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Abstract. Heterogeneous domain adaptation aims to exploit labeled
training data from a source domain for learning prediction models in
a target domain under the condition that the two domains have dif-
ferent input feature representation spaces. In this paper, we propose a
novel semi-supervised subspace co-projection method to address multi-
class heterogeneous domain adaptation. The proposed method projects
the instances of the two domains into a co-located latent subspace to
bridge the feature divergence gap across domains, while simultaneously
training prediction models in the co-projected representation space with
labeled training instances from both domains. It also exploits the unla-
beled data to promote the consistency of co-projected subspaces from
the two domains based on a maximum mean discrepancy criterion. More-
over, to increase the stability and discriminative informativeness of the
subspace co-projection, we further exploit the error-correcting output
code schemes to incorporate more binary prediction tasks shared across
domains into the learning process. We formulate this semi-supervised
learning process as a non-convex joint minimization problem and develop
an alternating optimization algorithm to solve it. To investigate the
empirical performance of the proposed approach, we conduct experi-
ments on cross-lingual text classification and cross-domain digit image
classification tasks with heterogeneous feature spaces. The experimen-
tal results demonstrate the efficacy of the proposed method on these
heterogeneous domain adaptation problems.

1 Introduction

Domain adaptation is the task of exploiting labeled training data in a label-rich
source domain to train prediction models in a label-scarce target domain, aiming
to greatly reduce the manual annotation effort in the target domain. Recently,
heterogeneous domain adaptation, which generalizes the standard domain adap-
tation into a more challenging scenario where the source domain and the target
domain have different feature spaces, has attracted a lot attention in the research
community [6,10,16]. Heterogeneous domain adaptation techniques have appli-
cations in many different areas, including image classification in computer vision
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 525–540, 2015.
DOI: 10.1007/978-3-319-23525-7 32



526 M. Xiao and Y. Guo

[10,16], drug efficiency prediction in biotechnology [16], cross-language text clas-
sification [6] and cross-lingual text retrieval [17] in natural language processing.

A fundamental challenge in heterogeneous domain adaptation lies in the dis-
joint feature representation spaces of the two domains; with the disjoint feature
spaces, a prediction model trained in the source domain cannot be applied in the
target domain. A number of representation learning methods have been devel-
oped in the literature to address this challenge, including the instance projection
methods [6,16] which project instances in the two domains into a common fea-
ture space, and the instance transformation methods [10,12] which transform
instances from one domain into the other one. These methods however con-
duct representation learning either in a fully unsupervised manner [16] without
exploiting the label information, or in a fully supervised manner [6,10,12] with-
out exploiting the available unlabeled instances. Moreover, some works [16,18]
perform representation learning and prediction model training separately, lead-
ing to non-optimal representations for the target classification task.

In this paper, we propose a novel semi-supervised subspace co-projection
method to address heterogeneous domain adaptation problems, which overcomes
the drawbacks of the previous methods mentioned above. The proposed method
projects instances in the source and target domains from domain-specific fea-
ture spaces to a co-located low-dimensional representation space, while simulta-
neously training prediction models in the projected feature space with labeled
instances from the two domains. Moreover, the unlabeled instances are exploited
to promote cross-domain instance co-projection by enforcing the empirical mean
distributions of the projected source instances and the projected target instances
to be similar. Furthermore, we exploit Error-Correcting Output Code (ECOC)
schemes [5] to cast a cross-domain multi-class classification task into a large
number of cross-domain binary prediction tasks, aiming to increase the stabil-
ity and discriminative informativeness of the subspace co-projection and enhance
cross-domain multi-class classification. The overall semi-supervised learning pro-
cess is formulated as a joint minimization problem, and solved using an alter-
nating optimization procedure. To evaluate the proposed learning method, we
conduct cross-lingual text classification experiments on multilingual Amazon
product reviews and cross-domain digit image classification experiments on the
UCI handwritten digits data. The experimental results demonstrate the efficacy
of the proposed approach for multi-class heterogeneous domain adaptation.

2 Related Work

In this section, we provide a brief review over the related works on heteroge-
neous domain adaptation, including latent subspace learning methods, instance
transformation methods, and auxiliary resources assisted learning methods.

A group of works address heterogeneous domain adaptation by developing
latent subspace learning methods that project instances from the domain-specific
feature spaces into a common latent subspace [6,13,16,17,20]. In particular,
Shi et al. [16] proposed a heterogeneous spectral mapping (HeMap) method,
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which learns two projection matrices and projects instances via spectral trans-
formation. Wang et al. [17] proposed a manifold alignment (DAMA) method,
which learns projection matrices by using manifold alignment and similarity/
dissimilarity constraints constructed on pairs of instances with same/different
labels. Duan et al. [6] proposed a heterogeneous feature augmentation (HFA)
method, which first projects instances into a common subspace and uses the
projected latent features to augment the original features of the instances, and
then trains a classification model with the feature-augmented instances. Later,
Li et al. [13] extended the HFA method into a semi-supervised HFA (SHFA)
method by incorporating unlabeled target training data. Wu et al. [20] proposed
to address heterogeneous domain adaptation by performing heterogeneous trans-
fer discriminant analysis of canonical correlations, which maximizes/minimizes
the intra/inter-class canonical correlations of the projected instances while simul-
taneously reducing the data distribution mismatch between the original data
and the projected data. Our proposed approach shares similarities with these
subspace learning methods on projecting original instances into common rep-
resentation subspaces. But different from these previous works, our approach
exploits both labeled and unlabeled instances and simultaneously learns the
projection matrices and the prediction models. Moreover, our approach can nat-
urally exploit error-correcting output code schemes to promote label informative
subspace co-projection.

Another group of works developed instance transformation methods to
address heterogeneous domain adaptation, which learn asymmetric mapping
matrices to transform instances from the source domain to the target domain
or vice versa [10,12,18,21]. Kulis et al. [12] proposed an asymmetric regular-
ized cross-domain transformation method that learns an asymmetric feature
transformation matrix by performing nonlinear metric learning with similar-
ity/dissimilarity constraints constructed on all pairs of labeled instances. Wang
et al. [18] proposed a two-step feature mapping method based on Hilbert-Schmidt
Independence Criterion (HSIC) [8] for heterogeneous domain adaptation. It first
selects features in each domain based on the HSIC between the instance feature
kernel matrix and the instance label kernel matrix, and then maps the selected
features across domains based on HSIC. Hoffman et al. [10] proposed a Max-
Margin Domain Transforms (MMDT) method to learn domain-invariant image
representations. It transforms target instances into the source domain and trains
a prediction model in the source domain with the original labeled instances and
the transformed labeled instances. Xiao and Guo [21] proposed a semi-supervised
kernel matching method for heterogeneous domain adaptation. It learns a predic-
tion function on the labeled source data while mapping the target data points to
similar source data points by matching the target kernel matrix to a sub-matrix
of the source kernel matrix based on a Hilbert Schmidt Independence Criterion.

In addition to the two groups of methods mentioned above, some other works
exploit different types of auxiliary resources to build connections between the
source features and the target features, including the ones that use bilingual
dictionaries [4,9,19], and the ones that use additional unlabeled image and doc-
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uments [22]. However, these auxiliary resource based learning methods are typi-
cally designed for specific applications and may have difficulty to be applied on
other application tasks.

3 Semi-supervised Multi-class Heterogeneous Domain
Adaptation

In this paper, we focus on multi-class heterogeneous domain adaptation prob-
lems. We assume in the source domain we have plenty of labeled instances while
in the target domain we only have a small number of labeled instances. The two
domains have disjoint input feature spaces, Xs = R

ds and Xt = R
dt , where ds

is the dimensionality of the source domain feature space and dt is the dimen-
sionality of the target domain feature space, but share the same multi-class
output label space Y = {−1, 1}L, where L is the number of classes. In particu-
lar, let Xs = [X�

s ;X
u
s ] ∈ R

ns×ds denote the data matrix in the source domain,
where each instance is represented as a row vector. X�

s ∈ R�s×ds is the labeled
source data matrix with a corresponding label matrix Ys ∈ {−1, 1}�s×L, and
Xu

s ∈ R
us×ds is the unlabeled source data matrix. Each row of the label matrix

contains only one positive 1, which indicates the class membership of the corre-
sponding instance. Similarly, let Xt = [X�

t ;X
u
t ] ∈ R

nt×dt denote the data matrix
in the target domain, where X�

t ∈ R�t×dt is the labeled target data matrix with
a corresponding label matrix Yt ∈ {−1, 1}�t×L and Xu

t ∈ R
ut×dt is the unlabeled

target data matrix. The number of labeled target domain instances �t is small
and the number of labeled source domain instances �s is much larger than �t.

In this section, we present a semi-supervised subspace co-projection method
to address heterogeneous multi-class domain adaptation under the setting
described above. We formulate a co-projection based discriminative subspace
learning method to simultaneously project the instances from both domains
into a co-located subspace and train a multi-class classification model in the
projected subspace, while exploiting the available unlabeled data to enforce a
maximum mean discrepancy criterion across domains in the projected subspace.
We further exploit ECOC schemes to enhance the discriminative informative-
ness of the projected subspace while directly addressing multi-class classification
problems.

3.1 Semi-supervised Learning Framework

With the disjoint feature spaces across domains, traditional machine learn-
ing methods and homogeneous domain adaptation methods cannot be directly
applied in the heterogeneous domain adaptation setting. However, if we can
transform the two disjoint feature spaces Xs and Xt into a common subspace
Z = R

m with two transformation functions ψs : Xs −→ Z and ψt : Xt −→ Z,
we can then build a unified prediction model in the common subspace to adapt
information across domains. Since the same multi-class prediction task is shared
across the source domain and the target domain, i.e., the two domains have the
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same output label space, we can identify a useful common subspace representa-
tion of the data by enforcing the discriminative informativeness of the subspace
representation of the labeled data in both domains for the common multi-class
prediction task. Based on this motivation, we propose to project the instances
from the source domain and the target domain into a common subspace using
two projection matrices Us and Ut respectively such that ψs(Xs) = XsUs and
ψt(Xt) = XtUt, while simultaneously training shared cross-domain prediction
models using the projected data. This process can be formulated as the follow-
ing minimization problem over the projection matrices and the prediction model
parameters

min
Us,Ut,W

1
�s + β�t

L (
f(X�

sUs,W ), φ(Ys)
)

+
αs

2
R(Us)+

β

�s + β�t
L (

f(X�
t Ut,W ), φ(Yt)

)
+

αt

2
R(Ut) +

γ

2
R(W ) (1)

where Us ∈ R
ds×m and Ut ∈ R

dt×m are two projection matrices that transform
the input data in the source domain and target domain respectively to a com-
mon and low dimensional feature space, such that m < min(ds, dt); f(·, ·) is a
prediction function for both domains in the projected common feature space and
W ∈ R

m×K is the prediction model parameter matrix; R(·) denotes a regular-
ization function; φ(·) denotes a label transformation function, which transforms
the multi-class label vectors from the original space {−1, 1}L to a new space
{−1, 1}K ; L(·, ·) is a loss function; and {β, αs, αt, γ} are trade-off parameters.
We introduce the label transformation function φ(·) to provide a mechanism for
incorporating label encoding schemes later.

Since the same prediction model is shared across the two domains, we expect
that the discriminative subspace learning framework above can successfully iden-
tify a common subspace representation if there are sufficient labeled instances
in both domains to enforce the predictive consistency of the subspace projec-
tions. However, there are typically only a small number of labeled instances
in the target domain, which might lead to poor subspace identification in the
target domain. To overcome this potential problem, we further incorporate unla-
beled instances to assist the subspace co-projection across domains. Specifically,
we assume the empirical marginal instance distributions of the two domains
in the projected subspace should be similar, i.e., P (ψ(Xs)) and P (ψ(Xt)) are
similar, and hence the prediction model built in the projected subspace using
the labeled source domain instances can work well for the target domain. We
thus propose to minimize the distance between the means of the projected
instances (both labeled and unlabeled) in the two domains, D(ψ(Xs), ψ(Xt)).
The empirical mean vector ψ(Xs) in the source domain can be expressed as
ψ(Xs) = 1

ns
1�

ns
XsUs, where 1ns

denotes a column vector of 1s with length ns.
Similarly, the empirical mean vector ψ(Xt) in the target domain can be expressed
as ψ(Xt) = 1

nt
1�

nt
XtUt, where 1nt

denotes a column vector of 1s with length nt.
By incorporating the empirical mean vector distance measure into our formu-
lation above, we produce the following semi-supervised heterogeneous domain
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adaptation framework

min
Us,Ut,W

1
�s + β�t

L (
f(X�

sUs,W ), φ(Ys)
)

+
αs

2
R(Us)+

β

�s + β�t
L (

f(X�
t Ut,W ), φ(Yt)

)
+

αt

2
R(Ut)+

γ

2
R(W ) + η D

( 1
ns

1�
ns

XsUs,
1
nt

1�
nt

XtUt

)
(2)

This framework will ensure the common subspace identified across domains to be
informative for the shared prediction model in the two domains, while enforcing
the two domains have similar marginal instance distributions in the projected
subspace to facilitate information adaptation across domains.

We expect the semi-supervised formulation above to provide a general frame-
work for identifying discriminative common subspace representations for effective
information adaptation across domains. Nevertheless, to produce a specific learn-
ing problem, we need to consider specific prediction functions, loss functions,
regularization functions and distance functions. In this work, we use a linear
prediction function f(x,w) = xw, a least squares loss function L(ŷ, y) = (ŷ−y)2,
and a squared L2-norm regularization function R(w) = ‖w‖22. We consider an
Euclidean distance function D(·, ·), which leads to a maximum mean discrep-
ancy criterion [2]. The maximum mean discrepancy criterion has been used in
the literature to induce similar marginal instance distributions across domains in
homogeneous domain adaptation setting, and it has been shown to be effective
in bridging the domain divergence gaps [3,14]. We expect such an empirical dis-
tribution based criterion can be useful for learning the common subspace across
heterogeneous domains in our setting. These specific components together lead
to the following semi-supervised learning problem

min
Us,Ut,W

1
�s + β�t

∥
∥X�

sUsW − φ(Ys)
∥
∥2

F
+

αs

2
‖Us‖2F +

β

�s + β�t

∥
∥X�

t UtW − φ(Yt)
∥
∥2

F
+

αt

2
‖Ut‖2F +

γ

2
‖W‖2F + η

∥
∥
∥

1
ns

1�
ns

XsUs − 1
nt

1�
nt

XtUt

∥
∥
∥
2

2
(3)

where ‖.‖F denotes the Frobenius norm, ‖.‖2 denotes the L2 norm, and {αs, αt,
β, γ, η} are trade-off parameters.

The label transformation function φ(·) allows one to use different multi-class
classification schemes within the proposed framework above. For example, if we
use the standard one-vs-all (OVA) scheme to address multi-class classification,
i.e., training one binary predictor for each label class, we then will have an
identical label transformation function φ(Y ) = Y , and set K = L for the size of
the prediction model parameter matrix W .
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3.2 Multi-class Classification with ECOC Schemes

In addition to the one-vs-all (OVA) scheme for multi-class classification, we
further exploit the general error-correcting output code (ECOC) [5] schemes
for multi-class classification. There are two reasons to use ECOC schemes in
our learning framework. First, ECOC schemes have the capacity of encoding
a multi-class classification problem into many more binary classification prob-
lems than the OVA scheme. More cross-domain binary classification tasks can
help to increase the stability and prediction informativeness of the subspace
co-projection in the proposed approach above, and lead to more robust domain
adaptation performance. Second, ECOC schemes have been used in the literature
to robustly solve multi-class classification problems with good empirical results
[5]. Incorporating an ECOC scheme in our learning framework will benefit our
multi-class classification task.

An ECOC scheme has two components: encoding process and decoding pro-
cess. Given a L-class classification problem, in the encoding process, an ECOC
scheme assigns a codeword from {−1,+1}K to each of the L classes, where K is
the length of the codeword. All the codewords for the L classes can then form
a codeword matrix M ∈ {−1,+1}L×K , whose each row contains the codeword
for one of the L classes. Based on such a codeword matrix, the label transforma-
tion function φ(·) can transform any given label vector from the one-vs-all form
into a new label vector with length K, while converting the L-class classifica-
tion problem to K binary classification problems, each of which corresponds to
one column of the codeword matrix M . In the decoding process, one can simply
compare the predicted codeword with the codewords in the codeword matrix M
to determine the predicted class (one of the L classes). In this work, we use the
Euclidean distance based loss decoding [7].

There are different ECOC schemes proposed in the literature. One standard
scheme is the exhaustive ECOC [5], which constructs codewords with length K =
2L−1 −1. Dense random encoding [1] is another simple ECOC encoding scheme.
For a given codeword length K, the random encoding constructs the codeword
vectors for the L classes by randomly filling the vectors with 1s and −1s, and
then selects the codeword matrix with the largest sum of column separation and
row separation from the results of multiple random repeats.

4 Training Algorithm

The semi-supervised learning problem in Eq (3) is a non-convex joint minimiza-
tion problem over the three parameter matrices, Us, Ut, and W . But the problem
is convex in each individual parameter matrix given the other two fixed, and has
closed-form solutions.

First, given fixed Ut and W , the optimization problem over Us in Eq (3) is
simply a least squares minimization problem. By setting the derivative of the
objective function regarding Us to zeros, we obtain the following closed-form
solution

vec(Us) =
(
(WW�) ⊗ As + I ⊗ Bs

)−1
vec(Qs) (4)
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where ⊗ denotes the Kronecker product operator, vec(·) is the matrix vector-
ization operator, I is an identity matrix with proper size in the given context,
and

As =
2

�s + β�t
X��

s X�
s ,

Bs = αsI +
2η

n2
s

X�
s 1ns

1�
ns

Xs,

Qs =
2

�s + β�t
X��

s φ(Ys)W� +
2η

nsnt
X�

s 1ns
1�

nt
XtUt,

Similarly, given fixed Us and W , the optimization problem over Ut in Eq (3)
has the following closed-form solution

vec(Ut) =
(
(WW�) ⊗ At + I ⊗ Bt

)−1
vec(Qt) (5)

where

At =
2β

�s + β�t
X��

t X�
t ,

Bt = αtI +
2η

n2
t

X�
t 1nt

1�
nt

Xt,

Qt =
2β

�s + β�t
X��

t φ(Yt)W� +
2η

nsnt
X�

t 1nt
1�

ns
XsUs.

Finally, the optimization problem over W given fixed Us and Ut has the
following closed-form solution

W =
(

2Nx

�s + β�t
+ γI

)−1 (
2Ny

�s + β�t

)
(6)

where

Nx = U�
s X��

s X�
sUs + βU�

t X��
t X�

t Ut,

Ny = U�
s X��

s φ(Ys) + βU�
t X��

t φ(Yt).

Given these closed-form solutions for each individual subproblem, we use an
alternating procedure to solve the optimization problem in Eq (3) in an itera-
tive manner. After a random initialization over {Us, Ut,W}, in each iteration the
alternating procedure sequentially updates Us, Ut and W according to equations
(4), (5) and (6) respectively to minimize the objective function. We stop the iter-
ation until a local optimal objective has been reached. On high-dimensional data,
where the closed-form solutions in (4) and (5) involve large matrix inversions,
we use a conjugate gradient descent algorithm to solve the subproblems over Us

and Ut to achieve scalability.

5 Experiments

We conducted experiments on cross-lingual text classification tasks and digit
image classification tasks with heterogeneous feature spaces. In this section we
report the experimental settings and the empirical results.
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5.1 Datasets and Methods

We conducted experiments on two types of data, text data and image data,
using Amazon product reviews [15] and UCI handwritten digits [11] respectively.
The Amazon product review dataset is a multilingual sentiment classification
dataset. It contains reviews from three different categories (Books, DVD and
Music), written in four different languages (English (E) , French (F) , German
(G) and Japanese (J)), where each review is represented as a term-frequency
feature vector. With this dataset, we constructed 12 cross-lingual multi-class
classification tasks with the three categories {Books,DV D,Music} as classes,
one for each source-target language pair. For example, the task E2F uses English
as the source language and French as the target language. For each task, there
are 4000 views for each class in each language domain.

The UCI handwritten digits dataset contains 2000 digit images, evenly dis-
tributed among ten digit classes (from zero to nine). We randomly split the
dataset into two subsets with equal size as two domains. Images in one domain
are represented using the feature set of the Zernike moments (Zer), while images
in the other domain are represented using the feature set of the profile correla-
tions (Fac). We then constructed two heterogeneous domain adaptation tasks,
Fac2Zer and Zer2Fac, one for each ordered source-target domain pair.

Methods: For each constructed heterogeneous domain adaptation task, we
compared the following methods: (1) TB - this is a target baseline method
that trains a classifier using only the labeled instances in the target domain.
(2) HeMap - this is an unsupervised representation learning method for hetero-
geneous domain adaptation [16], which first learns two projection matrices for the
two domains and then trains a classifier using the projected labeled instances
from the two domains. (3) DAMA - this is a semi-supervised heterogeneous
domain adaptation method proposed in [17], which performs representation
learning and model training in separate steps. (4) MMDT - this is a maximum
margin domain transform method for heterogeneous domain adaptation [10].
(5) SHFA - this is a semi-supervised heterogeneous feature augmentation-based
domain adaptation method [13]. (6) SCP-OVA - this is the proposed subspace
co-projection method with the one-verse-all (OVA) scheme for multi-class clas-
sification. (7) SCP-ECOC - this is the proposed subspace co-projection method
with the exhaustive ECOC scheme for multi-class classification. The DAMA
method [17] cannot handle the original high-dimensional features of the review
data, we thus applied PCA to reduce the dimensionality of the input features in
each language domain to 1000, as suggested in the SHFA work [13]. The alter-
nating training algorithm for our proposed approaches is very efficient, and it
typically converges within 30 iterations in our experiments.

5.2 Cross-lingual Text Classification

For each of the 12 cross-lingual multi-class classification tasks on Amazon prod-
uct reviews, there are 4000 instances for each of the three classes in each domain.
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Table 1. Average test accuracy (± standard deviations) (%) over 10 runs for cross-
lingual text classification tasks.

TASK TB HeMap DAMA MMDT SHFA SCP-OVA SCP-ECOC

E2F 73.8±0.5 73.8±0.4 74.2±0.5 78.2±0.5 78.4±0.4 79.2±0.5 80.6±0.4
E2G 72.4±0.5 76.5±0.5 77.0±0.4 79.2±0.4 79.4±0.4 81.0±0.4 82.2±0.3
E2J 66.8±0.5 67.3±0.5 67.6±0.5 72.7±0.5 70.6±0.8 73.4±0.6 74.4±0.6
F2E 72.8±0.6 79.3±0.6 80.3±0.5 82.2±0.4 82.4±0.4 84.3±0.3 85.6±0.2
F2G 72.4±0.5 76.3±0.4 77.7±0.6 79.4±0.4 79.5±0.4 80.9±0.4 82.2±0.3
F2J 66.8±0.5 67.9±0.8 68.4±0.4 72.6±0.5 70.5±0.8 73.4±0.7 74.5±0.6
G2E 72.8±0.6 79.8±0.4 80.6±0.6 82.2±0.4 82.4±0.4 84.5±0.3 85.5±0.2
G2F 73.8±0.5 73.9±0.4 75.0±0.5 78.2±0.5 78.4±0.4 79.4±0.5 80.6±0.4
G2J 66.8±0.5 65.8±1.0 67.5±0.6 72.6±0.5 70.5±0.8 73.3±0.7 74.4±0.6
J2E 72.8±0.6 81.0±0.4 81.2±0.4 82.2±0.4 82.5±0.5 84.2±0.2 85.5±0.2
J2F 73.8±0.5 74.8±0.3 75.1±0.7 78.3±0.5 78.3±0.4 79.3±0.5 80.5±0.4
J2G 72.4±0.5 76.4±0.4 77.1±0.6 79.2±0.4 79.3±0.4 81.0±0.4 82.2±0.4

We conducted experiments in the following way. In the source domain, we ran-
domly selected 2000 instances from each class as labeled data and used the
remaining 2000 instances as unlabeled data. In the target domain, we randomly
selected 100 instances and 2900 instances from each class as labeled and unla-
beled data respectively. We used all these selected instances for training, and used
the remaining 3000 instances (1000 for each class) in the target domain as testing
data. For the comparison approaches, HeMap, DAMA, SCP-OVA, SCP-ECOC,
which involve low dimensional subspaces, we set the dimension of the latent sub-
spaces, m, as 100. Then we performed empirical parameter selection using the
first task E2F with three runs. For the proposed approaches, SCP-OVA and SCP-
ECOC, we chose αs and αt from {0.01, 0.1, 1, 10, 100}, β from {1, 2, 5, 10, 100},
η from {0.01, 0.1, 1, 10, 100}, and chose γ from {0.01, 0.1, 1, 10, 100}. We picked
the parameter setting with the best test classification accuracy for each app-
roach, {αs = 0.1, αt = 0.1, β = 1, η = 10, γ = 0.1} for SCP-OVA and {αs =
10, αt = 0.1, β = 1, η = 10, γ = 0.1} for SCP-ECOC. We conducted parameter
selection for the other comparison approaches, HeMap, DAMA, MMDT, SHFA,
in the same way. Using the selected parameters, for each of the 12 tasks we then
repeatedly ran all the comparison methods for 10 times with different random
selections of the training instances. The comparison results in terms of average
test accuracy in the target domain are reported in Table 1.

From Table 1, we can see that the TB baseline method performs poorly across
all the twelve tasks, which shows that the 100 labeled target training instances
from each class are far from enough to obtain a good classification model in the
target language domain. By exploiting the labeled training data from the source
language domain, the HeMap method improves the prediction performance on
most tasks. However, its improvements over TB are very small on some tasks
and it even performs worse than TB on the task G2J. The DAMA method on
the other hand consistently outperforms both TB and HeMap. The explanation
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Fig. 1. Parameter sensitivity analysis over trade-off parameters {η, β, γ, αs, αt}.

is that HeMap conducts representation learning in a fully unsupervised man-
ner while DAMA learns more informative representations in a semi-supervised
manner with constraints constructed from the label information. By exploiting
the label information directly for representation learning and prediction model
training, the supervised method MMDT and semi-supervised method SHFA,
further outperform DAMA on all the twelve tasks. Nevertheless, our proposed
approaches, SCP-OVA and SCP-ECOC, outperform all the other comparison
methods across all the tasks. This suggests that the proposed learning frame-
work, which exploits both labeled and unlabeled training data to simultaneously
perform subspace representation learning and prediction model training, is an
effective model for heterogeneous domain adaptation. Between the two variants
of the proposed model, SCP-ECOC consistently outperforms SCP-OVA across
all the tasks, which suggests that the exhaustive error-correcting output coding
is more effective than the one-vs-all coding scheme in our learning framework,
while our proposed learning framework has the nice property of naturally incor-
porating different ECOC schemes.

5.3 Parameter Sensitivity Analysis

Next, we conducted parameter sensitivity analysis for the proposed SCP-ECOC
approach over the trade-off parameters {η, β, γ, αs, αt} using the first cross-lingual
text classification task, E2F. We used the same experimental setting as above, and
empirically investigated how the values of the trade-off parameters {η, β, γ, αs, αt}
affect the heterogeneous cross-domain prediction performance. We first conducted
sensitivity analysis over η, which controls the relative weight for the mean discrep-
ancy term in the proposed objective function. We conducted experiments with dif-
ferent η values from {0.01, 0.1, 1, 10, 100}, while fixing the other trade-off param-
eters as the selected values in the section above. For each η value, we repeated the
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Table 2. Average test accuracy (± standard deviations) (%) over 10 runs for digit
image classification tasks.

TASK TB HeMap DAMA MMDT SHFA SCP-OVA SCP-ECOC

Fac2Zer 71.9±0.7 72.0±1.0 72.5±0.6 73.4±1.0 73.8±0.6 75.0±0.8 76.6±0.5
Zer2Fac 83.8±0.9 84.2±0.9 85.4±0.6 87.0±1.1 87.6±0.7 88.7±0.7 90.4±0.5

experiment 10 times based on random partitions of the dataset and reported the
average test performance in the top left figure of Figure 1. We can see SCP-ECOC
produces the highest test accuracy when η equals 10. As η controls the contribu-
tion weight of the maximum mean discrepancy (MMD) criterion across the two
domains, the good performance of the large value of η suggests that the MMD
term is helpful for improving the cross-domain prediction performance. Another
observation is that although the test accuracy varies as we change the value of η,
the changes are small and the test accuracies produced by SCP-ECOC across the
whole range of different η values are all higher than the other comparison meth-
ods, TB, HeMap, DAMA, MMDT and SHFA (see both Figure 1 and Table 1).
This suggests that the proposed SCP-ECOC is not very sensitive to η within the
studied range of values.

We next studied how β affects cross-lingual test classification accuracy. Note
that β can be viewed as the relative weight ratio between a labeled target domain
instance and a labeled source domain instance regarding their contribution to
the training loss. As we have many more labeled training instances in the source
domain than in the target domain and we aim to learn a classification model
that works well in the target domain, it is reasonable to give a target domain
instance larger (or equal) weight than a source domain instance and consider
β ≥ 1. In particular, we conducted experiments with different β values from
{1, 2, 5, 10, 100} while fixing all the other trade-off parameters as the selected
values in the previous section. The average test classification results over 10
repeated runs are reported in the top right figure of Figure 1. We can see that
the performance of SCP-ECOC is quite stable with β values changing from 1 to
10. However, if placing too much weights (e.g., β = 100) on the target instances,
the test performance degrades. These results suggest that the performance of the
proposed SCP-ECOC is quite robust to β within a range of reasonable values.

We finally investigated the three trade-off parameters {γ, αs, αt} used for
the Frobenius norm regularization terms over W,Us, and Ut respectively. We
conducted experiments similarly as above. For each of the three parameters, we
repeated the experiment 10 times for each of its values in {0.01, 0.1, 1, 10, 100}
while fixing all the other trade-off parameters as previously selected values. We
reported the average test accuracy results in the bottom three figures of Figure 1
for the three parameters {γ, αs, αt} respectively. We can see although the per-
formance of the proposed SCP-ECOC changes with the value change for each
of the three parameters, the performance variations are very small. The perfor-
mance of SCP-ECOC is quite robust to the values of γ, αs, αt within the range
of values considered in the experiments.
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Fig. 2. Empirical comparison of different ECOC schemes.

5.4 Experimental Results on UCI Dataset

We have also conducted experiments using the UCI handwritten digits dataset.
The two tasks we constructed on the UCI handwritten digits dataset have differ-
ent feature spaces across domains, and have 100 instances from each class, i.e.,
1000 instances in total, in each domain. For each task, in the source domain,
we randomly chose 50 instances from each class (500 in total) as the labeled
training data and used the remaining 500 instances as the unlabeled train-
ing data. In the target domain, we randomly chose 10 and 70 instances from
each class as the labeled and unlabeled training data respectively, and used the
remaining instances as the testing instances. For the approaches that involve
subspaces, we set the dimension of the subspace as 20. We then used the same
parameter selection procedure as before to select values for the trade-off param-
eters of all the comparison methods using the task Fac2Zer. For our proposed
approaches, we got {αs = 0.1, αt = 0.1, β = 10, η = 0.1, γ = 10} for SCP-OVA
and {αs = 1, αt = 1, β = 1, η = 0.1, γ = 10} for SCP-ECOC. With the selected
parameters, for each task, we ran the comparison methods for 10 times with
different random selections of the training and testing data. The average test
accuracy results are reported in Table 2.

We can see that by exploiting the existing labeled data from the auxiliary
source domain, all the heterogeneous domain adaptation methods outperform
the baseline method on learning prediction models in the target domain. This
again shows the importance of performing heterogeneous domain adaptation.
Nevertheless, these few methods used in our experiments also demonstrated dif-
ferent efficacies on heterogeneous domain adaptation. HeMap displays similar
performance as in the cross-lingual text classification experiments, with limited
improvements over the baseline TB. The methods DAMA, SHFA and MMDT
outperform HeMap, while our proposed two approaches outperform all the other
comparison methods. Between the two proposed approaches, again SCP-ECOC
outperforms SCP-OVA. All these results again verified the efficacy of the pro-
posed learning framework.



538 M. Xiao and Y. Guo

5.5 Impact of the ECOC Encoding Schemes

We also conducted experiments to further study the influence of different ECOC
encoding schemes, especially the different numbers of binary classifiers, on the
proposed heterogeneous domain adaptation framework. In particular, we com-
pared the performance of one-vs-all (OVA) scheme, exhaustive ECOC scheme
and dense random ECOC encoding schemes [1]. For a L-class classification prob-
lem, the OVA scheme transforms the problem into a set of L binary classifica-
tion problems, the exhaustive ECOC scheme transforms the problem into a set
of (2L−1 − 1) binary classification problems, while the random ECOC encoding
scheme transforms the problem into a given number of K binary classification
problems.

We conducted experiments on the first cross-lingual text classification task,
E2F and the two tasks on UCI digits dataset, Fac2Zer and Zer2Fac. The E2F is
a 3-class classification task, and we tested the random encoding ECOC scheme
with different K values from {3, 5, 7}. The Fac2Zer and Zer2Fac are 10-class clas-
sification tasks, and we tested the random encoding ECOC scheme with different
K values from {10, 50, 100, 200, 500}. The experimental results are reported in
Figure 2. We can see that the exhaustive ECOC encoding scheme demonstrates
the best performance on all the three tasks, even though its codeword length is
smaller than the random schemes in some cases on the E2F task where the class
number is small. This is reasonable since the codeword matrix generated by the
exhaustive ECOC scheme typically has much better row and column separations
than randomly generated codeword matrix. With the same codeword length,
even the OVA scheme produces better performance than the random scheme.
But with the increasing of the number of binary classifiers, i.e., the codeword
length K, the performance of the proposed approach based on random encod-
ing ECOC improves quickly. In particular, on Fac2Zer and Zer2Fac, when K
increases from 10 to 100, the performance of the proposed approach increases
dramatically. Similar performance is observed on E2F as well. This observation
verifies our hypothesis that incorporating more binary classification tasks can
help to increase the stability and usefulness of the subspace co-projection in the
proposed learning framework and induce better domain adaptation performance.

6 Conclusion

In this paper, we developed a novel semi-supervised subspace co-projection app-
roach to address multi-class heterogeneous domain adaptation problems, where
the source domain and the target domain have disjoint input feature spaces.
The proposed method projects instances in the two domains into a co-located
latent subspace, while simultaneously training prediction models in the projected
feature space. It also exploits the unlabeled data to promote the consistency of
subspace co-projection from the two domains. Moreover, the proposed learning
framework can naturally exploit error-correcting output codes for multi-class
classification to enforce the informativeness of the subspace co-projection. We
formulated the overall semi-supervised learning process as a joint minimization
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problem, and solved it using an alternating optimization procedure. To investi-
gate the empirical performance of the proposed approach, we conducted cross-
lingual text classification experiments on the Amazon product reviews and cross-
domain image classification experiments on the UCI digits dataset. The empirical
results demonstrated the effectiveness of the proposed approach comparing to a
number of state-of-the-art heterogeneous domain adaptation methods.
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