Scalable Bayesian Non-negative Tensor
Factorization for Massive Count Data

Changwei Hu', Piyush Rai'®) Changyou Chen'!, Matthew Harding?,
and Lawrence Carin!

! Department of Electrical and Computer Engineering,
Duke University, Durham, USA
{ch237,piyush.rai,cc448,lcarin}@duke.edu
2 Sanford School of Public Policy and Department of Economics,
Duke University, Durham, USA
matthew.harding@duke.edu

Abstract. We present a Bayesian non-negative tensor factorization
model for count-valued tensor data, and develop scalable inference algo-
rithms (both batch and online) for dealing with massive tensors. Our gen-
erative model can handle overdispersed counts as well as infer the rank
of the decomposition. Moreover, leveraging a reparameterization of the
Poisson distribution as a multinomial facilitates conjugacy in the model
and enables simple and efficient Gibbs sampling and variational Bayes
(VB) inference updates, with a computational cost that only depends on
the number of nonzeros in the tensor. The model also provides a nice
interpretability for the factors; in our model, each factor corresponds to
a “topic”. We develop a set of online inference algorithms that allow fur-
ther scaling up the model to massive tensors, for which batch inference
methods may be infeasible. We apply our framework on diverse real-world
applications, such as multiway topic modeling on a scientific publications
database, analyzing a political science data set, and analyzing a massive
household transactions data set.

Keywords: Tensor factorization - Bayesian learning - Latent factor
models - Count data - Online bayesian inference

1 Introduction

Discovering interpretable latent structures in complex multiway (tensor) data is
an important problem when learning from polyadic relationships among multiple
sets of objects. Tensor factorization [5,14] offers a promising way of extracting
such latent structures. The inferred factors can be used to analyze objects in
each mode of the tensor (e.g., via classification or clustering using the factors),
or to do tensor completion.

Of particular interest, in the context of such data, are sparsely-observed
count-valued tensors. Tensors are routinely encountered in many applications.
For example, in analyzing a database of scientific publications, the data may be
in form of a sparse four-way count-valued tensor (authors x words X journals
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x years). Another application where multiway count data is routinely encoun-
tered is the analysis of contingency tables [11] which represent the co-occurrence
statistics of multiple sets of objects.

We present a scalable Bayesian model for analyzing such sparsely-observed
tensor data. Our framework is based on a beta-negative binomial construction,
which provides a principled generative model for tensors with sparse and poten-
tially overdispersed count data, and produces a non-negative tensor factorization.
In addition to performing non-negative tensor factorization and tensor comple-
tion for count-valued tensors, our model has the property that each latent factor
inferred for a tensor mode also represents a distribution (or “topic”, as in topic
models) over the objects of that tensor mode; our model naturally accomplishes
this by placing a Dirichlet prior over the columns of the factor matrix of each
tensor mode. In addition to providing an expressive and interpretable model for
analyzing sparse count-valued tensors, the model automatically infers the rank
of the decomposition, which side-steps the crucial issue of pre-specifying the rank
of the decomposition [14,18,22].

Our framework also consists of a set of batch and scalable online inference
methods. Using a reparameterization of the Poisson distribution as a multinomial
allows us to achieve conjugacy, which facilitates closed-form Gibbs sampling as
well as variational Bayes (VB) inference. Moreover, we also develop two online
inference algorithms - one based on online MCMC [7] and the other based on
stochastic variational inference [9]. These inference algorithms enable scaling up
the model to massive-sized tensor data.

One of the motivations behind our work is analyzing massive multiway data
for tasks such as understanding thematic structures in scholarly databases (e.g.,
to design better recommender systems for scholars), understanding consumer
behavior from shopping patterns of large demographies (e.g., to design better
marketing and supply strategies), and understanding international relations in
political science studies. In our experiments, we provide qualitative analyses for
such applications on large-scale real-world data sets, and the scalability behavior
of our model.

2 Canonical PARAFAC Decomposition

Given a tensor Y of size ny X ng X -+ X ng, with ng denoting the size of Y
along the k' mode (or “way”) of the tensor, the goal in a Canonical PARAFAC
(CP) decomposition [14] is to decompose ) into a set of K factor matrices
U, UK where UK = [u,gk)7 ... ,ug)], k = {1,...,K}, denotes the
np X R factor matrix associated with mode k. In its most general form, CP
decomposition expresses the tensor ) via a weighted sum of R rank-1 tensors
as Yy ~ f(Zle )\T.ug) ®...0 ugK)). The form of f depends on the type of
data being modeled (e.g., f can be Gaussian for real-valued, Bernoulli-logistic
for binary-valued, Poisson for count-valued tensors). Here A, is the weight asso-
ciated with the r** rank-1 component, the nj x 1 column vector u&’“) represents
the r** latent factor of mode &, and ® denotes vector outer product.
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3 Beta-Negative Binomial CP Decomposition

We focus on modeling count-valued tensor data [4] and assume the following
generative model for the tensor )

R
yNPoiS(Z Aald o oul)) (1)
r=1
u&k) ~ Dir(a(k), cee a(k)) (2)
Ar ~ Gamma(g,, 1 ﬁT ) (3)
pr ~ Beta(ce, c(1 —¢€)) (4)

We use subscript ¢ = {i1,...,ix} to denote the index of the i-th entry
in ). Using this notation, the ¢-th entry of the tensor can be written as y; ~
Pois(Zfil Ar HkK:1 ugfz,) We assume that we are given N observations {y; }}¥ ,
from the tensor ).

Since the gamma-Poisson mixture distribution is equivalent to a negative
binomial distribution [15], (1) and (3), coupled with the beta prior (Eq 4) on p,,
lead to what we will call the beta-negative binomial CP (BNBCP) decomposition
model. A few things worth noting about our model are

— The Dirichlet prior on the factors ugk) naturally imposes non-negativity con-

straints [4] on the factor matrices UM, ..., UK Moreover, since each col-
umn ugk) of these factor matrices sums to 1, ugk) can also be thought of a
distribution (e.g., a “topic”) over the ny entities in mode k.

— The gamma-beta hierarchical construction of A, (Eq 3 and 4) allows inferring
the rank of the tensor by setting an upper bound R on the number of factors
and letting the inference procedure infer the appropriate number of factors by
shrinking the coefficients A,’s to close to zero for the irrelevant factors.

— The resulting negative binomial model is useful for modeling overdispersed
count data in cases where the Poisson likelihood may not be suitable.

— Using alternate parameterizations (Section 3.1) of the Poisson distribution in
(1) leads to a fully conjugate model and facilitates efficient Gibbs sampling
and variational Bayes (VB) inference, in both batch as well as online settings.

3.1 Reparametrizing the Poisson Distribution

The generative model described in Eq (1)-(4) is not conjugate. We now describe
two equivalent parametrizations [6,24] of (1), which transform (1)-(4) into a fully
conjugate model and facilitate easy-to-derive and scalable inference procedures.
These parameterizations are based on a data augmentation scheme described
below.

The first parametrization expresses the i-th count-valued entry y; of the
tensor ) as a sum of R latent counts {g;, }1*

R K
~ ~ . k
vi= Girs Tir ~ Pois(h [ ] ui)) (5)
r=1 k=1
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The second parametrization assumes the vector {7;,}2_; of latent counts is
drawn from a multinomial as

Uil,- - Pir ~ Mult(ys; Gy - - -5 Gr)
k
)\ Hk 1u’5k2‘ (6)
G
Zr 1A Hk 1UW)~

The above parameterizations follows from the following lemma [6,24]:

Cir =

Lemma 1. Suppose that x1,...,xr are independent random wvariables with
. ~ Pois(0,) and x = Zil . Set 0 = Zf:l 0.; let (z,21,...,2r) be
another set of mndom variables such that z ~ Pois(0), and (z1,...,2Rr)|z ~
Mult(z; 9 Seee 9 &), Then the distribution of € = (x,x1,...,zR) is the same as
the distribution of z = (z,21,...,2R).

These parameterizations, along with the fact that the columns uq(»k) of each

factor matrix are drawn from a Dirichlet, allows us to leverage the Dirichlet-
multinomial conjugacy and derive simple Gibbs sampling and variational Bayes
(VB) inference update equations, as described in Section 4.

4 Inference

We first present the update equations for batch Gibbs sampling (Section 4.1)
and batch VB inference (Section 4.2). We then present two online inference algo-
rithms, based on: (¢) conditional density filtering [7], which provides an efficient
way to perform online MCMC sampling using conditional sufficient statistics of
the model parameters; and (i) stochastic variational inference [9], which will
allow scaling up VB inference by processing data in small minibatches.

We also define two quantities sgk) = Zl in=j Uir and s, = Z ¥ir which
denote aggregates (sufficient statistics) computed using the latent counts g;,..
These quantities appear at various places in the description of the inference
algorithms we develop.

4.1 Gibbs Sampling

— Sampling §;-: The latent counts {g;.} ; are sampled from a multino-
mial (6).

— Sampling usnk): Due to the Dirichlet-multinomial conjugacy, the columns of
each factor matrix have Dirichlet posterior and are sampled as

()NDH< (k)+s() (k)+8() B (k)_i_sgz)) ) (7)

— Sampling p,: Using the fact that s, = ), 7;, and marginalizing over the
MOE

u;,.’s in (5), we have s, ~ Pois(\,.). Using this, along with (3), we can express
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s, using a negative binomial distribution, i.e., s, ~ NB(g;,p;-). Then, due to
the conjugacy between negative binomial and beta, we can sample p, as

pr ~ Beta(ce + sy, c(1 —€) + gy) (8)

— Sampling \,: Again using the fact that s, ~ Pois(\,.), and due to the gamma-
Poisson conjugacy, we have

Ay~ Gamma(gr + Srypr) (9)

Computational Complexity: Sampling the latent counts {7 }2 ; for each
nonzero observation y; (note that for y; = 0, the latent counts are trivially
zero) requires computing {(;}Z ;, and computing each (;, requires O(K) time
(Eq 6). Therefore, sampling all the latent counts {@;}Z ; requires O(NRK)
time. Sampling the latent factors {ur )}r , for the K tensor modes requires
O(RK) time. Sampling {p,}2 ; and {\.}, requires O(R) time each. Of all
these steps, sampling the latent counts {7, }_; (which are also used to compute
the sufficient statistics s(k) and s,) is the most dominant step, leading to an
overall time-complexity of O(N RK) for the Gibbs sampling procedure.

The linear dependence on N (number of nonzeros) is especially appealing
because most real-world count-valued tensors are extremely sparse (have much
less than even 1% nonzeros. In contrast to the standard negative-binomial models
for count data, for which the inference complexity also depends on the zeros
whose number may be massive (and therefore heuristics, such as subsampling
the zeros, are needed), the reparametrizations (Section 3.1) used by our model
allow us to ignore the zeros in the multinomial sampling step (the sufficient
statistics do not depend on the zero entries in the tensor), thereby significantly
speeding up the inference.

4.2 Variational Bayes Inference

Using the mean-field assumption [12], we approximate the target posterior dis-

tribution by @ = [, ,. ¢(¥ir) [ 11, ¢(u (k)) I1, a(A+) I1, a(pr). Our fully conjugate
model enables closed-form variational Bayes (VB) inference updates, with the
distribution ¢(g;), q(u&k)), q(\), and ¢(p,-) being multinomial, Dirichlet, beta,
and gamma, respectively. We summarize the update equations for the variational

parameters of each of these distributions, below:

— Updating §;,: Using (6), the updates for y; are given by Elyi;] = yi(r

where (- is defined as (5 = Ci"‘ 5 and (Nir can be computed as
r=1 T
K
Gir = exp{P(s,+9,)+In(p,) +Zw st +a™) = [> (s, +a®)]} (10)
k=1 k=1

where ¥(.) is the digamma function, which is the first derivative of the loga-
rithm of the gamma function.
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— Updating uEfZ The mean-field posterior q(ufﬂk)) is Dirichlet with each of the
(k)
component means given by E[ugfi] = pli“(k) where p(k) = a® 4 sk

Z;kzl Pipr T bt
— Updating p,: The mean-field posterior ¢(p,) is beta with mean given by

]E[pr] = prfj‘(;rb where p,.q = ce + s, prp = C(l - 6) + gr.

— Updating \,: The mean-field posterior ¢(\,) is gamma with mean given by
E[Ar] = AraArp, where Aq = (gr + 8») and Ay = i

A note on Gibbs vs VB: The per-iteration time-complexity of the VB infer-
ence procedure is also O(NRK). It is to be noted however that, in practice, one
iteration of VB in this model is a bit more expensive than one iteration of Gibbs,
due to the digamma function evaluation for the ér which is needed in VB when
updating the §;,.’s. Prior works on Bayesian inference for topic models [8] also
support this observation.

4.3 Online Inference

Batch Gibbs (Section 4.1) and VB (Section 4.2) inference algorithms are simple
to implement and efficient to run on moderately large-sized problems. These
algorithms can however be slow to run for massive data sets (e.g., where the
number of tensor entries N and/or the dimension of the tensor is massive).
The Gibbs sampler may exhibit slow mixing and the batch VB may be slow to
converge. To handle such massive tensor data, we develop two online inference
algorithms. The first is online MCMC based conditional density filtering [7],
while the second is based on stochastic variational inference [9]. Both these
inference algorithms allow processing data in small minibatches and enable our
model to analyze massive and/or streaming tensor data.

Conditional Density Filtering: The conditional density filtering (CDF) algo-
rithm [7] for our model selects a minibatch of tensor entries at each iteration,
samples the latent counts {7;, }2_; for these entries conditiond on the previous
estimates of the model parameters, updates the sufficient statistics sgkr) and s,
using these latent counts (as described below), and resamples the model param-
eters conditioned on these sufficient statistics. Denoting I; as data indices in

minibatch at round ¢, the algorithm proceeds as

— Sampling §;,: For all ¢ € I;, sample the latent counts 7;,(;cr,) using (6).

— Updating the conditional sufficient statistics: Using data from the cur-
rent minibatch, update the conditional sufficient statistics as:

(kt) (k,t—1) N _
Sj,r - (1 - ’yt)sj,r + 7t§ . Z 4y7,r (11)
1€lig=j
SO = (1= )0 44, Y > (12)
T r B T,

icl,
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Note that the updated conditional sufficient statistics (CSS), indexed by
superscript ¢, is a weighted average of the old CSS, indexed by superscript
t — 1, and of that computing only using the current minibatch (of size B). In
addition, the latter term is further weighted by N/B so as to represent the
average CSS over the entire data. In the above, 7; is defined as v = (tg+1t) ",
to > 0, and k € (0.5,1] is needed to guarantee convergence [3].

— Updating u&k),pr, At Using the updated CSS, draw M samples for each of

the model parameters {u(k ™) pm) /\(m)}m 1, from the following condition-
als:

u® ~ Dir(a® + Sg’fr’t), coa®) sl (13)

pr ~ Beta(ce + sf‘) e(l - 6) +9r) (14)

Ar ~ Gamma(g, + sgt),pr) (15)

and either store the sample averages of u( ),pr, and A,, or their analytic
means to use for the next CDF iteration [7]. Since the analytic means of the
model parameters are available in closed-form in this case, we use the latter
option, which obviates the need to draw M samples, thereby also speeding up
the inference significantly.

We next describe the stochastic (online) VB inference for our model.

Stochastic Variational Inference: The batch VB inference (Section 4.2)
requires using the entire data for the parameter updates in each iteration,
which can be computationally expensive and can also result in slow convergence.
Stochastic variational inference (SVI), on the other hand, leverages ideas from
stochastic optimization [9] and, in each iteration, uses a small randomly chosen
minibatch of the data to updates the parameters. Data from the current mini-
batch is used to compute stochastic gradients of the variational objective w.r.t.
each of the parameters and these gradients are subsequently used in the param-
eter updates. For our model, the stochastic gradients depend on the sufficient

statistics computed using the current minibatch I;: s(k - Eieh:ik:j T and

£” = Ziel,, ¥i.r, where g;, is computed using Eq 10. Denoting B as the mini-
batch size, we reweight these statistics by N/B to compute the average sufficient
statistics over the entire data [9] and update the other variational parameters as
follows:

o) = (=700l (a4 (N/B)si ) (16)

pr’;) = (L= )pla " +yelce + (N/B)s") (17)

P = (1= 2p ) el =) +90) (18)

MY = (1= 3)AGD + 2(gr + (N/B)s!) (19)

= (1= +p, (20)

where ~, is defined as v, = (to +¢)™", to > 0, and x € (0.5,1] is needed to

guarantee convergence [9].
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Computational Complexity: In contrast to the batch Gibbs and batch VB,
both of which have O(NRK) cost per-iteration, the per-iteration cost of the
online inference algorithms (CDF and SVI) is O(|I;|RK) where |I;| is the mini-
batch size at round ¢. We use a fixed minibatch size B for each minibatch, so
the per-iteration cost is O(BRK).

5 Related Work

Although tensor factorization methods have received considerable attention
recently, relatively little work exists on scalable analysis of massive count-valued
tensor data. Most of the recently proposed methods for scalable tensor decom-
position [2,10,13,17] are based on minimizing the Frobenious norm of the tensor
reconstruction error, which may not be suitable for count or overdispersed count
data. The rank of decomposition also needs to be pre-specified, or chosen via
cross-validation. Moreover, these methods assume the tensor to be fully observed
and thus cannot be used for tensor completion tasks. Another key difference
between these methods and ours is that scaling up these methods requires par-
allel or distributed computing infrastructure, whereas our fully Bayesian method
exhibits excellent scalability on a single machine. At the same time, the simplicity
of the inference update equations would allow our model to be easily parallelized
or distributed. We leave this possibility to future work.

One of the first attempts to explicitly handle count data in the context of
non-negative tensor factorization includes the work of [4], which is now part of
the Tensor Toolbox '. This method optimizes the Poisson likelihood, using an
alternating Poisson regression sub-routine, with non-negative constraints on the
factor matrices. However, this method requires the rank of the decomposition
to be specified, and cannot handle missing data. Due to its inability in handling
missing data, for our experiments (Section 6), as a baseline, we implement and
use a Bayesian version of this model which can handle missing data.

Among other works of tensor factorization for count data, the method in [1]
can deal with missing values, though the rank still needs to be specified, and
moreover the factor matrices are assumed to be real-valued, which makes it
unsuitable for interpretability of the inferred factor matrices.

In addition to the Poisson non-negative tensor factorization method of [4],
some other non-negative tensor factorization methods [5,20,21] also provide
interpretability for the factor matrices. However, these methods usually have one
or more of the following limitations: (1) there is no explicit generative model for
the count data, (2) the rank needs to be specified, and (3) the methods do not
scale to the massive tensor data sets of scales considered in this work.

Methods that facilitate a full Bayesian analysis for massive count-valued
tensors, which are becoming increasingly prevalent nowadays, are even fewer.
A recent attempt on Bayesian analysis of count data using Poisson likelihood
is considered in [19]; however, unlike our model, their method cannot infer the
rank and relies on batch VB inference, limiting its scaling behavior. Moreover,
the Poisson likelihood may not be suitable for overdispersed counts.

! http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html
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Finally, inferring the rank of the tensor, which is NP-complete in gen-
eral [14], is another problem for which relatively little work exists. Recent
attempts at inferring the rank of the tensor in the context of CP decomposi-
tion include [18,22]; however (1) these methods are not applicable for count
data, and (2) the inferred factor matrices are real-valued, lacking the type of
interpretability needed in many applications.

Our framework is similar in spirit to the matrix factorization setting pro-
posed in [24] which turns out to be a special case of our framework. In addition,
while [24] only developed (batch) Gibbs sampling based inference, we present
both Gibbs sampling as well as variational Bayesian inference, and design effi-
cient online Bayesian inference methods to scale up our framework for handling
massive real-world tensor data.

To summarize, in contrast to the existing methods for analyzing tensors,
our fully Bayesian framework, based on a proper generative model, provides a
flexible method for analyzing massive count-valued tensors, side-stepping crucial
issues such as rank-specification, providing good interpretability of the latent
factors, while still being scalable for analyzing massive real-world tensors via
online Bayesian inference.

6 Experiments

We apply the proposed model on a synthetic and three real-world data sets that
range in their sizes from moderate to medium to massive. The real-world tensor
data sets we use in our experiments are from diverse application domains, such as
analyzing country-country interaction data in political science, topic modeling on
multiway publications data (with entities being authors, words, and publication
venues), and analysis of massive household transactions data. These data sets
include:

— Synthetic Data: This is a tensor of size 300 x 300 x 300 generated using our
model by setting an upper bound R = 50 over the number of factors; only 20
factors were significant (based on the values of \.), resulting in an effective
rank 20.

— Political Science Data (GDELT): This is a real-world four-way tensor
data of country-country interactions. The data consists of 220 countries, 20
action types, and the interactions date back to 1979 [16]. We focus on a sub-
set of this data collected during the year 2011, resulting in a tensor of size
220 x 220 x 20 x 52. Section 6.4 provides further details.

— Publications Data: This is a 2425 x 9088 x 4068 count-valued tensor, con-
structed from a database of research papers published by researchers at Duke
University?; the three tensor modes correspond to authors, words, and venues.
Section 6.3 provides further details.

2 Obtained from https://scholars.duke.edu/
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— Transactions (Food) Data: This is a 117054 x 438 x 67095 count-valued
tensor, constructed from a database of transactions data of food item pur-
chases at various stores in the US 3; the three tensor modes correspond to
households, stores, and items. Section 6.5 provides further details.

We compared our model with the following baselines: (i) Bayesian Poisson
Tensor Factorization (BAYESPTF), which is fully Bayesian version of the Pois-
son Tensor Factorization model proposed in [4], and (i) Non-negative Tensor
Decomposition based on Low-rank Approximation (LRANTD) proposed in [23].
All experiments are done on a standard desktop computer with Intel i7 3.4GHz
processor and 24GB RAM.

6.1 Inferring the Rank

To begin with, as a sanity check for our model, we first perform an experiment
on the synthetic data described above to see how well the model can recover the
true rank (tensor completion results are presented separately in Section 6.2). For
this experiment, we run the batch Gibbs sampler (the other inference methods
also yield similar results) with 1000 burn-ins, and 1000 collection samples. We
experiment with three settings: using 20%, 50% and 80% data for training. The
empirical distribution (estimated using the collected MCMC samples) of the
effective inferred rank for each of these settings is shown in Figure 1 (left). In each
collection iteration, the effective rank is computed after a simple thresholding on
the \,.’s where components with very small A, are not counted (also see Figure 1

4
2x 10 T T T T
— truth
— inferred
1.5+ .
Aol |
0.5 8
0 ‘ . ,
0 10 20 30 40 50

Fig. 1. Distribution over inferred ranks for syntheric data (left), and X inferred using
80% training data (right).

3 Data provided by United States Department of Agriculture (USDA) under a Third
Party Agreement with Information Resources, Inc. (IRI).
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(right)). With 80% training data, the distribution shows a distinct peak at 20
and even with smaller amounts of training data (20% and 50%), the inferred
rank is fairly close to the ground truth of 20. In Figure 1 (right), we show the
spectrum of all the A,’s comparing the ground truth vs the inferred values;

6.2 Tensor Completion Results

We next experiment on the task of tensor completion, where for each method
95% of the data are used for training and the remaining 5% data is used as
the heldout set (note that the data sets we use are extremely sparse in nature,
with considerably less than 1% entries of the tensor being actually observed).
The results are reported in Table 1 where we show the log likelihood and the
mean-absolute error (MAE) in predicting the heldout data. Timing-comparison
for the various batch and online inference methods is presented separately in
Section 6.6.

For this experiment, we compare our BNBCP model (using the various infer-
ence methods) with (1) BAYESPTF - a fully Bayesian variant (we implented it
ourselves) of a state-of-the-art Poisson Tensor Factorization model originally pro-
posed in [4] (which cannot however handle missing data), and (2) LRANTD [23]
which is an optimization based non-negative tensor decomposition method. As
Table 1 shows, our methods achieve better log-likelihood and MAE as com-
pared to these baselines. Moreover, among our batch and online Bayesian infer-
ence methods, the online inference methods give competitive or better results as
compared to their batch counterparts. In particular, the online MCMC method
based on conditional density filtering (BNBCP-CDF) works the best across all
the methods (please see Section 6.6 for a timing comparison).

Table 1. Loglikelihood and MAE comparison for different methods (the two baselines,
our model with batch inference, and our model with online inference) on four datasets.
Note: LRANTD gave out-of-memory error on publications and food transactions data
sets so we are unable to report its results on these data sets. We also only report the
MAE for LRANTD, and not the log-likelihood, because it uses a Gaussian likelihood
model for the data.

DATASETS Toy pata GDELT PuBLiCATION FooD |Toy pata GDELT PuBLICATION FOOD
BAYESPTF -107563 -4425695  -860808  -2425433| 1.012 55.478 1.636 1.468
LRANTD N/A N/A N/A N/A 1.019 65.049 N/A N/A
BNBCP-GIBBS -97580 -3079883  -619258  -2512112| 0.989 45.436 1.565 1.459
BNBCP-VB -99381 -2971769  -632224  -2533086| 0.993  43.485 1.574 1.472
BNBCP-CDF -95472 -2947309 -597817 -2403094| 0.985 44.243 1.555 1.423
BNBCP-ONLINEVB| -98446 -3169335  -660068  -2518996 | 0.989 46.188 1.601 1.461

6.3 Analyzing Publications Database

The next experiment is on a three-way tensor constructed from a scientific publi-
cations database. The data consist of abstracts from papers published by various
researchers at Duke University 4. In addition to the paper abstract, the venue

4 Data crawled from https://scholars.duke.edu/
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information for each paper is also available. The data collection contains 2425
authors, 9088 words (after removing stop-words), and 4068 venues which results
in a 2425 x 9088 x 4068 word-counts tensor, on which we run our model. As
the output of the tensor decomposition, we get three factor matrices. Since the
latent factors in our model are non-negative and sum to one, each latent factor
can also be interpreted as a distribution over authors/words/venues, and conse-
quently represents a “topic”. Therefore the three factor matrices inferred by our
model for this data correspond to authors x topics, words x topics, and venue
X topics, which we use to further analyze the data.

We apply the model BNBCP-CDF on this data (with R = 200) and using the
inferred words x topics matrix, in Table 2 (left) we show the list of 10 most prob-
able words in four factors/topics that seem to correspond to optics, genomics,
machine learning & signal processing, and statistics. To show the topic rep-
resentation across different departments, we present a histogram of departmental
affiliations for 20 authors with highest probabilities in these four factors. We find
that, for the genomics factor, the top authors (based on their topic scores) have
affiliations related to biology which makes intuitive sense. Likewise, for the statis-
tics factor, most of the top authors are from statistics and biostatistics depart-
ments. The top 20 authors in factors that correspond to optics and machine learn-
ing & signal processing, on the other hand, are from departments of electrical and
computer engineering and/or computer science, etc.

Table 2. Most probable words in topics related to optics, genomics, machine learn-
ing/signal processing(ML/SP) and statistics (Stats), and top ranked venues in ML/SP
community.

OPTICS GENOMICS ML/SP STATS Topr VENUES IN ML/SP
GIGAPIXEL GENE DICTIONARY MODEL ICASSP

MICROCAMERA CHROMATIN SPARSITY PRIORS IEEE TRANS. SIG. PROC.
CAMERAS OCCUPANCY MODEL BAYESIAN ICML

APERTURE CENTROMERE ~ BAYESIAN LASSO SIAM J. IMG. SCI.

LENS TRANSCRIPTION COMPRESSED LATENT IEEE TRANS. IMG. PROC.
MULTISCALE GENOME COMPRESSIVE INFERENCE IEEE INT. SYMP. BIOMED. IMG.
OPTICAL SITES MATRIX REGRESSION NIPS

SYSTEM EXPRESSION DENOISING SAMPLER IEEE TRANS. WIRELESS COMM.
NANOPROBES  SEQUENCE GIBBS SEMIPARAMETRIC|IEEE WORKSHOP STAT. SIG. PROC.
METAMATERIAL VEGFA NOISE NONPARAMETRIC |[IEEE TRANS. INF. THEORY

Similarly, using the inferred venues x topics matrix, we list the most likely
venues for each topic. Due to space-limitations, here we only present the most
likely venues in machine learning & signal processing factor/topic; the result is
shown in Table 2 (right-most column). The result shows that venues like ICASSP,
IEEE Trans. Signal Proc., ICML, and NIPS all rank at the top in the machine
learning & signal processing factor, which again makes intuitive sense.

6.4 Analyzing Political Science Data

We use the model to analyze a real-world political science data set consisting
of country-country interactions. Such analyses are typically done by political
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Fig. 2. Histogram of affiliations for top 20 authors in factors related to machine learn-
ing/signal processing (top left) and statistics (top right), optics (bottom left), and
genomics(bottom right)

scientists to study, analyze and understand complex international multilateral
relations among countries. The data set is from the Global Database of Events,
Location, and Tone (GDELT) [16]. GDELT records the dyadic interactions
between countries in the form of “Country A did something to Country B”. In
our experiments, we consider 220 countries (“actors”) and 20 unique high-level
action types in 52 weeks of year 2012. After preprocessing, we have a four-way
(country-country-action-time) action counts tensor of size 220 x 220 x 20 x 52.
Note that both first and second tensor mode represents countries; first mode
as “sender” and the second mode as “receiver” of a particular action. In this
analysis, we set R to be large enough (200) and the model discovered roughly
about 120 active components (i.e., components with significant value of \,.).
We apply the model (BNBCP-CDF; other methods yield similar results)
and examine each of the time dimension factors, specifically looking for the

Julian Assange Asylum in Ecuador 2012 Benghazi attack
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Fig. 3. Country factors (top row) and time factors (bottom row) for Julian Assange
asylum in Ecuador (left column) and 2012 Benghazi attack (right column).
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significant components (based on the magnitude of A,.) in which the time dimen-
sion factor also peaks during certain time(s) of the year. We show results with
two such factors in Figure 3. In Figure 3 (column 1), the time and country (actor)
factors seems to suggest that this factor/topic corresponds to the event “Julian
Assange”. The actor subplot shows spikes at Ecuador, United Kingdom, United
States, and Sweden whereas the time factor in the bottom left subplot shows
spikes between June and August. The time and countries involved are consis-
tent with the public knowledge of the event of Julian Assange seeking refuge in
Ecuador.

Likewise, in Figure 3 (column 2), the time and country (actor) factors seems
to suggest that this factor corresponds to the event “Benghazi Attack” which
took place on Sept. 12 (week 37) of 2012, in which Islamic militants attacked
American diplomatic compound in Benghazi, Libya. The attack killed an US
Ambassador. As the Figure shows, the top actors identified are US, Libya and
Egypt, and spikes are found at around week 37 and 38, which are consistent with
the public knowledge of this event.

The results of these analyses demonstrate that the interpretability of our
model can be useful for identifying events or topics in such multiway interaction
data.

6.5 Analyzing Transactions Data

We next apply our model (BNBCP-CDF'; other methods yield similar results)
for analyzing transactions data for food item purchases made at stores. Our data
is collected for a demographically representative sample of US consumers who
reside in large urban and suburban areas and purchase food in supermarkets
and grocery stores. The data were provided by the USDA under a Third Party
Agreement with IRI. Each transaction is identified by a unique Universal Prod-
uct Code (UPC) barcode and the store where the transaction occurred. Some
items such as fresh produce do not have UPCs and are identified separately. The
households are observed over a four year period, during which they are provided
with a technology that allows them to scan each purchase and record additional
information such as the store where the purchase was made (and other economic
data). Participating households are provided with incentives designed to encour-
age compliance. For each household-product-store combination we record the
number of unique purchases over the sampling period. The database has a total
of 117,054 unique households, 438 stores, and 67,095 unique items and we con-
struct a 3-way count tensor of size 117054 x 438 x 67095 with about 6.2 million
nonzero entries.

We apply the proposed model on this data by setting R = 100 (out of which
about 60 components were inferred to have a significant value of \,.) and looked
at the stores factor matrix. Since each column (which sums to 1) of the store
factor matrix can be thought of as a distribution over the stores, we look at
three of the factors from the store factor matrix and tried to identify the stores
that rank at the top in that factor. In Table 3, we show results from each of
these factors. Factor 1 seems to suggest that it is about the most popular stores
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(included Walmart, for example), Factor 2 has stores that primarily deal in
wholesale (e.g., Costco, Sam’s Wholesale Club), and Factor 3 contains stores
that sell none or very few food items (e.g., Mobil, Petco). Note that the Walmart
Super Center figures prominently in both Factor 1 and Factor 2.

Table 3. Three of the store factors inferred from the transaction data (top-5 stores
shown for each)

FACTOR 1 FACTOR 2 FACTOR 3

WALMART SUP. CENTER SAM’S CLUB DICK’S SPORTING

WALMART TRADERS MELJER MOBIL

WALMART NEIGHB. CosTco PETCO

WALMART B J’S WHOLESALE SALLY BEAUTY

KROGER WALMART Sup. CENTER GNC ALL
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Fig. 4. Distributions over items for three factors (each factor corresponds to a cluster).

We next look at the items factor matrix. In Figure 2, we plot the inferred
distribution over items in each of the three clusters described above. For factors
1 and 2 (which correspond to the most popular stores and wholesale stores
respectively), the distribution over the items (top and bottom panel in Figure 2)
have a reasonably significant mass over a certain range of items (for the items
indexed towards the left side in the plots of factors 1 and 2). On the other hand,
for factor 3 which corresponds to stores that sell no or very few types of food
items, the distribution over the items is rather flat and diffuse with very weak
intensities (looking at the scale on the y axis). From the Figure 2, it is also
interesting to observe that the set of active items in factors (1 & 2) vs factor 3
seem to be mostly disjoint.

This analysis provides a first attempt to analyze food shopping patterns for
American consumers on a large scale. As the world, at large, struggles with a
combination of increasing obesity rates and food insecurity, this analysis shows
that consumer preferences are densely clustered across both stores and items.
This indicates that household tend to have fairly rigid preferences over the stores
where they shop. Furthermore, they tend to consume a relatively small num-
ber of products from the universe of available products. The concentration in
both stores and products is indicative of limited search behavior and substantial
behavioral rigidity which may be associated with suboptimal outcomes in terms
of nutrition and health.
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6.6 Scalability

We now perform an experiment comparing the proposed inference methods (batch
and online) to assess their scalability (Figure 5). We first use the Transactions data
(117054 x 438 x 67095) for this experiment. We would like to note that the state-of-
the-art methods for count-valued tensor, such as the Poisson Tensor Factorization
(PTF) method from the Tensor Toolbox [4], are simply infeasible to run on this
data because of storage explosion issue (the method requires expensive flattening
operations of the tensor). The other baseline LRANTD [23] we used in our exper-
iments was also infeasible to run on this data. We set R = 100 for each method
(about 60 factors were found to be significant, based on the inferred values of the
Ar’s) and use a minibatch size of 100000 for all the online inference methods. For
the conditional density filtering as well as stochastic variational inference, we set
the learning rate as tg = 0 and x = 0.5. Figure 5 shows that online inference
methods (conditional density filtering and stochastic variational inference) con-
verge much faster to a good solution than batch methods. This experiment shows
that our online inference methods can be computationally viable alternatives if
their batch counterparts are slow/infeasible to run on such data.

Food Transactions Data
- e - S A

_2sk —

b ——

- —— Batch Gibbs, 7

——Batch VB

_asp- Stochastic Variational Inference | |

—— Conditional Density Filttering
! ! !

10' 0

Heldout Log Likelihood

10°
Time in seconds (log scale)

Fig. 5. Time vs heldout log likelihoods with various methods on transactions data

We then perform another experi— Per-lteration Running Times (Scholars Data)
ment on the Scholars data, on which T
the PTF method of [4] was feasible BoNECE V8
to run and compare its per-iteration Banecr Onieve
running time with our model (using
both batch as well as online infer-
ence). Since PTF cannot handle miss-
ing data, for this experiment, each ’—‘
method was run with all the data. As
Fig 6 shows, our methods have running
times that are considerably smaller Fig.6. Timing comparison of various
than that of PTF. methods on Scholars data

Seconds

7 Conclusion

We have presented a fully Bayesian framework for analyzing massive tensors
with count data, and have designed a suite of scalable inference algorithms for
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handling massive tensor data. In addition to giving interpretable results and
inferring the rank from the data, the proposed model can infer the distribution
over objects in each of the tensor modes which can be useful for understanding
groups of similar objects, and also for doing other types of qualitative analyses
on such data, as shown by our various experiments on real-world data sets.
Simplicity of the inference procedure also makes the proposed model amenable
for parallel and distributed implementations. e.g., using MapReduce or Hadoop.
The model can be a useful tool for analyzing data from diverse applications
and scalability of the model opens door to the application of scalable Bayesian
methods for analyzing massive multiway count data.
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