
Message Scheduling Methods for Belief
Propagation

Christian Knoll1(B), Michael Rath1, Sebastian Tschiatschek2,
and Franz Pernkopf1

1 Signal Processing and Speech Communication Laboratory,
Graz University of Technology, Graz, Austria

christian.knoll@tugraz.at
2 Learning and Adaptive Systems Group, Department of Computer Science,
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Abstract. Approximate inference in large and densely connected graph-
ical models is a challenging but highly relevant problem. Belief propaga-
tion, as a method for performing approximate inference in loopy graphs,
has shown empirical success in many applications. However, convergence
of belief propagation can only be guaranteed for simple graphs. Whether
belief propagation converges depends strongly on the applied message
update scheme, and specialized schemes can be highly beneficial. Yet,
residual belief propagation is the only established method utilizing this
fact to improve convergence properties. In experiments, we observe that
residual belief propagation fails to converge if local oscillations occur and
the same sequence of messages is repeatedly updated. To overcome this
issue, we propose two novel message update schemes. In the first scheme
we add noise to oscillating messages. In the second scheme we apply
weight decay to gradually reduce the influence of these messages and con-
sequently enforce convergence. Furthermore, in contrast to previous work,
we consider the correctness of the obtained marginals and observe sig-
nificant performance improvements when applying the proposed message
update schemes to various Ising models with binary random variables.

Keywords: Residual belief propagation · Asynchronous message
scheduling · Convergence analysis

1 Introduction

Probabilistic reasoning for complex distributions arises in many practical prob-
lems including computer vision, medical diagnosis systems, and speech process-
ing [9]. These complex distributions are often modeled as probabilistic graphical
models (PGMs). PGMs representing the joint distribution over many random
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variables (RVs) of practical problems are often complex and include many loops.
Thus performing exact inference is increasingly intricate, in fact exact inference is
intractable for general PGMs [1]. Message passing, a powerful method to approx-
imate the marginal distribution, was first introduced to the field of machine
learning as Belief Propagation (BP) by Pearl [19]. It is a parallel update scheme
where messages are recursively exchanged between RVs until the marginal prob-
abilities converge.

The conjecture that asynchronously updating the messages leads to better
convergence performance of BP is widely accepted [2,5,22]. Thus, there was a
recent interest in improving the performance of BP by applying dynamic mes-
sage scheduling. One efficient way for scheduling is residual belief propagation
(RBP) [2], where only the message that changes the most is sent. RBP has a
provable convergence rate that is at least as good as the convergence rate of
BP, while still providing good marginals. The quality of the obtained marginals
in [2,24] is comparable to existing methods. Nonetheless, a detailed analysis of
the quality of the marginals in comparison to the exact marginals is missing to
the best of our knowledge. Dynamic message scheduling increases the number of
graphs where BP converges. Yet, on graphs with many loops the occurrence of
message oscillation is observed. In this case, a small set of messages is repeatedly
selected for update and periodically takes the same values.

Inspired by this observation we introduce and investigate two different meth-
ods for dynamic message scheduling. The first method directly improves upon
RBP if message oscillations occur. Noise injection belief propagation (NIBP)
detects message oscillations of RBP. Adding random noise to the message that
is propagated prevents these oscillations and improves convergence of BP. The
second method is based on the assumption that messages repeatedly taking the
same values do not contribute to convergence of the overall PGM. A sequence
of oscillating messages does obviously not change the constraints in favor of
convergence. We apply weight decay to the residual and consequently, support
non oscillating messages to be updated. This way we avoid message oscillations
before they even occur. Weight decay belief propagation (WDBP) solely changes
the scheduling by the damping, whereas directly applying a damping term to
the beliefs can also improve the convergence properties [21].

Our proposed methods are evaluated on different realizations of Ising grid
graphs. Graphs of such structure have a rich history in statistical physics [8,15],
and these models are appealing, as phase transitions can be analytically deter-
mined. Phase transitions separate convergent from divergent behavior and can be
related to PGMs and the behavior of BP. It is shown in [25,26] how the fixed point
solutions of BP correspond to the local minima of the Gibbs free energy.

On difficult Ising graphs we compare the performance of the proposed meth-
ods to RBP and asynchronous belief propagation (ABP). The convergence
behavior is usually analyzed in terms of the number of times BP converges (i.e
converged runs) and the speed of convergence (i.e. convergence rate). In addi-
tion, we compare the approximated marginals to the exact marginals, which are
obtained by the junction tree algorithm [12].
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Our two main findings are: (i) we show empirically that NIBP significantly
increases the number of times convergence is achieved and (ii) WDBP accom-
plishes a quality of marginals superior to the remaining methods, while main-
taining good convergence properties.

The rest of this paper is structured as follows. In Section 2 we give a short
background on probabilistic graphical models and belief propagation. We intro-
duce our proposed approach to message scheduling in Section 3 and relate it
to existing methods. Our experimental results are presented and discussed in
Section 4. Related work is deferred to Section 5 for the sake of reading flow.
Section 6 summarizes the paper and provides some final conclusions.

2 Preliminaries

In this section we briefly introduce PGMs and the BP algorithm. Some appli-
cations and a detailed treatment of PGMs can be found in [11,20]. Let X be a
binary random variable (RV) taking values x ∈ S = {−1, 1}. We consider the
finite set of random variables X = {X1, . . . , XN}.

An undirected graphical model (UGM) consists of an undirected graph G =
(X,E), where X = {X1, . . . , XN} represents the nodes and E the edges. Two
nodes Xi and Xj , i �= j can be connected by an undirected edge ei,j ∈ E that
specifies an interaction between these two nodes. Note that we use the same
terminology for the nodes as for the RVs since there is a one-to-one relationship.
The set of neighbors of Xi is defined by Γ (Xi) = {Xj ∈ X\Xi : ei,j ∈ E}. We
use an UGM to model the joint distribution

P (X = x) =
1
Z

∏

(i,j) : ei,j∈E

ΦXi,Xj
(xi, xj)

N∏

i=1

ΦXi
(xi), (1)

where the first product runs over all edges, and where ΦXi,Xj
are the pairwise

potentials and ΦXi
is the local potential.

Our formulation of BP is similar to the one introduced in [25]. For a detailed
introduction to the concept of BP we refer the reader to [19,29]. The messages
are updated according to the following rule:

μn+1
i,j (xj) =

∑

xi∈S

ΦXi,Xj
(xi, xj)ΦXi

(xi)
∏

Xk∈(Γ (Xi)\{Xj})
μn

k,i(xi), (2)

where μn
i,j(xj) is the message from Xi to Xj of state xj at iteration n.1 Loosely

speaking this means that Xi collects all messages from its neighbors Γ (Xi) except
for Xj . This product is then multiplied with the pairwise and local potentials
ΦXi,Xj

(xi, xj) and ΦXi
(xi). Finally the sum over all states of Xi is sent to Xj .

1 Note that without loss of generality we will drop the superscript n where no ambi-
guities occur.
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The marginals (or beliefs) P (Xi = xi) are obtained from all incoming messages
according to

P (Xi = xi) =
1
Z

ΦXi
(xi)

∏

Xk∈Γ (Xi)

μk,i(xi), (3)

where Z ∈ R
+ is the normalization constant ensuring that

∑
xi∈S

P (Xi = xi) = 1.
When the specific realization is not relevant we use the shorthand notation P (Xi)
instead.

There is a rich history of statistical physicists studying the interaction in
Ising models. The Edwards-Anderson model or Ising spin glass is an elegant
abstraction that allows both, ferromagnetic and antiferromagnetic Ising mod-
els [14, p. 44]. Following the terminology of the Edwards-Anderson model we
define the potentials of the model, such that we have a coupling Ji,j ∈ R

and a local field θi ∈ R. Let the potentials be ΦXi
(xi) = exp(θixi) and

ΦXi,Xj
(xi, xj) = exp(Ji,jxixj). Plugging these potentials into (1), the Ising spin

glass model defines the joint probability

P (X = x) =
1
Z

exp
( ∑

(i,j) : ei,j∈E

Ji,jxixj +
N∑

i=1

θixi

)
, (4)

where the sum over (i, j) : ei,j ∈ E runs over all edges of G and the second
sum runs over all nodes. Spin glasses in this form offer a powerful generalization
of the Ising model that allow for frustration.2 Such models have been used to
relate the convergence problem to the occurrence of phase transitions [4]. One
can consequently derive a sharp bound for the parameter set (Ji,j , θi) and relate
it to the convergence of loopy BP [18,25,26].

When analyzing the graph convergence over time, it is remarkable that cer-
tain subgraphs are almost converged after few iterations, while other regions
are less stable. More formally we can introduce two subgraphs such that
G = Gc ∪ Gc̄. We define the almost converged subgraph as Gc = (Xc,Ec),
i.e. for all (Xi,Xj) : ei,j ∈ Ec we have μn+1

i,j (xj) ≈ μn
i,j(xj). The second sub-

graph Gc̄ = (Xc̄,Ec̄) is less stable, i.e. μn+1
i,j (xj) �≈ μn

i,j(xj). Note that Gc̄ may
even include frustrated cycles such that convergence can never be reached.

3 Scheduling

For a given graph G = (X,E) we can define any message passing algorithm by
basic operations on the alphabet of messages (cf. [14, p. 316]). The algorithm
is converged if two successive messages show approximately the same value, i.e.
μn+1

i,j (xj) ≈ μn
i,j(xj). At that point, updating the messages does not change their

values, therefore we can also speak of a fixed point solution.
Note that in the original implementation of BP all messages are syn-

chronously updated, i.e. to compute μn+1
i,j all messages at iteration n are used.

2 Frustrated cycles have an overall parametrization, such that it is impossible to simul-
taneously satisfy all local constraints, i.e. convergence can never be achieved.
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Substituting the synchronous update rule by a sequential update rule, we obtain
a flexibility in developing variants of BP. Exploiting this flexibility and chang-
ing the update schedule significantly influences the performance in practice,
as reported in [2,14]. We are essentially interested in the advantages of differ-
ent update schedules, therefore we solely consider sequential (or asynchronous)
scheduling for the remainder of the work.

All variants of BP are compared to the performance of asynchronous belief
propagation (ABP). ABP is based on a rudimentary sequential update rule,
where all messages are considered equally important. Messages are selected
according to round robin scheduling, i.e. according to a fixed order. Although no
assumptions are made on a smart choice of the order, it can be observed that this
simple message scheduling concept improves the convergence behavior [10,22].

We propose two modifications to BP to improve convergence properties.
Either we change the calculation of the message values directly (NIBP), or we
utilize alternative message scheduling (WDBP). In the following we describe
these modifications in detail. Experimental results demonstrating the effective-
ness of the proposed modifications can be found in Section 4.

3.1 Residual Belief Propagation

Residual belief propagation (RBP) utilizes a priority measure for each message
and introduces dynamic scheduling [2]. The underlying assumption is that any
message passed along an edge ei,j ∈ Ec in the already converged subgraph does
not contribute to the overall convergence. Thus focusing on the subgraph that
has not converged Gc̄ = (Xc̄,Ec̄) is beneficial for convergence of the overall
graph. As Gc̄ is not converged, messages along edges ēi,j ∈ Ec̄ vary considerably
in every step.

This leads to the update rule of RBP, where the residual rn
i,j = |μn+1

i,j (xj) −
μn

i,j(xj)| measures the distance between two messages.3 The indices that maxi-
mize the residual

(k, l) = argmax
(i,j)

rn
i,j (5)

identify the message to update next, i.e.

μ̃n+1
k,l (xl) = μn+1

k,l (xl). (6)

Compared to ABP the number of graphs where RBP converges increases signifi-
cantly [2]. Still, RBP computes all residuals although only the message with the
most significant residual is sent. To further increase the convergence rate, the
authors of [24] bound and approximate the message values for the estimation of
the residual.

3 Ultimately one would be interested in the distance to the fixed point, if it exists,
lim

n→∞
μn
i,j(xj). However, since lim

n→∞
μn
i,j(xj) is not known, the time variation of the

messages offers a valid surrogate (cf. [2]).
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3.2 Noise Injection Belief Propagation

Investigating graphs with random Ising factors, where RBP fails to converge, we
observe that a large part of the PGM is almost converged. We observe local frus-
trated cycles in Gc̄, where the same message values are passed around repeatedly
along the edges ēi,j ∈ Ec̄. Noise injection belief propagation (NIBP) compares
the current message μn

i,j to the last L ∈ Z
+ messages for duplicate values. If older

messages are in an δ-neighborhood, i.e. |μn
i,j −μn−l

i,j | < δ for any l ∈ {1, 2, . . . , L},
although these messages are not converged, i.e. μn+1

i,j �≈ μn
i,j , we conclude that

the message values oscillate. If no oscillations are detected NIBP does not change
the scheduling of RBP. Therefore, NIBP always converges if RBP does. If, how-
ever, message values oscillate Gaussian noise N (0, σ2) is added to the message
μn+1

k,l that is selected according to (5). The new update rule is then given as

μ̃n+1
k,l (xl) = μn+1

k,l (xl) + N (0, σ2), (7)

where Xk and Xl are the nodes that maximize the residual in (5) and N (0, σ2)
is the normal distribution with zero mean and standard deviation σ.

Loosely speaking we aim to introduce a relevant change to the system by
injecting noise to the message selected for update μn+1

k,l . Adding noise to the
most influential part of the PGM, we assume that this minor change of one
message propagates through the whole graph and leads to a stable fixed point.
Pseudocode of the implementation can be found in Appendix A.

3.3 Weight Decay Belief Propagation

As mentioned above RBP fails to converge if message values oscillate. Obviously,
repeatedly sending around the same messages along the same path does not
contribute to achieving convergence. Weight decay belief propagation (WDBP)
penalizes this behavior by damping the residual of messages along ēi,j . Conse-
quently, WDBP increases the relevance of Gc and further refines the parametriza-
tion of this subgraph. In doing so, messages μi,j between both subgraphs, where
Xi ∈ Xc and Xj ∈ Xc̄ are re-evaluated, such that convergence can be achieved
on the overall graph G.

In particular, we damp the residual of all messages of a node Xi based on
the number of times a message has already been scheduled. More formally we
rewrite (5), such that the indices of the selected message μ̃n+1

k,l are given to

(k, l) = argmax
(i,j)

rn
i,j∑n

m=1 1μm
i,j

, (8)

where the indicator function 1μm
i,j

= 1 if and only if μm
i,j = μ̃m

i,j . Hence, the
residual is divided by a factor corresponding to how often a certain message was
selected. A detailed implementation is presented in Appendix A.
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4 Experiments

In this section we evaluate the proposed methods and compare them to ABP and
RBP. We evaluate all different types of scheduling with respect to the follow-
ing measures: first the number of configurations where the algorithm converges
will be considered, secondly we consider the rate of convergence, and finally
we evaluate the quality of the marginals. To evaluate the marginals we obtain
the approximate marginal distributions P̃ (Xi) and compare them to the exact
marginal distributions P (Xi), obtained by applying the junction tree algorithm
[12,16]. Although the junction tree algorithm is intractable in general, the consid-
ered PGMs are simple enough to make exact inference computationally feasible.
We quantify the quality of the marginals by computing the mean squared error
(MSE) over all marginals. Note that the potential functions are identical for all
compared methods.

Statistical physic provides exact statements regarding the performance of BP
on Ising spin glasses, therefore such models are commonly used for evaluation of
BP variants. In this work we perform message passing on Ising spin glasses of
varying size with uniform and random coefficients.

For NIBP, the parameters of the additive Gaussian noise were optimized for
different initialization and are zero mean and σ = 0.25. Simulations were either
stopped after kmax iterations or if all messages converged, i.e. maxi,j |μn+1

i,j (xj)−
μn

i,j(xj)| < ε for all i, j : i �= j, where ε = 10−3. Experiments on Ising grids
with uniform parameters were stopped after kmax = 4 · 105 iterations, whereas
the experiments on Ising grids with random factors were stopped after kmax =
2.5 · 105 iterations.

4.1 Fully Connected Graph with Uniform Parameters

We consider a fully connected Ising spin glass with |X| = 4 binary spins, and
uniform coupling Ji,j and field θi among the four vertices. In the case of uni-
form parameters we introduce the shorthand notation (J, θ). Using such a model
allows to compare our results to similar numerical experiments performed on
this type of graphs in [18,25,26]. Figure 1 shows the complete graph for |X| = 4.

Applying BP to this graph one can benefit from the rich history of statistical
physics literature to discuss the effect of different messages schedules. For a fully
connected Ising spin glass with uniform parameters the Gibbs measure is unique
and the solution of BP is exactly equal to the one obtained by optimizing the
Bethe approximation [26]. That is, there are certain regions in the 2-dimensional
parameter-space (J, θ) where BP is guaranteed to converge. Nonetheless, there is
a phase transition in the parameter space where BP does not converge. If J ≥ 0
the model is known to be ferromagnetic and in fact reduces to the standard Ising
model. The antiferromagnetic behavior is observed for J < 0, respectively [14].

In Figure 2a we show convergence of ABP and the transition to configu-
rations (J, θ) where messages oscillate. The color encodes the logarithm of the
number of iterations until convergence. We observe that reducing J increases
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the difficulty of finding an equilibrium state. This, however, is intuitive since,
the more negative J is, the more one node Xi tries to push its neighbors Γ (Xi)
into the opposite state.

Looking at Figure 2b we observe how RBP pushes the transition bound-
ary and increases the set of coefficients where convergence is achieved. Finally
Figure 2c and 2d show the performance of NIBP and WDBP respectively.
Notably, both methods further increase the region of convergence. It can be
seen that these boundaries are heavily blurred. For specific parameter configu-
rations our proposed methods result in equilibrium state after many runs, where
established methods fail to converge.

X1 X2

X3 X4

μ1,2(x2)

μ1,3(x3)μ3,1(x1)

μ
1
,4 (x

4 )

μ2,1(x1)

μ 2
,
3
(x

3
)

μ2,4(x4)μ4,2(x2)

μ3,4(x4)

μ4,3(x3)

μ
4
,1 (x

1 ) μ 3
,
2
(x

2
)

Fig. 1. 2x2 Ising Spin Glass.

4.2 Ising Grids with Random Factors

From the experiments in Figure 2 we can hardly make any concrete statements
regarding the convergence behavior. Hence, to further investigate the influence
of WDBP and NIBP we consider Ising grids with many loops and random
parameters. These graphs are often used for evaluation of the performance of
BP, since BP is prone to diverge on those graphs. We consider grid graphs of
size N = |X| = K × K with binary spins and randomly initialized parameters
(Ji,j , θi). Depending on the grid size K these parameters are uniformly sam-
pled such that both (Ji,j , θi) ∈ [−K

2 , K
2 ]. Thus, besides increasing the size of the

graph, the difficulty is implicitly increased as well.
The larger the values of the coupling and the local field are, the harder the

resulting constraints for convergence are. Thus, although there is no structural
change of the grid, inference becomes easier by reducing the range of the param-
eters. According to [24] the parameters have to provide sufficient difficulty to be
of interest for analyzing convergence properties.
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(a) Asynchronous BP (ABP)
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(b) Residual BP (RBP)

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

h

J

(c) Noise Injection BP (NIBP)
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(d) Weight Decay BP (WDBP)

Fig. 2. Convergence of various BP variants for a fully connected binary Ising spin
glass with uniform parameters (J, θ). The color encodes the logarithm of the number
of iterations until convergence; blue corresponds to convergence and red means that
the method did not converge after 4 · 105 iterations. 2a shows the phase transition of
ABP. Note how the RBP variants in 2b-2d increase the region of convergence.

The proportion of converged runs for different schedules is shown in Figure 3.
We can see that ABP finds a fixed point in less scenarios than any other of the
proposed variants, demonstrating the advantage of dynamic message scheduling.
Looking at the overall performance we observe that NIBP converges most often
throughout all experiments. The more complex the network, the better NIBP
performs compared to other variants. WDBP outperforms RBP on all experi-
ments and shows the best performance on the 7 × 7 graph, although the harder
the problem, the slower it converges. Specifically, WDBP has a lower convergence
rate than RBP. This observation is expected as damping the residual reduces
the propagation of relevant messages even for relatively easy configurations.

It shall be noted that applying WDBP requires changing the residual to (8),
where damping the residual implies some computational overhead. This overhead
can be reduced partially with approximation of the messages according to [24].
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Fig. 3. Number of converged runs in percentage as a function of the number of message
updates. All results were obtained by averaging over 233 random grid graphs. On graphs
of the size |X| = K × K we compare WDBP and NIBP to RBP and ABP.

All results were averaged over 233 runs with different random initialization
of the pairs (Ji,j , θi) for K ∈ {7, 9, 11, 13}.

4.3 Quality of Marginals

Currently the influence of message scheduling was only evaluated in terms of
the convergence rate and the number of graphs where BP converges. Here, we
also evaluate the correctness of the approximated marginals P̃ (Xi), averaging
the mean squared error (MSE) of all N = K × K = |X| nodes, such that
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MSE =
1
N

N∑

i=1

∑

a∈S

|P̃ (Xi = a) − P (Xi = a)|2, (9)

where P (Xi) are the exact marginals. Note that all RVs are binary and both,
P̃ (Xi) and P (Xi) are valid probability mass function, i.e.

∑
a∈S

P̃ (Xi) = 1.
Further applying symmetry properties it then follows that

MSE =
2
N

N∑

i=1

|P̃ (Xi = 1) − P (Xi = 1)|2. (10)

In Table 1 we present quantitative performance measures for all experiments.
Solely considering the number of converged runs we can recapitulate the obser-
vation from Figure 3 that RBP converges in at least 20% of all experiments,
where ABP did not. Both our proposed methods are able to further increase the
convergence; throughout all experiments NIBP converges most often.

Still, in practice we are not only interested in the number of converged runs
but also in the quality of the marginals. First we estimate the overall MSE
based on (10) and average over all 233 randomly initialized graphs (MSE over-
all). Secondly, we average the MSE over all runs where the individual methods
converged(MSE converged) – for ABP we estimate the MSE only for easy con-
figurations, whereas the MSE for other variants includes harder configurations.
Therefore, we finally estimate the MSE of all methods for those configurations
where ABP converges to a fixed point(MSE ABP conv.).

It can be seen that ABP consistently shows the lowest MSE in terms of con-
verged runs, i.e. averaging over all runs that converged with this method. This
comes as no surprise as ABP converges only on graphs with relatively easy config-
urations. For these configurations we expect P̃ (Xi) to give a good approximation
to the exact marginals P (Xi). However, estimating the MSE of different methods
for graphs where ABP is known to converge (MSE ABP conv.), we are surprised
by the observations that the approximate marginals obtained by RBP or NIBP are
consistently worse than the ones found by ABP. Still solely considering these easy
graphs it is remarkable how well WDBP performs in terms of the MSE.

Note that by using an update rule based on RBP a lot of effort is put into
locally complying with the constraints of Gc̄ whereas ABP still puts a significant
amount of resources into refining Gc. This clearly reduces the convergence rate
but potentially boosts the correctness of the approximation.

We would expect the overall MSE, i.e. averaging over all 233 runs, is reduced
using dynamic message scheduling. Despite ABP converges in less runs it still
results in surprisingly good overall approximations of the marginals. In fact the
obtained quality of the marginals is similar for ABP, RBP, and NIBP, supporting
the empirical observations that ABP performs reasonable well on many graphs.
Notably, it can also be seen that WDBP consistently reduces the overall MSE
resulting in the best approximation of the marginals.

Looking at Table 1 we want to emphasize the superior overall performance of
WDBP. The number of converged runs is significantly increased in comparison
to ABP while a proper approximation accuracy is maintained.
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Table 1. Performance of different BP schedules on Ising spin glasses of size |X| =
K×K. The MSE is estimated between approximated P̃ (Xi) and exact P (Xi) marginals.
We average over all 233 runs (MSE overall), over runs where the individual methods
converged (MSE converged), and over runs where ABP converged (MSE ABP conv.)
We compare asynchronous BP (ABP), residual BP (RBP), noise injection BP (NIBP),
and weight decay BP (WDBP).

Grid Size Error Metric ABP RBP NIBP WDBP
overall 0.0514 0.041 0.0382 0.0330

K = 7 MSE converged 0.0164 0.0208 0.0218 0.0202

ABP conv. 0.0164 0.0182 0.0150 0.0130

Converged Runs 61.8% 83.26% 85.41% 86.7%

overall 0.0706 0.0622 0.0538 0.0486

K = 9 MSE converged 0.0078 0.0256 0.026 0.0230

ABP conv. 0.0078 0.0190 0.0144 0.0112

Converged Runs 38.63% 62.66% 70.39% 64.38%

overall 0.0830 0.0914 0.0750 0.0618

K = 11 MSE converged 0.0106 0.0340 0.0386 0.0258

ABP conv. 0.0106 0.0262 0.0268 0.0152

Converged Runs 20.6% 41.63% 51.5% 51.07%

overall 0.1126 0.1274 0.1102 0.0840

K = 13 MSE converged 0.0286 0.0642 0.0632 0.0314

ABP conv. 0.0286 0.0746 0.0590 0.0282

Converged Runs 8.58% 28.76% 42.92% 34.33%

5 Related Work

On trees and chains BP is guaranteed to converge, moreover BP obtains the opti-
mal maximum a posterior assignment for PGMs with a single loop [27]. However,
many graphs that represent a domain of the real world have an arbitrary struc-
ture, including loops. There is no general guarantee for BP to converge on such
complex graphs [3,27]. Yet, it was shown empirically that BP can still give good
results when applied to graphs with a complicated structure.

There are various approaches that aim to correct for the presence of loops
such as loop correction [17] or the truncated loop series introduced in [6]. There
are also many publications relating the fixed points of BP to extrema of approx-
imate free energy functions from statistical physics [7,28]. It was shown in [28]
how extrema of the Bethe free energy approximations correspond to the fixed
points of BP. Using the generalization, the Kikuchi free energy function, general-
ized BP (GBP) was introduced in [28], which significantly improves the number
of converged runs and the convergence rate compared to standard BP. Applying
a concave- convex procedure to the Bethe and Kikuchi free energies the CCCP
algorithm is introduced in [30] and results in slightly better results than those
found by GBP. Convexified free energies [13] come with good convergence prop-
erties but still lack the empirical success. Linear programming relaxation can be
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used to deal with frustrated cycles as well [23]. Long range correlations often
lead to failure of BP [14] but can be handled through the cavity method [15].

6 Conclusion

In this paper, we introduced two novel methods for dynamic message scheduling.
Refining the ideas of residual belief propagation (RBP), we further improve the
number of converged runs on various difficult graphs.

The first method, noise injection belief propagation (NIBP) detects if RBP
fails to find a fixed point, i.e. message values oscillate. Gaussian noise is then
added to the selected message such that the overall configuration is modified to
achieve convergence. Our assumption is that this noise injection propagates to
other parts of the network and counteracts the oscillations. Still if RBP con-
verges, NIBP is guaranteed to converge as well.

The second method, weight decay belief propagation (WDBP) obviates the
need for oscillation detection. Each time a message is selected for an update, the
importance of the message for potential future updates is reduced. Thus, WDBP
implicitly reduces the priority of subgraphs that oscillate and forces the overall
graph to a fixed point.

Both proposed methods are applied to various Ising grids and are evaluated in
comparison to other sequential message passing algorithms. Our main evaluation
is based on convergence properties and the correctness of the marginals. In all
experiments both methods, NIBP and WDBP converge more often than RBP
and asynchronous belief propagation (ABP).

NIBP achieves the highest convergence rate and number of converged runs.
Still, considering the mean squared error of the marginals we notice that ABP
leads to surprisingly good marginals. Applying RBP and NIBP to increase the
number of converged runs comes with a sacrifice of the approximation accuracy
of the marginals.

We further compare the MSE between the exact and the approximated
marginals in different scenarios. This quality aspect has not been mentioned in pre-
vious work. Only considering easy graphs, where ABP converges, we are surprised
by the observation that ABP consistently outperforms RBP or NIBP in terms of
the quality of the approximated marginals. The quality of the marginals obtained
by WDBP on these graphs is remarkable and superior to all compared methods.

By all means the above results highlight how the message passing schedul-
ing influences the performance of belief propagation. Still, the convergence rate
of both, NIBP and WDBP can potentially be further improved by using an
estimation of the residual [24] instead of computing the messages for every step.

Acknowledgments. This work was supported by the Austrian Science Fund (FWF)
under the project number P25244-N15.

Appendix A: Pseudocode

We present the pseudocode for NIBP and WDBP. Removing the if then else
clause in line 8 to 11 of NIBP and substituting it with μold

u ← μnew
u reduces
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Algorithm 1 to RBP. The maximum number of iterations is denoted by kmax =
2.5 · 105 and ε = 10−3. NrOfMessages denotes the overall number of messages in
the graph.

Algorithm 1. Noise Injection Belief Propagation (NIBP)
input : Graph G = (X,E)
output: Converged messages μold

1 initialization

2 for i ← 1 to NrOfMessages do
3 μnew

i ← ComputeUpdate(μold
i )

4 ri ← |μold
i − μnew

i |
5 k ← 1

6 while k < kmax and max |μold − μnew| > ε do
7 u ← argmaxi r

8 if OscillationDetection(μold
u ,L) then

9 μold
u ← μnew

u + N (0, σ)
10 else

11 μold
u ← μnew

u

12 for j ← 1 to NrOfMessages do
13 μnew

j ← ComputeUpdate(μold
j )

14 rj ← |μnew
j − μold

j |
15 k = k + 1

Algorithm 2. Weight Decay Belief Propagation (WDBP)
input : Graph G = (X,E)
output: Converged messages μold

1 initialization

2 for i ← 1 to NrOfMessages do
3 μnew

i ← ComputeUpdate(μold
i )

4 ri ← |μold
i − μnew

i |
5 NrUpdates (i) ← 1

6 k ← 1

7 while k < kmax and max |μold − μnew| > ε do
8 u ← argmaxi r

9 μold
u ← μnew

u

10 NrUpdates (u) ← NrUpdates (u) + 1
11 for j ← 1 to NrOfMessages do
12 μnew

j ← ComputeUpdate(μold
j )

13 rj ← |µnew
j −µold

j |
NrUpdates(j)

14 k = k + 1
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