization, which leads to a more efficient training algorithm. A fur-
ther improvement is due to order statistic trees to avoid explicitly storing all
pairwise comparisons of samples, which requires O(n2) space, where n is the
number of samples. Moreover, we introduce a straightforward training technique
for a combined regression and ranking approach. When considering non-linear
functions, we demonstrate that training can still be carried out efficiently using
the primal formulation. Finally, experimental results of 7 synthetic and 6 real
world datasets justify the advantages of our proposed solution.

2 Survival Analysis

The objective in training a survival model is to derive a model’s parameters in
the presence of censoring. After training, the model can be used to predict the
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survival time of patients based on a given set of features. For a set of n patients,
we know for the i-th patient: 1) the exact time ci ≥ 0 of censoring, i.e., the time
until which the patient was observed, and 2) the time ti ≥ 0 when a patient
experienced an event, if any. From these two quantities, we define the survival
time yi as

yi = min(ti, ci) =

{
ti if δi = 1
ci if δi = 0,

where δi ∈ {0, 1} is the event indicator. Thus, training data for a survival model
consists of triples (xi, yi, δi), where xi is a d-dimensional feature vector.

During training, information about the occurrence of an event is only par-
tially available for censored patients, i.e., those that did not experience an event
or dropped out of the study. When training a survival model, one has to consider
that two patients i and j are only comparable if both experienced an event or
only one of them experienced an event and the time of the event occurred before
the time of censoring, formally: (yi < yj ∧ δi = 1) ∨ (yi > yj ∧ δj = 1). If two
patients do not satisfy this condition, they are incomparable and their relation
cannot be used to deduce a survival model.

Here, we discuss two approaches to survival analysis: the first approach treats
survival analysis as a ranking problem, and the second approach as a regression
problem. Finally, we present an objective function that combines both ideas. Our
implementation of the methods proposed in this paper are publicly available.1

3 Survival Analysis as Ranking Problem

In ranking, the goal is to recover the correct order of samples according to
their relevance. For survival analysis, relevance corresponds to the survival time.
However, not all pairwise comparisons are meaningful in the presence of right
censoring. The set P = {(i, j) | yi > yj ∧ δj = 1}i,j=1,...,n defines the pairs of
comparable samples that can be used for training and p = |P| the cardinality of
this set, which is bounded by O(n2). We minimize our objective function similar
to the work in [19], but additionally account for right censoring during training.

Definition 1. The objective function of ranking-based linear survival support
vector machine is defined as

f(w) =
1
2
wTw +

γ

2

∑
i,j∈P

max(0, 1 − (wTxi − wTxj))2, (1)

where w ∈ IRd are the coefficients and γ > 0 is a regularization parameter. A
new set of data points Xnew, can be ranked with respect to their predicted survival
time according to elements of Xneww.

1 https://github.com/tum-camp/survival-support-vector-machine

https://github.com/tum-camp/survival-support-vector-machine
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The sum in the second term of (1) has a complexity of O(n2) and thus training
with only a few thousand samples is already intractable. We will first derive
a gradient-based minimization of the objective function, based on Newton’s
method, and then outline a more efficient optimization, which does not depend
on the number of comparable pairs, using truncated Newton optimization and
order statistic trees.

The objective function (1) can be expressed in matrix form as

f(w) =
1
2
wTw +

γ

2
(1l − AXw)T Dw (1l − AXw) , (2)

where 1l is a vector of all ones, X = [x1, . . . ,xn]T , and A ∈ IRp×n a sparse
matrix with Aki = 1 and Akj = −1 if (i, j) ∈ P and zero otherwise. Dw is
a p × p diagonale matrix that has an entry for each (i, j) ∈ P that indicates
whether this pair is a support vector, i.e., 1 − (wTxi − wTxj) > 0 [19]. For the
k-th item of P, representing the pair (i, j), the corresponding entry in Dw is
defined as

(Dw)k,k =

{
1 if wTxj > wTxi − 1
0 else

. (3)

Thus, we obtain an objective function that is convex in w and can apply New-
ton’s method to minimize it. One update in Newton’s method with step size μ
becomes

wnew = w − μ

(
∂2f

∂w∂wT

)−1
∂f

∂w
(4)

with partial derivatives

∂f

∂w
= w + γXT

(
ATDwAXw − ATDw1l

)
(5)

∂2f

∂w∂wT
= I + γXTATDwAX. (6)

Note that we used the generalized Hessian in the second derivative, because f(w)
is not twice differentiable at w [16].

Next, we simplify the derivatives by expressing the product AT DwA in
terms of a new matrix Aw ∈ {−1, 0, 1}pw,n that is a restricted version of A,
limited to rows corresponding to support vectors:

AT DwA = AT
wAw, (7)

where pw denotes the number of pairs (i, j) ∈ P – rows of A – where wTxj >
wTxi − 1.
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Algorithm 1. Survival Support Vector Machine Training.
Input: Training data D = {(xi, yi, δi)}n

i=1, hyper-parameter γ > 0.
Output: Coefficients w.

1 Randomly resolve ties in survival times yi ∀i ∈ {1, . . . , n};
2 w0 ← 0;
3 t ← 0;
4 while not converged do

5 Use conjugate gradient to determine search direction u =
(

∂2f
∂w∂wT

)−1
∂f
∂w

with w = wt;
6 Choose step size μ by backtracking line search;
7 Update wt+1 ← wt + μu;
8 t ← t + 1;

9 end
10 w ← wt;

Definition 2. Formula (2) and its derivatives can be re-formulated using Aw

to eliminate Dw.

f(w) =
1
2
wTw +

γ

2
(
pw + wTXT

(
AT

wAwXw − 2AT
w1l

))
(8)

∂f

∂w
= w + γXT

(
AT

wAwXw − AT
w1l

)
(9)

∂2f

∂w∂wT
= I + γXTAT

wAwX (10)

3.1 Truncated Newton Optimization

Medical research is often challenging due to high-dimensional data: a patient’s
health record comprises several hundred features, and microarray data consists
of several thousand measurements. In this applications, explicitly computing
and storing the Hessian matrix can be prohibitive, therefore, we use a truncated
Newton method that uses a linear conjugate gradient method to compute the
search direction [7,16,20]. This only requires the computation of the Hessian-
vector product Hv, which can be computed by

Hv = v + γXTAT
wAwXv. (11)

Thus, the complexity of a single conjugate gradient iteration is O(nd + p + d),
when multiplying from the right, which is lower than O(pd2 + pd + d) to obtain
the full Hessian matrix. Truncated Newton optimization consists of an outer
loop to update the coefficients w and an inner loop to find the search direction
via conjugate gradient (see algorithm 1).
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3.2 Efficient Calculation of Search Direction

In each iteration of Newton’s method, Aw has to be recomputed due to its
dependency on w, which requires iterating over all comparable pairs, being of
order

(
n
2

)
. Therefore, the complexity of learning a new model is still quadratic

in the number of samples. Next, we will derive an improved algorithm that
avoids constructing Aw explicitly. First, we derive the conditions under which
an entry in Aw is non-zero, followed by proposing a compact representation of
an entry in AT

wAw, which finally leads to an efficient optimization scheme that
is independent of the size of P.

Proposition 1. For k ∈ {1, . . . , pw} and q ∈ {1, . . . , n}, (Aw)k,q = 1 if all of
the following conditions are satisfied:

(a) survival time of q-th sample is lower than survival time of some sample
s ∈ {1, . . . , n} (s outlives q): yq < ys.

(b) the q-th sample is uncensored: δq = 1.
(c) the pair (s, q) ∈ P is a support vector: wTxs < wTxq + 1.

Proposition 2. For k ∈ {1, . . . , pw} and q ∈ {1, . . . , n}, (Aw)k,q = −1 if all of
the following conditions are satisfied:

(a) survival time of q-th sample is higher than survival time of some sample
s ∈ {1, . . . , n} (q outlives s): yq > ys.

(b) the s-th sample is uncensored: δs = 1.
(c) the pair (q, s) ∈ P is a support vector: wTxs > wTxq − 1.

Proof. Note that the only difference between both propositions is the order of
samples s and q with respect to their survival times. Thus, the first proposition
can be transformed into the second by swaping s and q, and vice versa. Con-
ditions (a) and (b) are directly derived from the definition of A. Each row of
A and Aw contains exactly one element that is 1, one element that is -1, and
the rest is all zeros. For each pair of samples (row of A), the sample with the
shorter survival time is assigned 1, and the other sample -1, which is reflected
by condition (a). In addition, each pair must be comparable, i.e., the sample
with the shorter survival time must be uncensored, which leads to condition (b).
Finally, condition (c) is due to the multiplication ADw that restricts rows of A
to pairs of samples that are support vectors. ��
If proposition 1 or 2 holds, the result of the multiplication (Aw)k,i · (Aw)k,j
is either 1 or -1, if i = j or i �= j, respectively, for k ∈ {1, . . . , pw} and i, j ∈
{1, . . . , n}. In the latter case, the conditions of propositions 1 and 2 are equal.
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Combining all cases, the product (Aw)k,i · (Aw)k,j is defined as

(Aw)k,i · (Aw)k,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = j, (Aw)k,i = (Aw)k,j = 1,

and proposition 1 holds for q = i,

1 if i = j, (Aw)k,i = (Aw)k,j = −1,

and proposition 2 holds for q = i,

−1 if i �= j, (Aw)k,i = 1, (Aw)k,j = −1,

and proposition 1 holds for q = i, s = j

⇔ proposition 2 holds for q = j, s = i,

−1 if i �= j, (Aw)k,i = −1, (Aw)k,j = 1,

and proposition 1 holds for q = j, s = i,

⇔ proposition 2 holds for q = i, s = j,

0 else.

(12)

We can compactly express
(
AT

wAw

)
i,j

=
∑pw

k=1(Aw)k,i · (Aw)k,j using above
definitions and by defining the following two sets and their cardinalities.

SV+
i = {s | ys > yi ∧ wTxs < wTxi + 1 ∧ δi = 1} l+i = |SV+

i | (13)

SV−
i = {s | ys < yi ∧ wTxs > wTxi − 1 ∧ δs = 1} l−i = |SV−

i | (14)

The set SV+
i represents proposition 1, and SV−

i represents proposition 2. This
allows us to compactly express an entry of AT

wAw as

(AT
wAw)i,j =

⎧⎪⎨
⎪⎩

l+i + l−i if i = j,

−1 if i �= j, and j ∈ SV+
i or j ∈ SV−

i ,

0 else,
(15)

where the second case is due to only one addend being non-zero, because each
pair of samples is compared only once.

The term AT
wAwXv is part of the objective function, its gradient, and the

Hessian-vector product. Applying the formulation in (15), we obtain

(AT
wAwXv)i = (l+i + l−i )xT

i v −
∑

s∈SV+
i

xsv −
∑

s∈SV−
i

xsv

= (l+i + l−i )xT
i v − σ+

i − σ−
i .

(16)

and

XTAT
wAwXv = XT

⎛
⎜⎝

(l+1 + l−1 )xT
1 v − (σ+

1 + σ−
1 )

...
(l+n + l−n )xT

nv − (σ+
n + σ−

n )

⎞
⎟⎠ . (17)
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Additionally, the objective function and its gradient contain the term AT
w1l,

where one component is computed as

(AT
w1l)i = |SV+

i ∪ SV−
i |

= |{(s, t) | yt < yi < ys ∧ δt = 1 ∧ δi = 1 ∧
wTxs − 1 < wTxi < wTxt + 1}|

= l−i − l+i .

(18)

By substituting (17) and (18) together with pw =
∑n

i=1 l+i =
∑n

i=1 l−i into
(8), (9), and (11), all terms that depend on Aw during optimization can be
eliminated. Assuming that l+i , l−i , σ+

i , and σ−
i have been computed already, the

complexity of evaluating the objective function, gradient, and Hessian-vector
product is O(nd+d). Subsequently, we will discuss an efficient method to obtain
these values.

3.3 Improving Optimization by Order Statistic Trees

The main difficulty is that the order of actual survival times yi and predictions
wTxi have to be considered when constructing the sets SV+

i and SV−
i . Assum-

ing that samples have been sorted in ascending order according to wTxi, we
illustrate how both sets can be constructed by the following example:

i 1 2 3 4 5 6 7 8 9
wTxi -0.7 -0.1 0.15 0.2 0.3 0.8 1.6 1.7 2.3

yi 1 9 6 5 8 2 7 3 4
δi 0 0 1 0 1 1 1 0 0

As we can see, the first element for which SV+
i �= ∅ occurs at i = 3, because both

the first and second sample are censored (δi = 0), which violates condition (b) of
proposition 1. For i = 3, we obtain SV+

3 = {s|ys > 6 ∧ wTxs < 1.15} = {2, 5}.
The next set (i = 4) is again empty, because of censoring, and SV+

5 = {s|ys >
8∧wTxs < 1.3} = {2}. This example shows, that SV+

i is non-empty if and only if
the i-th sample is uncensored, and that SV+

i+1 can be constructed incrementally
from the set SV+

i :

{s|wTxs < wTxi+1 + 1 ∧ δi+1 = 1}
={s|wTxs < wTxi + 1} ∪ {s|wTxi + 1 ≤ wTxs < wTxi+1 + 1 ∧ δi+1 = 1}.

When constructing the set SV−
i , we can obtain a similar incremental update

rule when iterating the list of samples according to decreasing values of wTxi.
Here, SV−

9 = ∅, because no element with wTxs > 1.3 satisfies conditions (a)
and (b) of proposition 2, and SV−

8 = {s|ys < 3 ∧ wTxs > 0.7 ∧ δs = 1} = {6}.
An incremental update when going from i to i − 1 is defined as

{s|wTxs > wTxi−1 − 1 ∧ δs = 1} = {s|wTxs > wTxi − 1 ∧ δs = 1}
∪ {s|wTxi − 1 ≥ wTxs > wTxi−1 − 1 ∧ δs = 1}.
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To maintain the respective sets of relevant samples for computing SV+
i and SV−

i ,
we incrementally add elements yi and xT

i v to an order statistic tree that allows
retrieving |{s|ys > yi}| and |{s|ys < yi}| in logarithmic time. Note that both sets
in the incremental update of SV−

i consider censoring, whereas for SV+
i censoring

is only relevant for the second set, but not the first. For the former, we use an
order statistic tree to sort uncensored samples according to their survival time
yi, and for the latter we sort all samples, disregarding censoring. Formally, an
order statistic tree is defined as follows.

Definition 3. An order statistic tree is a balanced binary search tree that stores
key-value pairs and has the following properties.

1. For an internal node x with left child left(x) and right child right(x):

key(left(x)) ≤ key(x) and key(right(x)) ≥ key(x).

2. For n elements in the tree, the height of the tree is limited by O(log n).
3. Each node x in the tree stores two additional attributes size and sum.

(a) size denotes the size of the subtree mounted at x:

size(x) =

{
0 if x = ∅

size(left(x)) + size(right(x)) + 1 else

(b) sum denotes the sum of all values in the subtree mounted at x:

sum(x) =

{
0 if x = ∅

sum(left(x)) + sum(right(x)) + value(x) else

4. The correct value for above attributes is maintained after insertion.

Based on aforementioned definitions, we use algorithm 2 to compute l+i , xv+
i , l−i

and xv−
i . The auxiliary function CountSmaller is defined in algorithm 3, and

CountLarger works in a similar manner. The complexity of these functions cor-
responds to the complexity of finding an element in a binary search tree, which
is O(log n). Hence, the overall complexity of algorithm 2 is O(n log n), and the
Hessian-vector product in (11) can be carried out in O(nd + d + n log n), after
sorting according to wTxi, which costs O(n log n). Thus, one conjugate gradi-
ent iteration does not depend on the number of comparable pairs p anymore,
which scales quadratically in the number of samples. Finally, the overall com-
plexity of training a ranking-based survival support vector machine as outlined
in algorithm 1 is

[O(n log n) + O(nd + d + n log n)] · N̄CG · NNewton, (19)

where N̄CG and NNewton are the average number of conjugate gradient iterations
and the total number of Newton updates, respectively.
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Algorithm 2. Efficient computation of l+i , l−i , σ+
i , and σ−

i .
Input: Training data D = {(xk, yk, δk)}n

k=1, coefficient vectors w and v.
Output: l+i , l−i , σ+

i , and σ−
i ∀i ∈ {1, . . . , n}

1 Sort all wT xi in ascending order, such that wT xπ(1) ≤ · · · ≤ wT xπ(n);
2 T ← an empty order statistic tree;
3 j ← 1;
4 for i ← 1 to n do
5 while j ≤ n and wT xπ(j) < wT xπ(i) + 1 do
6 Insert (yπ(j), x

T
π(j)v) into T ;

7 j ← j + 1;

8 end
9 if δπ(i) = 1 then

10 (l+π(i), xv+
π(i)) ← CountLarger(root of T , yπ(i));

11 else
12 (l+π(i), xv+

π(i)) ← (0, 0);

13 end

14 end
15 j ← n;
16 T ← an empty order statistic tree;
17 for i ← n to 1 do
18 while j ≥ 1 and wT xπ(j) > wT xπ(i) − 1 do
19 if δπ(j) = 1 then Insert (yπ(j), x

T
π(j)v) into T ;

20 j ← j − 1;

21 end

22 (l−π(i), xv−
π(i)) ← CountSmaller(root of T , yπ(i));

23 end

Algorithm 3. CountSmaller
Input: node x in order statistic tree, survival time yi

Output: l−i (number of uncensored samples with ys < yi), and
σ−

i =
∑

s∈SV−
i

xT
i v

1 if x = ∅ then
2 l−i ← 0; σ−

i ← 0;
3 else if key(x) = yi then
4 l−i ← size(left(x));

5 σ−
i ← sum(left(y));

6 else if key(x) < yi then
7 (l−i , σ−

i ) ← CountSmaller(right(x), yi);

8 l−i ← l−i + size(x) − size(right(x));

9 σ−
i ← σ−

i + sum(x) − sum(right(x));

10 else // key(x) > yi

11 (l−i , σ−
i ) ← CountSmaller(left(x), yi);

12 end
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4 Survival Analysis as Regression Problem

Instead of treating survival analysis as a ranking problem, authors have proposed
regression-based approaches using an absolute loss as well [17,22]. In contrast
to a ranking-based model, a regression model can predict the exact time of an
event. Training algorithms for such a model need to be aware of censored patient
record as well. For right censored patients – those who did not experience an
event – no information about the correctness of predicted survival times beyond
the time of censoring is available. A valid error can only be computed for patients
that experienced an event during the study period, or if the predicted survival
time is too early, i.e., before the time of censoring. Experiments in [26] revealed
that survival models based on ε-insensitive support vector regression worked
equally well if the insensitive zone is set to zero. Hence, our regression objective
is based on an ordinary least square problem with �2 penalty and the additional
consideration of right censoring.

fRegr.(w, b) =
1
2
wTw +

γ

2

n∑
i=0

(ζw,b(yi, xi, δi))
2 (20)

ζw,b(yi,xi, δi) =

{
max(0, yi − wTxi − b) if δi = 0,
yi − wTxi − b if δi = 1,

(21)

where b ∈ IR is the intercept.
By combining all parameters into a single vector ω = (b,w)T , and extending

X by a column of all ones to accommodate the intercept, the objective can be
expressed in matrix form as follows:

fRegr.(ω) =
1
2
ωTω +

γ

2
(y − Xω)T Rω (y − Xω) (22)

where Rω is a diagonal matrix with the i-th element being 1 if yi > wTxi + b or
δi = 1, and zero otherwise. Due to fRegr. being a convex quadratic function, we
can use truncated Newton optimization to minimize it, as described in algorithm
1. In addition, we can easily create a hybrid model that addresses the ranking
and regression objective concurrently; its objective function is defined as

fhybrid(w, b) =
1
2
wTw +

γ

2

⎡
⎣α

∑
i,j∈P

max(0, 1 − (wTxi − wTxj))2

+ (1 − α)
n∑

i=0

(ζw,b(yi, xi, δi))
2

]
. (23)

The hyper-parameter α ∈ [0, 1] controls the relative weight of the regression and
ranking objective. Clearly, if α = 1 it reduces to the ranking objective, and if
α = 0 to the regression objective.
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5 Non-linear Extension

So far, we only discussed linear survival support vector machines and their effi-
cient training in the primal. If data are more complex, one might want to model
non-linear functions through the use of kernel functions. Commonly, the rep-
resenter theorem [18] is employed and optimization is carried out in the dual
rather than the primal. The weights w are then a linear combination of the
training samples. However, if training data is large, the number of support vec-
tors increases as well, resulting in excessive computational costs. Chapelle et al.
[5] showed that solving the non-linear problem is equivalent to the combination
of Kernel PCA and training in the primal. Thus, efficient training of non-linear
survival models is straightforward using the optimization scheme outlined above.

6 Experiments

In our experiments, we first studied the efficiency of our proposed algorithm to
minimize the ranking-based objective function and then investigated the predic-
tive performance of ranking, regression, and hybrid approaches. We standard-
ized continuous features to have zero mean and unit standard deviation, and
randomly resolved ties in survival times before optimization. For regression, we
used the logarithm of survival times yi as target value.

6.1 Computational Efficiency

In the first set of experiments, we compared the training time of three different
formulations of the ranking-based objective function: the simple formulation in
(2), the alternative formulation in (8), and our efficient proposed formulation in
(17). We generated synthetic survival data of varying size following [4]. Data con-
sisted of 10 normal distributed features and two redundant features, which were
linear combinations of a subset of the first ten features. Correlations between
the first ten features were defined as follows: r1,3 = 0.03, r2,5 = 0.42, r3,5 = 0.08,
r3,9 = 0.03, r5,8 = −0.55, r6,9 = 0.32, and the remainder all zero. Survival times
were Gompertz distributed and depended on a linear combination of all features.
Finally, half of the samples were randomly censored. Our choice of order statistic
trees were red-black trees [3] and AVL trees [1]. To minimize the influence of the
operating system’s process scheduler in our measurements, we report the lowest
training time of ten repetitions in wall time.

Figure 1 shows the lowest training time following algorithm 1. The naive and
improved optimization failed with more than 20,000 samples because of exces-
sive memory requirements due to explicitly constructing the sparse matrix A
and Aw, respectively. For all datasets, optimization converged after less than 20
iterations. Although A has to be constructed only once for the simple optimiza-
tion, training time quickly degenerates because it repeatedly has to be multiplied
by Xw, which takes O(pn) time. The improved optimization updates Aw after
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Fig. 1. Training time of survival models using ranking objective with truncated Newton
optimization. Simple refers to the objective function in (2) and improved to the one in
(8). Our proposed algorithm uses the efficient formulation in (17) with red-black trees
or AVL trees.

Table 1. Overview of datasets used in our experiments.

Dataset n d Events Outcome

AIDS study [12] 1, 151 13 96 (8.3%) AIDS defining event
or death

Breast cancer [8] 198 80 62 (31.3%) Distant metastases
Coronary artery disease [21] 1, 204 60 196 (15.9%) Myocardial infarc-

tion or death
Framingham Offspring [15] 4, 892 150 1,166 (23.8%) Coronary vessel dis-

ease
Veteran’s Lung Cancer [14] 137 6 128 (93.4%) Death

Worcester Heart Attack Study [12] 500 14 215 (43.0%) Death

each iteration of Newton’s method, but only needs to perform O(pwn) oper-
ations when multiplied by Xw, which results in a lower training time. Using
order statistic trees, the training time and memory requirements can be lowered
significantly; for very large datasets, red-black trees were superior to AVL trees.

6.2 Prediction Performance

We evaluated the predictive performance of our proposed method for survival
analysis on six real-world datasets of varying size, number of features, and
amount of censoring (see table 1). In addition to the three models proposed here,
we included Cox’s proportional hazards model [6] with �2 (ridge) penalty, and
ranking-based survival SVM with hinge loss [10,24]. The regularization parame-
ter γ for survival SVM controls the weight of the (squared) hinge loss, whereas for
Cox’s proportional hazards model, λ = γ−1 controls the weight of the �2 penalty.
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Fig. 2. Concordance index of Cox’s proportional hazards model with �2 (ridge) penalty
and four different survival SVM models: ranking objective with hinge loss, ranking
objective with squared hinge loss, regression objective, and combined ranking and
regression (hybrid).

Optimal performance was determined by a grid search over hyper-parameters.
We set γ and λ to 2i, where we altered i from −12 to 12 in steps of 2. Similar
for α, which ranged from 0.05 to 0.95 in steps of 0.05. The maximum number of
iterations of Newton’s method was one thousand. Performance was measured by
Harrell’s concordance index (c index) [11], which is the ratio of correctly ordered
pairs to comparable pairs. A c index of 0.5 corresponds to a random model and
1.0 to a perfect model. In addition, we measured the root mean squared error
(RMSE) on uncensored patients to evaluate regression models. For each param-
eter setting, we randomly split each dataset into two equally sized parts, one for
training and one for testing. Results reported here are with respect to the con-
figuration that performed best on the training portion of 200 different random
splits.

Figure 2 summarizes the results of our experiments with respect to c index.
We observed that ranking-based approaches to survival analysis, using hinge
or squared hinge loss, were comparable to Cox’s proportional hazards model
with �2 penalty and superior to a regression-based approach. We believe this
is why the combined ranking-regression technique did not exceed the perfor-
mance of the pure ranking approach. In fact, hyper-parameter search assigned
more weight to the ranking objective in all cases but one. The only exception
occurred for the breast cancer dataset, where α = 0.25 was chosen and the
hybrid model performed best. The reason for this becomes obvious when look-
ing at the RMSE shown in figure 3. Predictions of survival time are off by a
large extent on all datasets, which renders the regression objective unsuitable.
This can be explained by the distribution of survival times, which are – even
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Fig. 3. Root mean squared error (RMSE) of regression-based and hybrid survival sup-
port vector machine.

after log-transformation – far from normally distributed, and thus violate a basic
assumption of ordinary least squares. In [26] however, regression was based on
absolute loss and outperformed ranking. A possible explanation might be the
fact that squared loss is more sensitive to outliers than absolute loss. This prob-
lem could be alleviated by introducing sample weights to reduce the influence of
outliers in the squared loss function. Finally, the performance of all approaches
varied to a similar degree among 200 randomly selected train-test splits. We
obtained similar results for non-linear survival models.

7 Conclusion

In this paper, we proposed an efficient method for training ranking-based and
regression-based survival support vector machines. Our algorithm accounts for
right censoring of patient records and avoids explicitly constructing a matrix
of pairwise constraints – quadratic in the number of samples – by using order
statistic trees. We experimentally showed that the reduced time and space com-
plexity allow efficient training of survival models based on millions of patients,
which would otherwise not been possible on commodity hardware. In addition
to its high efficiency, the algorithm can be easily adapted for training non-linear
as well as hybrid ranking and regression survival models. This opens up the
opportunity to build survival models from large sets of medical health records
to obtain new insights about the impact of particular factors on a disease.
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Hösl, K., Schulz, S., Fusaro, M., Pache, J., Hausleiter, J., Laugwitz, K.L., Mass-
berg, S., Seyfarth, M., Schömig, A., Kastrati, A.: Prognostic value of sensitive
troponin T in patients with stable and unstable angina and undetectable conven-
tional troponin. Am. Heart J. 161(1), 68–75 (2011)

22. Shivaswamy, P.K., Chu, W., Jansche, M.: A support vector approach to censored
targets. In: 7th IEEE Int. Conf. on Data Mining, pp. 655–660 (2007)

23. Steck, H., Krishnapuram, B., Dehing-oberije, C., Lambin, P., Raykar, V.C.: On
ranking in survival analysis: bounds on the concordance index. In: Adv. Neural
Inf. Process. Syst., vol. 20, pp. 1209–1216 (2008)

24. Van Belle, V., Pelckmans, K., Suykens, J.A., Van Huffel, S.: Support vector
machines for survival analysis. In: Proc. 3rd Int. Conf. Comput. Intell. Med.
Healthc, pp. 1–8 (2007)

25. Van Belle, V., Pelckmans, K., Suykens, J.A., Van Huffel, S.: Survival SVM: a
practical scalable algorithm. In: Proc. of 16th European Symposium on Artificial
Neural Networks, pp. 89–94 (2008)

26. Van Belle, V., Pelckmans, K., Van Huffel, S., Suykens, J.A.K.: Support vec-
tor methods for survival analysis: a comparison between ranking and regression
approaches. Artif. Intell. Med. 53(2), 107–118 (2011)


	Fast Training of Support Vector Machines for Survival Analysis
	1 Introduction
	2 Survival Analysis
	3 Survival Analysis as Ranking Problem
	3.1 Truncated Newton Optimization
	3.2 Efficient Calculation of Search Direction
	3.3 Improving Optimization by Order Statistic Trees

	4 Survival Analysis as Regression Problem
	5 Non-linear Extension
	6 Experiments
	6.1 Computational Efficiency
	6.2 Prediction Performance

	7 Conclusion
	References


