Sparse Bayesian Recurrent Neural Networks

Sotirios P. Chatzis®)

Department of Electrical Engineering, Computer Engineering and Informatics,
Cyprus University of Technology, 33 Saripolou Str., 3036 Limassol, Cyprus
sotirios.chatzis@cut.ac.cy

Abstract. Recurrent neural networks (RNNs) have recently gained
renewed attention from the machine learning community as effective
methods for modeling variable-length sequences. Language modeling,
handwriting recognition, and speech recognition are only few of the appli-
cation domains where RNN-based models have achieved the state-of-
the-art performance currently reported in the literature. Typically, RNN
architectures utilize simple linear, logistic, or softmax output layers to
perform data modeling and prediction generation. In this work, for the
first time in the literature, we consider using a sparse Bayesian regression
or classification model as the output layer of RNNs, inspired from the
automatic relevance determination (ARD) technique. The notion of ARD
is to continually create new components while detecting when a compo-
nent starts to overfit, where overfit manifests itself as a precision hyper-
parameter posterior tending to infinity. This way, our method manages
to train sparse RNN models, where the number of effective (“active”)
recurrently connected hidden units is selected in a data-driven fashion, as
part of the model inference procedure. We develop efficient and scalable
training algorithms for our model under the stochastic variational infer-
ence paradigm, and derive elegant predictive density expressions with
computational costs comparable to conventional RNN formulations. We
evaluate our approach considering its application to challenging tasks
dealing with both regression and classification problems, and exhibit its
favorable performance over the state-of-the-art.

1 Introduction

Many naturally occurring phenomena such as music, speech, or human motion
are inherently sequential. As a consequence, the problem of sequential data mod-
eling is an important area of machine learning research. Recurrent neural net-
works (RNNs) [22] are among the most powerful models for sequential data mod-
eling. As shown in [12], RNNs possess the desirable property of being universal
approximations, as they are capable of representing any measurable sequence to
sequence mapping to arbitrary accuracy. RNNs incorporate an internal mem-
ory module designed with the goal to summarize the entire sequence history
in the form of high dimensional state vector representations. This architectural
selection allows for RNNs to model and represent long-term dependencies in the
observed data, which is a crucial merit in the context of sequential data modeling
applications.

© Springer International Publishing Switzerland 2015

A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 359-372, 2015.
DOI: 10.1007/978-3-319-23525-7_22

360 S.P. Chatzis

A major challenge RNN-based architectures are confronted with concerns
the fact that it is often the case that gradient-based optimization results in
error signals either blowing up or decaying exponentially for events many time
steps apart, rendering RNN training largely impractical [6,19]. A great deal of
research work has been devoted to the amelioration of these difficulties, usually
referred to as the problem of vanishing and exploding gradients. One first attempt
towards this end consisted in coming up with special architectures, robust to the
vanishing and exploding gradients problem. Long short-term memory (LSTM)
[13] networks constitute the most successful architecture developed for this pur-
pose, having been shown to yield the state-of-the-art performance in speech
and handwriting recognition tasks [11]. In a different vein, [15] proposed the
echo-state network (ESN) architecture, which consists in completely abandon-
ing gradient-based training of the recurrent connection weights (which gives rise
to the vanishing and exploding gradients problem). As such, ESNs solely rely on
sensible initializations of the recurrent connection weights, and limit training to
the connection weights of the output (readout) layer of the network. Finally, a
recent breakthrough in the literature of RNNs has been accomplished in the
landmark publication of [17], where it was shown that even standard RNN
architectures can be successfully trained with the right optimization method.
While a sophisticated Hessian-free optimizer for RNNs was developed therein,
further research has shown that carefully designed conventional first-order meth-
ods can find optima of similar or slightly worse quality in the context of RNN
training [24].

Despite these advances in the field of RNN research, a problem that has not
been tackled by the machine learning community concerns data-driven model
selection. The problem of model selection consists in coming up with model
treatments allowing for an RNN model to automatically infer the number of
necessary hidden units, as part of its training procedure. Our work constitutes
the first attempt towards addressing these shortcomings. To achieve our goals, we
introduce the concept of training RNN models under a Bayesian inferential pro-
cedure. Specifically, we consider imposing appropriate sparsity-promoting prior
distributions on the output connection weights of RNN models. Under this con-
struction, we essentially give rise to a Bayesian inference procedure for RNNs
that yields sparse posterior distributions over the output connection weights,
and associated predictive posteriors that characterize the output variables of
the model. Under a different regard, our approach can be viewed as introducing
a sparse Bayesian regression or classification model as the output layer of RNNs,
resulting in a sparse Bayesian treatment of the whole RNN architecture.

Sparsity in the context of our model is induced by adopting a prior model
configuration inspired from an inference technique widely known as automatic
relevance determination (ARD) [10]. The notion of ARD is to continually cre-
ate new model components while detecting when a component starts to overfit.
Overfit manifests itself as a precision hyperparameter posterior tending to infin-
ity, indicating that a single data value is being modeled by the component. In the
case of the proposed model, the ARD mechanism is implemented by imposing an

Sparse Bayesian Recurrent Neural Networks 361

appropriate hierarchical prior over the weights of the output layer connections,
which results in an efficient mechanism for automatically inferring the effec-
tive number of (“active”) recurrently connected hidden units, in a data-driven
fashion. We derive an efficient and scalable training algorithm for our model
under the stochastic variational inference (SVI) paradigm [14], exploiting the
most recent advances on gradient-based RNN training algorithms. We dub our
approach sparse Bayesian RNN (SB-RNN).

The layout of the paper is as follows. In Section 2, we briefly introduce the
concept of RNNs, and discuss modern RNN training algorithms that obviate the
vanishing and exploding gradients problem. In Section 3, we present our method
and derive efficient model training and inference algorithms. In Section 4, we
perform an extensive experimental evaluation of our approach considering sev-
eral challenging benchmark tasks; we compare the obtained performance of our
approach to related state-of-the-art approaches. Finally, in Section 5 we sum-
marize our results, discussing the shortcomings and advantages of the proposed
model, and conclude this work.

2 Recurrent Neural Networks

RNNs are neural network architectures designed for modeling sequential data
with long temporal dynamics. RNNs operate by simulating a discrete-time
dynamical system presented with M-dimensional inputs {x;}7_;, with corre-
sponding N-dimensional outputs {y,}7_;, where T is the length (time-duration)
of the observed sequences. The postulated dynamical system is defined by

Yy = ¢o(Vhy) (1)

where ¢ is the activation function of the output units, V' € RV*H is the
parameters (weights) matrix of the connections of the output layer of the model,
and h; € R¥ is the hidden state vector of the model. In essence, h; is the vector
of the activations of the hidden units of the network, which encodes the history
of observations presented to the system up to time ¢ in the form of a high-
dimensional data point representation. Typically, the expressions of the hidden
state vectors of the postulated dynamical system are considered to be given by

the following expression:
Sn(Why_1 + 2x4),t >0
me—{ @)

0,t=0

In Eq. (2), ¢y is the activation function of the hidden (recurrently connected)
units that capture the temporal dynamics in the modeled data, W € RE*H jg
the recurrent connections weights matrix of the model, and U € RH*M ig the
input connections weights matrix. Regarding selection of the hidden and output
unit activation functions, typically a saturating nonlinear function is used, such
as a logistic sigmoid function or a hyperbolic tangent function.

362 S.P. Chatzis

RNN model training, i.e. optimal estimation of the parameter values of
the model given a set comprising S training sequences, D = {(x%,y3),...,
(7., ySTS)}le, can be performed by minimization of the cost function

=5 ZZ (y5, ¢0(Vh)) (3)

where © is the parameters set of the RNN, © = {V ., W, U}, h{ = ¢pp(Wh;_;+
Ux;), and d(a, b) is a suitable divergence measure, appropriate for the learning
problem at hand (e.g., a Euclidean distance function when dealing with regres-
sion problems, and a cross-entropy function in cases of classification problems).

To effect the minimization task of the RNN objective function J(O) in a scal-
able manner, stochastic gradient descent (SGD) algorithms are typically used,
with the gradient of the cost function in Eq. (3) computed by means of back-
propagation through time (BPTT) [22]. However, as we already discussed in
the introduction of this paper, conventional BPTT-based RNN training is often
confronted with the problem of the obtained error signals either blowing up
or decaying exponentially for events many time steps apart, with detrimental
effects to the outcome of the model training algorithm. The effort to mitigate
these hurdles has recently triggered a significant corpus of new research in the
field of RNN methods. Among this large corpus of works, we here focus on a very
recent research result showing that first-order optimizers can, indeed, avoid the
problem of exploding and vanishing gradients by: (i) performing an appropriate
initialization of the model weights based on the principles of ESNs; and (ii) using
Nesterov’s Accelerated Gradient (NAG) [18] to perform model training instead
of conventional SGD [24].

As discussed in Section 1, ESNs are RNN-based architectures where the
recurrent connections weights matrix W is not trained but merely properly
initialized. Specifically, ESN theory stipulates that the initialization of the matrix
W should be performed in a way ensuring that the largest absolute eigenvalue of
the determinant |W| (spectral radius) be close to one. This way, the dynamics
of the network can be shown to become oscillatory and chaotic, allowing it to
generate responses that are varied for different input histories. At the same time
though, the gradients are no longer exploding (and if they do explode, then only
“slightly s0”), so learning may be possible for even the hardest sequential data
modeling problems that conventional RNNs fail to address [15].

On the other hand, NAG has been the subject of much recent attention
by the convex optimization community [9,16]. Like SGD, NAG is a first-order
optimization method with better convergence rate guarantee than conventional
SGD. NAG has been shown to be closely related to classical momentum-based
SGD variants (e.g., [20]), with the only difference lying in the precise update
expression of the velocity vector of the algorithm. These differences, although
slight, can be of major significance to the asymptotic rates of local convergence
of the optimization algorithm, as discussed in [24].

Inspired from these merits, in developing the training algorithm of our pro-
posed model we shall rely on both performing an ESN-inspired initialization,

Sparse Bayesian Recurrent Neural Networks 363

and using NAG instead of mainstream SGD optimization algorithms. We shall
introduce our model and elaborate on our selected training strategies in the
following section.

3 Proposed Approach

We differentiate SB-RNN model formulation between regression and (multiclass)
classification tasks, to allow for better handling the intricacies of each type of
problems. In the following, we elaborate on our modeling strategies in both cases,
and derive efficient training algorithms under the SVI paradigm.

3.1 Regression SB-RNN

Let us consider that the modeled output variables y, are N-dimensional real
vectors, i.e. y, € RY. In this case, we define a likelihood function for our model
of the form

p(yil@e; V, 8) = N(y,|Vhe, 1) (4)

where (3 is the precision (inverse variance) of a simple white noise model adopted
in the context of our method, and h; is the state vector of our model that encodes
the history of past observations {x, tT_:ll. In essence, h; consists the vector of the
activations of the (recurrently connected) hidden units of our model; we consider
that it is expressed by a discrete-time dynamical system of the form (2). In the
same vein, V can essentially be perceived as the weight matrix of the output
connections of our model.

Further, we introduce an appropriate prior distribution over the weights
matrix V'; we consider a zero-mean Gaussian prior of the form

N H
p(Vle) = [T [TV (wnul0,0) (5)
n=1u=1

where «,, is the precision of the weights pertaining to the uth hidden unit,
{vnu }Y_1, and @ = [,)2L . Finally, we impose a Gamma hyper-prior over the
precision hyperparameters «,,, yielding

plaw) = Glaw|m, m2) (6)

This hierarchical prior configuration of our model essentially gives rise to an
ARD mechanism that allows for data-driven inference over the number of hidden
units, H. As we have already discussed, the notion of ARD is to continually cre-
ate new components while detecting when a component starts to overfit. Overfit
manifests itself as a precision hyperparameter posterior tending to infinity, indi-
cating that a single data value is being modeled by the component. Hence, in the
case of our SB-RNN model, the ARD mechanism is implemented by imposing a
hierarchical prior over the output weights matrix V', to discourage large weight
values, with the width of each prior being controlled by a Gamma distributed

364 S.P. Chatzis

precision hyperparameter, «,, as illustrated in Egs. (5)-(6). If one of these pre-
cisions tends to infinity, a,, — oo, then the outgoing weights will have to be
very close to zero in order to maintain a high likelihood under this prior. This in
turn leads the model to ignore the likelihood contribution of the corresponding
hidden unit, which is effectively ‘switched off” of the model.

We underline that this approach is substantially different from dropout [5,23],
where, on each iteration of the training algorithm, different hidden units are
randomly ignored, while all hidden units are used to perform prediction.

Model Training. To perform training of our model in a way scalable to mas-
sive datasets, we resort to the SVI paradigm [14]. SVI is an iterative stochastic
optimization algorithm for mean-field variational inference that approximates
the posterior distribution of a probabilistic model, and can handle massive
datasets of observations. Indeed, SVI renders Bayesian inference scalable to mas-
sive datasets by splitting the observed data into small batches, and letting the
inference algorithm operate only on one batch on each iteration.

SVI yields a lower bound to the log-evidence of the treated model (evidence
lower bound, ELBO) expressed as a function of an approximate (variational) pos-
terior distribution it seeks to optimally determine. Then, inference for a treated
model consists in maximizing the corresponding ELBO over the variational pos-
terior and the estimates of the associated hyper-parameters. For this purpose,
SVI computes on each iteration a set of noisy estimates of the natural gradient [2]
of the model’s ELBO, and uses them in the context of a stochastic optimization
scheme.

In the following, we denote as (-) the posterior expectation of a quantity;
the analytical expressions of these posteriors can be found in the Appendix. Let
us consider that the training set D = {(z§,9%),...,(®}, ,y5)}s_, comprises S
sequences, and that we split this dataset into batches comprising S, sequences
each. Then, the SVI algorithm for the proposed SB-RNN regression model yields
the following posterior over the output weights matrix V:

N
Q(V) = H N('Unhj’m 2) (7)

n=1
where the posterior hyperparameters v,, and X are updated according to

B 0 pE o |(A)+ ORT B (5)

S o =T
Uy (1= px)Vn + PkgbﬂzH Yn 9)

where (A) = diag((c)). In Eqgs. (8)-(9), H denotes the matrix of the network
state vectors pertaining to the sequences included in the current batch, while y,,
denotes the (target) values of the nth model output pertaining to the sequences
included in the current batch. On the other hand, py is the learning rate of

Sparse Bayesian Recurrent Neural Networks 365

the developed stochastic updating algorithm on the current (say, kth) iteration.
Following common practice (e.g., [14]), in this work the learning rates p; are
updated on each algorithm iteration according to the rule

pr = (k+r)~7 (10)

where the delay « satisfies k > 0, and the forgetting rate f satisfies f € (0.5, 1].
Further, the precision hyperparameters a yield the hyperposteriors:

q(a) = Hg(aumluvmu) (11)

where

S

N2 < (1 - Pk)ﬁQU + Pk

S N
N2 + 25, ; <Uiu>] (13)

Interestingly, note that the updates of 7, do not depend on the training data
points of each batch; as such, the value of 77, need not be updated on each
algorithm iteration.

Finally, the input weights matrix §2 and the recurrent connection weights
matrix W of our model are updated as model hyperparameters, yielding point-
estimates. This is effected by optimization of the ELBO of our model by appli-
cation of a NAG-type optimization procedure, yielding:

W o (1 = pp)W + piSow + pyy (14)

2 — (1—pp) 2+ pifBéa + 1o (15)

In these equations, dw and ¢ are the updates of the weights matrices W and
12 obtained by application of conventional BPTT [22], by setting the value of V/
equal to its posterior expectation V' = [v,,]N_;. In addition, gy, and p g, are the
momentum-type terms introduced by adoption of the NAG optimization scheme
(c.f. [24]), as discussed in Section 2. Initialization of the recurrent connection
weights matrix W is performed by adopting the principles of ESN architectures,
as also discussed in Section 2.

Predictive Density. Having found estimates of the model hyperparameters
and parameter posteriors, we can now proceed to derive the expression of its
predictive distribution over the output variables y, for a new input x;, with
corresponding observation history {wT}tT;ll and state vector h;. We have

a(y{zr}om1) = N Ve, 0% (@)) (16)

where -
o?(x;) = B+ h]' Zh, (17)

366 S.P. Chatzis

It is worthwhile to underline here a significant difference between our app-
roach and conventional RNN formulations when it comes to prediction genera-
tion: Conventional RNNs only provide an estimate of the target (output vari-
ables); instead, our SB-RNN approach, apart from this estimate (taken as the
mode § = Vh; of the predictive distribution) does also yield a predictive vari-
ance estimate, given by o?(z;). The obtained predictive variance is in essence a
measure of the confidence of the model in the obtained predictions ¥, and can be
utilized to provide error bars (or a reject option in safety-critical applications).

3.2 Classification SB-RNN

We now turn to the case of modeling a multiclass classification problem using
our SB-RNN approach. Let us denote as y, € {0,1}" the output variables of
the addressed problem. In this case, the nth component of vector y, indicates
whether class n € {1,...,N} is on or off at time ¢. On this basis, to obtain
a suitable construction for our model, we postulate a standard Multinomial
likelihood assumption of the form:

N
p(Yilze; V) = H do(v) he)¥en (18)

n=1

where v,, is the nth row of matrix V', and ¢¢ is a sigmoid activation function.
We impose the same hierarchical prior over the output weights matrix V' as in
the previously examined regression setting, given by Egs. (5)-(6), to introduce
the ARD mechanism into our model.

Model Training. To perform SB-RNN model training in the classification
setting, we can again resort to the SVI inference paradigm. However, a major
obstacle to the application of SVI in this setting concerns the fact that the
imposed likelihood (18) does not yield a conjugate model formulation. This in
turn prohibits obtaining closed-form analytical expressions for the (variational)
posterior distribution over the weights matrix V. Specifically, we have

logq(vn) o Y yinlogdo(vy hy) + (logp(vn|e)) Vn (19)
t

To resolve these issues, in this work we resort to a Laplace approximation of
the intractable posteriors g(v,). Laplace approximation consists in taking the
second order Taylor expansion of logg(v,,) around its mode, resulting in the con-
sidered posterior distribution being conveniently approximated by a Gaussian.
Specifically, our model yields

Q('vn) ~ N(vnwna Sn) (20)

where

S (= p)Z o [(A) + (H (21)

Sparse Bayesian Recurrent Neural Networks 367

_ _ S Ty
Uy (1 - pk)vn + pk§b27zH Bnyn (22)

and B, is the diagonal matrix of the set of quantities ¢o(v.h;) corresponding
to the sequences in the current batch.

On the basis of the derivations (20)-(22), the updates of the hyperposteriors
q(a), as well as the updates of the model weight matrices W and 2, yield
exactly the same expressions as in (11)-(15).

Predictive Density. Having obtained the training algorithm expressions of
the SB-RNN model for the case of dealing with classification tasks, we now
turn to deriving the corresponding predictive density expressions. Based on the
preceding discussions, the predictive density of our model yields:

4(yen = 1@ }21) < (bo(vy, he)) (23)

where the state vectors h; are given by (2). Note that the posterior expectations
in (23) cannot be computed analytically due to the nonlinear nature of the
activation function ¢q(-). For this reason, we resort to a Monte Carlo sampling-
based approximation, yielding:

N

(60 (WIR)) ~ 2> 00 ((05)7h) (24
¢=1

where Z is the number of samples v drawn i.i.d. from the posterior ¢(v,),
approximated by (20).

4 Experiments

We experimentally evaluate our approach in both regression and classification
tasks. In all cases, we manually tune the hyperparameters of the learning rate
schedule (10) for each dataset, as well as the hyperparameters of the momen-
tum terms, similar to [24]. We developed our source codes in Python, using the
Theano library [4]'. We run our experiments on an Intel Xeon 2.5GHz Quad-
Core server with 64GB RAM and an NVIDIA Tesla K40 GPU.

4.1 Human Motion Modeling

We begin by evaluating our method in a regression task. For this purpose, we use
a publicly available benchmark, namely walking sequences from the CMU motion
capture (MoCap) dataset [1]. The considered training sequences correspond to
several different subjects included in the CMU MoCap database, following the
experimental setup of [8]. After training, we use the obtained models to generate

! The source codes will be made available through our website, to allow for easier
reproducibility of our results.

368 S.P. Chatzis

the human pose information in a different set of walking sequence videos, namely
videos 35-03, 12-02, 16-21, 12-03, 07-01, 07-02, 08-01, and 08-02 of the same
database?. The inputs presented to the evaluated algorithms are the positions
of the tracked human joints, and their output is the predicted joint positions at
a time point of interest. The dimensionality of the input space is equal to 62,
similar to the output space.

To obtain some comparative results, apart from our method we also evaluate
conventional RNNs trained as described in Section 2; we also cite the perfor-
mance of ESNs, an ESN-driven formulation of Gaussian processes dubbed the
ESGP method [8], and the Dynamic GP method [25]. In Table 1, we provide the
RMSEs obtained by each one of the considered methods. These results corre-
spond to optimal numbers of hidden units for the evaluated recurrent network-
based methods; interestingly, this optimal model size turned out to be equal to
100 hidden units in all cases, as also observed in [8]. As we illustrate in Table 1,
the SB-RNN method outperforms all the rest of the evaluated methods, both in
average and in each single individual experimental case considered here.

Table 1. Human Motion Modeling: Obtained missing frames RMSEs.

[Video ID[[Dynamic GP| ESN [ESGP[RNN[SB-RNN|

35-03 49.68 62.55 | 32.59 (35.11| 32.28
12-02 54.96 63.14 | 45.32 |42.88| 39.58
16-21 78.05 98.74 | 59.03 [51.17| 48.02
12-03 63.63 72.12 | 46.25 |47.09| 44.14
07-01 84.12 121.47| 77.34 |76.18| 75.69
07-02 80.77 100.94| 73.88 |75.37| 72.87
08-02 95.52 120.45|101.54(95.66| 94.66
08-01 82.66 152.44| 118.0 |97.54| 93.05

[Average [[73.67 [98.98]69.24 [65.13] 62.54

4.2 Acoustic Novelty Detection

Further, in this experiment we perform evaluation of our approach in the con-
text of a classification task, and under a setup that also allows for evaluating
the quality of the obtained predictive distributions. Specifically, we consider the
problem of novelty detection in acoustic signals. For the purposes of this experi-
ment, we use a dataset composed of around three hours of recordings of a home
environment, taken from the PASCAL CHiME speech separation and recogni-
tion challenge dataset [3]. Our dataset corresponds to a typical in-home scenario
(aliving room), recorded during different days and times; the inhabitants are two
adults and two children that perform common actions, namely talking, watching

2 All videos have been downsampled by a factor of 4, following the experimental setup
of [8].

Sparse Bayesian Recurrent Neural Networks 369

television, playing, and eating. On this basis, we use randomly chosen sequences
to compose 100 minutes of background for training set, around 40 minutes for
validation set, and another 30 minutes for test set. The validation and test sets
were generated by randomly adding in the available sequences different kinds of
sounds, namely screams, alarms, falls, and fractures. The total duration of each
novel type is equal to 200 s.

Our experimental setup is the following: Initially, we train our model consid-
ering as input variables the auditory spectral features (ASF) computed by means
of the short-time Fourier transformation (STFT); we use a frame size of 30 ms
and a frame step of 10 ms. Each STFT yields the power spectrogram of the sig-
nal, which is eventually converted to the Mel-Frequency scale using a filter-bank
with 26 triangular filters; we use a logarithmic representation of these features,
to match the human perception of loudness. Finally, we also include the frame
energy in our feature vectors, following standard practices in the literature.

Subsequently, we use the trained model to predict the class corresponding to
each frame in the validation set. Since some frames correspond to novel classes
which the model has not been trained to recognize, we are interested in examining
how certain the model is for its predictions when these novel classes are actually
the ones that appear in the data. Indeed, one would expect that the model should
yield low predictive probability values for the winner class in cases where the actual
class belongs to the set of novel ones. To examine whether this assumption does
actually hold, we use the results obtained from our validation set to determine
a novelty threshold for our model: if the predictive probability pertaining to the
winner class is lower than this threshold, we consider that the current data frame
actually belongs to a novel class. Determination of this threshold is performed on
the basis of two different criteria: (i) maximization of the precision of the model in
the task of novelty detection; (ii) maximization of the recall of the model in the task
of novelty detection. Eventually, we utilize the so-obtained thresholds to measure
the novelty detection precision and recall of our model using the available test set.

To obtain some comparative results, apart from our method we also evaluate
conventional RNNs (trained as described in Section 2), and the state-of-the-
art I/O-RNN-RBM and I/O-RNN-NADE methods presented in [7], under the
same experimental setup. Our results are depicted in Table 2; these results our
obtained for the best-performing model size in all cases. We observe that our
method yields a very competitive result both in terms of the obtained precision
and the yielded recall on the test set.

Table 2. Acoustic novelty detection: Precision and recall (%) of the evaluated models.

l Model [Size[Precision[Recalll

RNN 600| 90.12 |86.21
I/O-RNN-RBM |400| 91.87 |87.55
I/O-RNN-NADE|400| 92.15 |88.03
SB-RNN 600| 92.30 |88.56

370 S.P. Chatzis

4.3 Computational Complexity

Let us now turn to an analysis of the computational complexity of our method,
and how it compares to conventional RNNs (trained as discussed in Section 2).
We begin with the case of regression tasks: From the computational complexity
perspective, the main difference between our approach and conventional RNNs
concerns the fact that our approach also computes the quantities X and 72, Vu.
However, the expressions of these approaches can be computed in time linear to
the number of hidden units, as they do not entail any tedious calculations. Similar
is the case when it comes to classification tasks. As such, one can expect that our
method and conventional RNNs should share same computational complexity.
To conclude, to provide some empirical evidence towards this direction, we here
report the total training time of our method and conventional RNNs in the case
of the acoustic novelty detection task (similar results can be obtained for the rest
of our experimental scenarios). In our implementation, conventional RNNs took
6,855 sec to train, while our approach took 7,169 sec, that is a mere 4.58% extra
computational time. Prediction generation took identical time in both cases. As
such, we deduce that our approach offers a favorable performance/complexity
trade-off over existing RNN formulations.

5 Conclusions and Future Work

In this paper, we proposed a sparse Bayesian formulation of RNNs, based on the
introduction of a sparsity-inducing hierarchical prior over the output connection
weights of the model. As we discussed, this model formulation introduces the
ARD mechanism into the inferential procedures of RNNs, which allows for data-
driven determination of the effective number of hidden (recurrently connected)
units. We provided two alternative formulations of our model: one with likelihood
function properly selected for handling regression tasks, and one designed for
handling classification tasks. We devised simple and efficient inference algorithms
for our model, scalable to massive datasets, for both the regression and (multi-
class) classification settings. For this purpose, we resorted to the SVI paradigm.

To empirically evaluate the efficacy of our approach and how it compares
to the competition, we conducted a number of experimental investigations deal-
ing with human motion modeling using MoCap data and novelty detection in
acoustic signals. In all cases, we used benchmark datasets in our experiments,
and compared the performance of our method to state-of-the-art methods in
the corresponding domains. As we observed, our approach yields a clear mod-
eling performance advantage over the competition, without inducing notable
overheads in terms of computational complexity.

In this work, posterior inference was conducted only for the output connec-
tion weights of the postulated RNNs, and the associated precision hyperparam-
eters. In contrast, for the input and recurrent connection weight matrices of
the model we obtained point-estimates, by maximization of the ELBO of the
model over them. As such, one direction for future research concerns obtaining
a fully Bayesian treatment of RNNs, with appropriate priors imposed over all

Sparse Bayesian Recurrent Neural Networks 371

the weight matrices of the model, and associated posterior distributions obtained
during model inference. A challenge we expect to encounter working towards this
direction concerns the nonlinear nature of the activation functions of the hid-
den units ¢5(+), which may prevent us from obtaining closed-form expressions of
the associated posteriors. Employing the black-box variational inference frame-
work proposed in [21] to train our model might be a suitable possible candidate
solution towards the amelioration of these issues.

Appendix
We have
ﬁht "
S 25
(e [n]_ (25)
and

(V) = [(wnon)], (26)

where [-],, stands for the uth element of a vector, and it holds

<’Un T> _ {vnvf + Z‘, for regression tasks

v, 0T + X,., for classification tasks

Finally, the expression of (logp(v,|a)) yields (ignoring constant terms)

1 & 1 &
(logp(vala)) = —5 > (vh,) (o) + 5) _ (logaw) (28)
u=1 u=1
where
<10gO‘U> = '@[}(ﬁM) — logay (29)

and ¢(-) is the Digamma function.

Acknowledgments. We gratefully acknowledge the support of NVIDIA Corporation
with the donation of one Tesla K40 GPU used for this research.

References

1. The CMU MoCap database. http://mocap.cs.cmu.edu/

2. Amari, S.: Natural gradient works efficiently in learning. Neural Computation
10(2), 251-276 (1998)

3. Barker, J., Vincent, E., Ma, N., Christensen, H., Green, P.: The Pascal Chime
speech separation and recognition challenge. Computer Speech & Language 27(3),
621-633 (2013)

4. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I1.J., Bergeron, A.,
Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. In: Deep
Learning and Unsupervised Feature Learning NIPS 2012 Workshop (2012)

http://mocap.cs.cmu.edu/

372

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

S.P. Chatzis

Bayer, J., Osendorfer, C., Korhammer, D., Chen, N., Urban, S., van der Smagt, P.:
On fast dropout and its applicability to recurrent networks. In: Proc. ICLR (2014)
Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks 52(2), 157-166 (1994)
Boulanger-Lewandowski, N., Bengio, Y., Vincent, P.: High-dimensional sequence
transduction. In: Proc. ICASSP, pp. 3178-3182 (2013)

Chatzis, S., Demiris, Y.: Echo state Gaussian process. IEEE Transactions on Neural
Networks 22(9), 1435-1445 (2011)

Cotter, A., Shamir, O., Srebro, N., Sridharan, K.: Better mini-batch algorithms
via accelerated gradient methods. In: Proc. NIPS (2011)

Fokoue, E.: Stochastic determination of the intrinsic structure in Bayesian factor
analysis. Tech. Rep. TR-2004-17, Statistical and Applied Mathematical Sciences
Institute (2004)

Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: Proc. ICASSP (2013)

Hammer, B.: On the approximation capability of recurrent neural networks. Neu-
rocomputing 31(1), 107-123 (2000)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation
9(8), 1735-1780 (1997)

Hoffman, M., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference.
Journal of Machine Learning Research 14(5), 1303-1347 (2013)

Jaeger, H.: The “echo state” approach to analysing and training recurrent neu-
ral networks. Tech. Rep. 148, German National Research Center for Information
Technology, Bremen (2001)

Lan, G.: An optimal method for stochastic composite optimization. Mathematical
Programming, 1-33 (2010)

Martens, J., Sutskever, I.: Learning recurrent neural networks with hessian-free
optimization. In: Proc. ICML (2011)

Nesterov, Y.: A method of solving a convex programming problem with conver-
gence rate o(1/sqr(k)). Soviet Mathematics Doklady 27, 372-376 (1983)
Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. In: Proc. ICML (2013)

Polyak, B.: Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics 4(5), 1-17 (1964)
Ranganath, R., Gerrish, S., Blei, D.M.: Black box variational inference. In: Proc.
AISTATS (2014)

Rumelhart, D., Hinton, G., Williams, R.: Learning internal representations by error
propagation. In: Parallel Dist. Proc., pp. 318-362. MIT Press (1986)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. J. Machine
Learning Research 15(6), 1929-1958 (2014)

Sutskever, 1., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization
and momentum in deep learning. In: Proc. ICML (2013)

Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models for
human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence
30(2), 283-298 (2008)

	Sparse Bayesian Recurrent Neural Networks
	1 Introduction
	2 Recurrent Neural Networks
	3 Proposed Approach
	3.1 Regression SB-RNN
	3.2 Classification SB-RNN

	4 Experiments
	4.1 Human Motion Modeling
	4.2 Acoustic Novelty Detection
	4.3 Computational Complexity

	5 Conclusions and Future Work
	References

