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Abstract. Discovering climate indices–time series that summarize spa-
tiotemporal climate patterns–is a key task in the climate science domain.
In this work, we approach this task as a problem of response-guided
community detection; that is, identifying communities in a graph asso-
ciated with a response variable of interest. To this end, we propose a
general strategy for response-guided community detection that explicitly
incorporates information of the response variable during the community
detection process, and introduce a graph representation of spatiotempo-
ral data that leverages information from multiple variables.

We apply our proposed methodology to the discovery of climate
indices associated with seasonal rainfall variability. Our results suggest
that our methodology is able to capture the underlying patterns known
to be associated with the response variable of interest and to improve
its predictability compared to existing methodologies for data-driven cli-
mate index discovery and official forecasts.

Keywords: Community detection · Spatiotemporal data · Climate
index discovery · Seasonal rainfall prediction

1 Introduction

Detecting communities in real-world networks is a key task in many scientific
domains. Oftentimes, domain scientists are particularly concerned with finding
communities associated with a response variable of interest that can be used to
analyze or predict this response variable. For example, in climate science, such
communities may represent spatiotemporal climate patterns associated with a
particular weather event [24], while in biology, they may represent groups of
functionally associated genes associated with a particular phenotype [12].

However, community detection techniques are traditionally unsupervised
learning methods, and thus do not take into account the variability of the
response variable of interest. Therefore, the communities identified may not nec-
essarily be associated with this response variable. Furthermore, even though
semi-supervised methods have been proposed to incorporate prior knowledge
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to the community detection process, these methods do not consider a response
variable either and require partial information about the community member-
ships, which may not be available [6]. For this reason, we introduce the problem
of response-guided community detection–that is, identifying communities in a
graph associated with a response variable of interest–and study its application
to the discovery of climate indices, an important task in the climate science
domain.

Climate indices are time series that summarize spatiotemporal patterns in
the global climate system. These patterns are often associated with temperature,
pressure, and wind anomalies, which can have a significant impact on regional
climate. Consequently, climate indices are frequently used to analyze and pre-
dict regional weather events. For example, climate indices defined for El Niño
Southern Oscillation (ENSO) are used to forecast Atlantic hurricane activity [9].

Climate indices were traditionally the product of hypothesis-driven research.
However, the increasing amount of climate data available has led to the adop-
tion of data-driven approaches to guide and accelerate climate index discovery,
most commonly by using Principal Component Analysis (PCA) to identify major
modes of variability in the data. Nonetheless, the use of PCA has important lim-
itations in regards to the physical interpretability of the climate indices obtained
and its ability to detect weaker patterns [22].

As an alternative, the application of clustering techniques, such as Shared
Nearest Neighbor (SNN) clustering, to identify regions of homogeneous long-
term variability in climate data has been proposed [22]. More recently, a network
representation of the data has been adopted to better capture the dynamics of
the global climate system [23–25]. Then, the climate index discovery task has
been approached as a community detection problem [24]. The validity of the
clusters or communities identified as climate indices has been evaluated in terms
of their ability to predict a response variable of interest [22,24]. However, since
these are unsupervised learning methodologies, the climate indices discovered
may not necessarily be good predictors.

Therefore, to discover climate indices associated with a response variable
of interest, we propose a methodology that explicitly incorporates information
of this response variable during the discovery process by using response-guided
community detection. We apply this methodology to the discovery of climate
indices associated with seasonal rainfall variability in the Greater Horn of Africa,
and validate the climate indices discovered in terms of their predictive power and
climatological relevance. Discovering climate indices associated with a response
variable of interest allows us to identify its sources of variability. Moreover, using
these climate indices as predictors allows us to improve forecasts of this response
variable, which is one of the major current challenges in climate science [20].

The main contributions of this paper are as follows. First, we formulate the
problem of response-guided community detection (Section 2.1) and propose a
general strategy to identify communities in a graph associated with a response
variable of interest by explicitly incorporating information of this response vari-
able during the community detection process (Section 2.2).
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And second, we propose a methodology to discover climate indices associated
with a response variable of interest from multivariate spatiotemporal data by
using response-guided community detection (Section 3). As part of this method-
ology, we introduce a network representation of multivariate spatiotemporal data
that, unlike existing network construction methodologies [23–25], builds the net-
work in a response-guided manner, while also incorporating multiple covariates,
spatial neighborhood information, and multiple related response variables to the
network construction process (Section 3.1).

Finally, we should note that in this paper we only demonstrate the value of
response-guided community detection in the context of climate index discovery.
Its application to other problems and domains is the subject of future work.

2 Response-Guided Community Detection

In this section, we formally define the problem of response-guided community
detection (Section 2.1), describe a general strategy for response-guided commu-
nity detection, and present two examples of community detection algorithms
that can be adapted to identify communities highly associated with a response
variable of interest (Section 2.2).

2.1 Problem Statement

Let X = {xt,d,f ∈ R | t ∈ T, d ∈ D, f ∈ F} be a multivariate spatiotemporal
data set and Y = {yt ∈ R | t ∈ T} be a response variable, where T is a set of
time steps, D is a set of spatial points, and F is a set of covariates. For our
motivating application of climate index discovery, X may be a global climate
data set for a given month, Y may be the total rainfall at a target region for a
given season, T may be a set of years, D may be a set of global coordinates, and
F may be a set of climate variables (e.g., temperature, pressure, humidity).

Let data set X be represented as a graph G = (V,E), where V ⊆ D is the set
of vertices, E is the set of edges, and each edge (d1, d2) ∈ E is defined based on a
domain-specific relationship between the data at spatial points d1 and d2 for all
covariates f ∈ F and over all time steps t ∈ T . For our motivating application of
climate index discovery, an edge (d1, d2) may represent a statistically significant
correlation between the data at spatial points d1 and d2.

Informally, we define response-guided community detection as the task of par-
titioning graph G into a set of communities C, such that every community ci ∈ C
is highly associated with the response variable Y . To quantify this association,
we construct an index for each community.

Definition 1. Given a community ci, the index constructed for ci using covari-
ate f ∈ F , Ii,f , is defined as

Ii,f (t) =
1

|ci|
∑

d∈ci

xt,d,f ∀t ∈ T (1)
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Definition 2. Given a community ci, the association of ci with the response
variable Y , φci , is defined as

φci = max
f∈F

|rIi,f ,Y | (2)

where rIi,f ,Y is the Pearson’s linear correlation coefficient between index Ii,f and
the response variable Y over all time steps t ∈ T .

Finally, we formally define the problem of response-guided community detec-
tion: Given a graph G = (V,E) and a response variable Y , partition G into a
set of communities C = {c1, c2, ..., c|C|}, where ci ⊆ V for all ci ∈ C, ci ∩ cj = ∅
for all ci, cj ∈ C with i �= j, and

⋃|C|
i=1 ci = V , such that the average association

with the response variable Y over all ci ∈ C, φ̄C , is maximized.

2.2 Algorithms for Response-Guided Community Detection

Community detection is one of the most widely studied topics in graph data ana-
lytics and, as a result, numerous methods have been proposed for this problem
[8,11]. A common approach to community detection is to find the set of communi-
ties that maximizes a given quality function that measures the “goodness” of the
partition of the graph. For traditional community detection, a “good” partition
of the graph is generally such that there are many edges within the communities
but few edges among them. However, for response-guided community detection,
our goal is to identify communities highly associated with a response variable of
interest. Therefore, we must maximize not only the “goodness” of the partition
of the graph, but also the association of the communities in the partition with
this variable.

To this end, we introduce a joint optimization criterion, F , given by

F = α · q(C) + (1 − α) · φ̄C (3)

where C is a set of communities, q(C) is a function of the “goodness” of C, φ̄C

is the average association of the communities in C with the response variable of
interest (see Definition 2), and α is a tuning parameter to balance the trade-off
between the “goodness” of C and the association of the communities with the
response variable.

The “goodness” function is typically a metric that quantifies some structural
properties of the partition of the graph. In this paper, we choose modularity–
“by far the most used and best known quality function” for community detection
[8]–as the “goodness” function. The modularity of a given partition of a graph
is defined as the difference between the number of edges within the communities
and the expected number of such edges in a random graph with the same degree
distribution [17]. For a simple graph G = (V,E) which vertices are partitioned
into communities, the modularity Q [16] of the partition is given by

Q =
1

2m
Σvw

[
Avw − kvkw

2m

]
δ(v, w) (4)
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where A is the adjacency matrix of the graph (that is, Avw is 1 if vertices v and
w are connected and 0 otherwise), m = 1

2ΣvwAvw is the number of edges in the
graph, kv = ΣwAvw is the degree of vertex v, and δ(i, j) is the Kronecker delta
function (that is, δ(i, j) is 1 if i and j belong to the same community and 0
otherwise). Modularity optimization is an NP-complete problem [3], but many
heuristic algorithms have been proposed [8].

A general strategy for response-guided community detection is to adapt mod-
ularity optimization algorithms by replacing modularity with the joint optimiza-
tion criterion F defined in Equation 3 as the objective function. To illustrate
this strategy, we next present two algorithms that can be adapted in this way to
identify communities highly associated with a response variable of interest: the
Louvain method, a very efficient greedy algorithm for modularity optimization,
and simulated annealing, a computationally demanding but potentially more
accurate optimization technique.

Greedy Algorithms for Response-Guided Community Detection. In
general, greedy algorithms for modularity optimization identify communities by
iteratively merging vertices or communities that result in the largest increase in
the modularity of the graph partition [2,4].

In this paper, we focus on the Louvain method [2], a well-known greedy
algorithm that has been shown to outperform other community detection algo-
rithms in empirical comparative studies [15]. The Louvain method is adapted for
response-guided community detection by using the joint optimization criterion
F as the objective function.

Initially, each vertex is assigned to a different community. In the first phase
of the algorithm, each vertex is iteratively and sequentially assigned to the com-
munity that yields the highest positive gain in the joint optimization criterion,
ΔF , given by

ΔF = α · ΔQ + (1 − α) · Δφ̄ (5)

where ΔQ and Δφ̄ are the gain in modularity and the gain in average association
with the response variable of interest over all communities resulting from the
change in the communities, respectively.

In the second phase of the algorithm, a new graph is constructed by aggregat-
ing the vertices in each community into a single meta-vertex. These two phases
are repeated iteratively until no further improvement of the joint optimization
criterion F can be achieved.

Simulated Annealing for Response-Guided Community Detection.
Another strategy that has been employed for modularity optimization is sim-
ulated annealing [14], an optimization technique that avoids local optima by
incorporating stochastic noise into the search procedure. The level of noise is
defined by a computational temperature T , which decreases after each iteration.

In this paper, the simulated annealing algorithm proposed by Guimerà et
al. [10] is adapted for response-guided community detection by using the joint
optimization criterion F as the objective function.
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Initially, each vertex is assigned to a different community. At each temper-
ature T , the algorithm performs (typically) n2 random local movements (i.e.,
moving a vertex to another community) and n random global movements (i.e.,
merging two communities and splitting a community in two). Each of these local
and global movements is accepted with probability

p =

⎧
⎪⎨

⎪⎩

1, if ΔF ≥ 0

exp
(

ΔF

T

)
, if ΔF < 0

(6)

where ΔF is the gain in the joint optimization criterion resulting from the
change in the communities, as defined in Equation 5.

After all local and global moves have been evaluated, the current temperature
T is decreased to T ′ = c · T , where c ∈ (0, 1) is a cooling parameter (typically
between 0.990 and 0.999). The algorithm stops when a minimum temperature
is reached or when there is no change in the joint optimization criterion F for
a given number of consecutive iterations.

3 Climate Index Discovery

In this section, we describe our proposed methodology for the discovery of cli-
mate indices associated with a response variable of interest from multivariate
spatiotemporal data by using response-guided community detection.

Our proposed methodology is comprised of two main steps. First, we repre-
sent the multivariate spatiotemporal data as a graph using our proposed network
construction methodology (Section 3.1). Second, we identify communities in this
graph using one of our adapted algorithms for response-guided community detec-
tion (see Section 2.2). For each community ci identified, we construct an index
Ii,fi∗ (see Definition 1) potentially associated with the response variable, where
fi

∗ is the representative covariate of the community, defined as

fi
∗ = arg max

f∈F
|rIi,f ,Y | (7)

3.1 Network Construction Methodology

Spatiotemporal data can be represented as a graph, where each vertex is a spatial
point and each edge indicates a significant relationship between a pair of spatial
points. This type of representation has been adopted to model climate data,
because it captures the dynamical behavior of the data’s underlying system [23–
25]. Furthermore, communities in these networks often have a higher association
with the response variable of interest than clusters obtained using traditional
clustering techniques, such as spectral clustering and the k-means clustering
algorithm [24].

In this paper, we propose a methodology for the construction of climate
networks associated with a response variable of interest. The key features of this
methodology are as follows.
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First, we construct the network in a response-guided manner. Existing
methodologies for climate network construction consider all the spatial points
in the data set as vertices and build the network by computing the correlation
between every pair of vertices [24,25], which can be computationally expensive.
In contrast, we only consider as vertices the spatial points associated with the
response variable.

Second, we incorporate multiple covariates to the network construction pro-
cess. Some existing methodologies have incorporated multiple covariates by
defining a cross correlation function to weight the edges of the network [23].
Here, instead, we leverage the information of multiple covariates to assess the
statistical significance of each edge in the network.

And third, we incorporate spatial neighborhood information and multiple
related response variables to the network construction process, to increase its
robustness in the case of data sets with small sample size.

Selecting the Set of Vertices. The set of vertices V of the network is selected
based on the statistical significance of the relationship between each spatial point
in the data set and the response variable of interest for multiple covariates.
To assess this statistical significance, we first calculate the Spearman’s rank
correlation coefficients between the time series for each covariate at each spatial
point and the response variable. Spearman’s rank correlation is used to capture
nonlinear relationships known to exist in climate data.

For each spatial point d, the p-values of the Spearman’s rank correlation
coefficients computed for each covariate are combined using Fisher’s X 2 test [7];
that is, by calculating the p-value of the test statistic given by

− 2
∑

f∈F

ln(pXd,f ,Y ) (8)

where pXd,f ,Y is the p-value of the Spearman’s rank correlation coefficient
between the time series for covariate f at spatial point d, Xd,f , and the response
variable Y , over all time steps t ∈ T . The use of this combined probability test
allows us to capture relationships between multiple covariates and the response
variable. Finally, the set S of spatial points with a statistically significant com-
bined p-value (p < 0.01) is selected as the set of vertices V of the network (i.e,
spatial points potentially associated with the response variable of interest).

Defining the Set of Edges. The set of edges E of the network is defined based
on the statistical significance of the relationship between each pair of spatial
points in V for multiple covariates. To assess this statistical significance, we first
calculate the Pearson’s linear correlation coefficients between the time series for
each covariate at each pair of spatial points. Climate networks constructed using
Pearson’s linear correlation coefficient have been shown to be highly similar to
those constructed using nonlinear measures, such as mutual information [5].
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For each pair of spatial points d1, d2 ∈ V , the p-values of the Pearson’s linear
correlation coefficients computed for each covariate are combined using Fisher’s
X 2 test [7]; that is, by calculating the p-value of the test statistic given by

− 2
∑

f∈F

ln(pXd1,f ,Xd2,f
) (9)

where pXd1,f ,Xd2,f
is the p-value of the Pearson’s linear correlation coefficient

between the time series for covariate f at spatial point d1, Xd1,f , and at spatial
point d2, Xd2,f , over all time steps t ∈ T . Finally, an edge (d1, d2) ∈ E is defined
for every pair of spatial points d1, d2 ∈ V with a statistically significant combined
p-value (p < 10−10, as defined in previous studies [24]).

Incorporating Spatial Neighborhood Information and Multiple
Response Variables. Data sets with small sample size, such as the ones used
in this study, can often lead to the selection of spatial points with spurious
associations with the response variable of interest as vertices. To increase the
robustness of the vertex selection in these cases, we leverage the spatial struc-
ture of the data and the information of multiple related (i.e., highly correlated)
response variables (e.g., seasonal rainfall at multiple stations in the same region)
by finding a consensus set of spatial points, S∗, given by

S∗ =
h⋂

j=1

Sj ∪ {N(d) | d ∈ Sj} (10)

where h is the number of response variables, Sj is the set of spatial points poten-
tially associated with the jth response variable and N(d) indicates the spatial
points spatially adjacent to spatial point d. We incorporate spatial neighbor-
hood information because, given the strong spatial autocorrelations present in
spatiotemporal data, it is likely that if a spatial point is associated with the
response variable of interest, then its spatially adjacent points will also be asso-
ciated with the response variable.

We then construct a climate network for the multiple related response vari-
ables using the previously described methodology with the consensus set of spa-
tial points S∗ as the set of vertices V of the network. Note that the rest of our
proposed methodology for climate index discovery, including the response-guided
community detection algorithms, can also be extended to incorporate multiple
related response variables. In this case, the association of a community ci, φci

(see Definition 2), is redefined as the average association of ci over all response
variables Yj for j = 1, 2, ..., h.

4 Experimental Evaluation

In this section, we describe the experimental evaluation of our proposed method-
ology for climate index discovery and report the results obtained. We applied
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our proposed methodology to the discovery of climate indices associated with
October to December (OND) rainfall variability in the Greater Horn of Africa
(GHA), using data from four (4) stations with highly correlated rainfall pat-
terns located in the North Eastern Highlands of Tanzania (Arusha, Kilimanjaro,
Moshi, and Same).

4.1 Data Description

We used monthly gridded ocean data for the following climate variables: Sea
Surface Temperature (SST), obtained from the NOAA Extended Reconstructed
Sea Surface Temperature version 3 (ERSST V3) data set (data available from
1854 to present at 2◦ latitude-longitude resolution) [21], and Sea Level Pres-
sure (SLP), Geopotential Height at 500 mb (GH), Relative Humidity at 850 mb
(RH) and Precipitable Water (PW), obtained from the NCEP/NCAR Reanal-
ysis 1 data set (data available from 1948 to present at 2.5◦ latitude-longitude
resolution) [13]. SST, SLP, and GH are the most frequently used variables in
identifying global climate patterns. We also include RH and PW as secondary
variables for the temperature and water vapor content of the atmosphere.

Monthly rainfall data (52 years, from 1960 to 2011) and seasonal rainfall
forecasts (14 years, from 1998 to 2011) for stations in Tanzania were provided
by the Tanzania Meteorological Agency (TMA). Data was divided into a training
set (38 years, from 1960 to 1997) and a test set (14 years, from 1998 to 2011).
Note that only the training set was used to construct the climate networks and
discover the climate indices presented in Section 4.3 and Section 4.4, respectively.

4.2 Data Preprocessing

Climate data exhibits complex characteristics, such as seasonal trends and strong
spatial and temporal autocorrelations, that may hinder the performance of data
mining techniques. To remove seasonality and minimize autocorrelations, we
normalized the data using monthly z-scores transformations by subtracting the
mean and dividing by the standard deviation of the data over the training
set [24]. Since the focus of this study is on interannual variability, we also lin-
early detrended the data. Furthermore, all experiments were performed using a
spatial resolution of 10◦ latitude-longitude for the gridded ocean data.

4.3 Climate Networks Constructed

Climate networks were constructed using our proposed network construction
methodology with OND rainfall variability in the GHA as the response variable
of interest (see Section 3.1). To capture time-lagged relationships, which are often
present in climate data, five (5) climate networks were constructed, one for each
month, starting four (4) months before the season (June) until the first month
of the season (October). It is worth noting that when constructing a climate
network for the month of May, no spatial points were selected as potentially
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associated with the response variable, suggesting that this month may be too
early before the season to yield significant climate indices.

Each climate network was constructed by leveraging the information of four
(4) related stations in the North Eastern Highlands of Tanzania. Since these sta-
tions are located in the same climatological region and exhibit highly correlated
rainfall patterns, they are expected to be associated with the same global climate
patterns. Hence, the use of the consensus set allows us to filter out spatial points
with potentially spurious associations with the response variable. Interstation
variability is due to local factors, which are out of the scope of this paper.

4.4 Climate Indices Discovered

Communities associated with OND rainfall variability in the GHA were identi-
fied in the climate networks constructed using both the Louvain method and the
simulated annealing algorithm adapted for response-guided community detec-
tion (see Section 2.2). As previously explained, we use a tuning parameter α
to balance the trade-off between the modularity of the network partition and
the association of the communities with the response variable of interest. For
this experimental evaluation, we set the value of α to the multiple of 0.05 in
the interval [0.75, 1] that yields the set of communities with the highest average
association with the response variable over the training set. Lower values of α
were not considered to ensure a good modularity value. For each community
identified, a climate index was constructed by computing the spatial average
over the community of its representative climate variable (see Figure 1).

We compare our climate indices with those discovered using a baseline
methodology and the state of the art [24]. For the baseline methodology, com-
munities were identified in multivariate climate networks (i.e., one network was
constructed for all covariates via a combined probability test, as described in
Section 3.1) using both the original Louvain method [2] and the original sim-
ulated annealing algorithm for community detection [10]. For the state of the
art [24], communities were identified in univariate climate networks (i.e., one net-
work was constructed for each covariate) using Walktrap, a community detection
algorithm based on random walks [19]. In both cases, the community detection
and the network construction were performed in an unsupervised manner.

Table 1 summarizes the properties of the climate networks constructed and
the climate indices discovered using each methodology. Given that our response-
guided community detection algorithms do not exclusively optimize the “good-
ness” of the network partitions, our climate networks exhibit a lower modularity
than those constructed using unsupervised methodologies (0.34 vs. 0.74, 0.75,
and 0.59). However, our communities have a higher internal density (0.62 vs.
0.29, 0.28, and 0.47) and a lower internal variability (0.63 and 0.62 vs. 0.77,
0.78, and 0.74), indicating a well-defined structure.

We also observe that, unlike most of the climate indices discovered using the
baseline and the state of the art, the majority of our climate indices (66.67%)
have a statistically significant linear correlation (p < 0.01) with the response
variable of interest over the training set. Moreover, our proposed methodology
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Fig. 1. Climate indices discovered using our proposed methodology with the response-
guided community detection algorithm based on the Louvain method (left) and simu-
lated annealing (right), respectively, and with OND rainfall variability in the GHA as
the response variable of interest. Each color represents a different index, and diamonds
indicate overlaps between indices. To improve visualization, only the top 10 indices
with the highest association with the response variable over the training set are shown
in each figure. Best viewed in color.

Table 1. Properties of networks constructed and climate indices discovered for OND
rainfall variability in the GHA, using the proposed, baseline, and state-of-the-art
(SOTA) [24] methodologies with the Louvain method (LM), simulated annealing (SA)
and Walktrap as the community detection algorithms: number of networks (Num Nets),
average number of vertices and edges per network (Avg Vtxs, Avg Edges), average
modularity (Avg Mod), number of indices (Num Idxs), average number of vertices,
standard deviation, and internal density per index (Avg Vtxs, Avg Std, Avg Dens),
and percentage of indices with a statistically significant (p < 0.01) linear correlation
with the response variable of interest (% Idxs). Best values are highlighted in bold.

Method Algorithm
Networks Indices

Significant
Indices

Num Avg Avg Avg Num Avg Avg Avg Num %
Nets Vtxs Edges Mod Idxs Vtxs Std Dens Idxs Idxs

Proposed
Adapted LM 5 40.80 169.20 0.34 18 11.33 0.63 0.62 12 66.67

Adapted SA 5 40.80 169.20 0.34 18 11.33 0.62 0.62 12 66.67

Baseline
Original LM 5 446.00 2614.60 0.74 49 45.51 0.77 0.29 6 12.24

Original SA 5 446.00 2614.60 0.75 50 44.60 0.78 0.28 4 8.00

SOTA Walktrap 25 444.80 7493.80 0.59 265 41.96 0.74 0.47 6 2.26
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Table 2. Average linear correlation with OND rainfall at each station and at the
GHA region, over the training set and the test set, of climate indices discovered for
OND rainfall variability in the GHA using the proposed, baseline, and state-of-the-
art (SOTA) [24] methodologies with the Louvain method (LM), simulated annealing
(SA) and Walktrap as the community detection algorithms. Check marks (�) indicate
that our proposed methodology performs significantly better according to a two-way
ANOVA at the 95% confidence level. Best values are highlighted in bold.

Station
Proposed Baseline SOTA

Adapted LM Adapted SA Original LM Original SA Walktrap

Train Test Train Test Train Test Train Test Train Test

Arusha 0.4436 0.2999 0.4431 0.2848 0.2496 0.2495 0.2489 0.2639 0.1481 0.2261
Kilimanjaro 0.4103 0.3752 0.4300 0.3583 0.2586 0.2437 0.2629 0.2525 0.1567 0.2230

Moshi 0.3629 0.2980 0.3764 0.2791 0.2404 0.2552 0.2317 0.2501 0.1393 0.2481
Same 0.4292 0.3403 0.4341 0.3119 0.2574 0.2111 0.2572 0.2429 0.1589 0.2148

GHA 0.4502 0.3478 0.4614 0.3272 0.2763 0.2356 0.2749 0.2497 0.1558 0.2219

Two-way ANOVA (α = 0.05) � � � � � �

performs significantly (p < 0.05) better than the baseline and the state of the art
across all stations in terms of the average linear correlation between the climate
indices and the response variable of interest over the training set and the test set
(see Table 2). This shows that, as expected, our proposed methodology is able
to discover climate indices more highly associated with the response variable of
interest than those discovered using unsupervised methodologies.

4.5 Seasonal Rainfall Prediction

We validate the climate indices discovered with our proposed methodology by
assessing their predictive power for OND rainfall in the GHA. To this end, we
trained linear regression models to predict rainfall at each station, and average
rainfall at the region, using our climate indices as predictors. As specified in
Section 4.1, data from 1960 to 1997 was used for training and data from 1998
to 2011 was used for testing. For comparison, linear regression models were also
built using the climate indices discovered with the baseline and state-of-the-art
[24] methodologies introduced in Section 4.4.

In order to avoid overfitting given the small sample size of the data sets,
only the top six (6) climate indices with the highest average correlation with
OND rainfall in the GHA over the training set were used to build the mod-
els. This number of predictors was selected because it yielded relatively stable
performance over the training set across all methodologies (see Figure 2). Fur-
thermore, to evaluate the ability of the models to make predictions before the
start of the OND rainfall season, all experiments were preformed using data up
to the month of August (one-month lead time). Climate indices discovered for
the months of September and October were reconstructed using August data.

The correlations between predicted and true rainfall and the root mean
squared errors (RMSE) obtained for each methodology are shown in Table 3.
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Fig. 2. Average linear correlation between true and predicted rainfall for predictions
of OND rainfall at each station in the GHA region over the training set using the
proposed, baseline, and state-of-the-art (SOTA) [24] methodologies with the Louvain
method (LM), simulated annealing (SA) and Walktrap as the community detection
algorithms vs. the number of predictors used to build the regression models. The dashed
line indicates the number of predictors selected for further analysis.

Table 3. Linear correlation between true and predicted rainfall (Corr) and RMSE
scores for predictions of OND rainfall at each station and at the GHA region from
1998 to 2011 obtained using the proposed, baseline, and state-of-the-art (SOTA) [24]
methodologies with the Louvain method (LM), simulated annealing (SA) and Walktrap
as the community detection algorithms. Check marks (�) indicate that our proposed
methodology performs significantly better according to a two-way ANOVA at the 95%
confidence level. Best values are highlighted in bold.

Station
Proposed Baseline SOTA

Adapted LM Adapted SA Original LM Original SA Walktrap

Corr RMSE Corr RMSE Corr RMSE Corr RMSE Corr RMSE

Arusha 0.7143 0.5017 0.5869 0.5215 0.2462 0.5023 0.3432 0.6853 0.2034 0.5779
Kilimanjaro 0.7629 0.5034 0.6736 0.5619 0.1844 1.0432 0.2053 0.7477 0.2940 0.7874

Moshi 0.6561 0.4719 0.6564 0.4664 -0.0319 0.5937 0.1059 0.7055 0.3088 0.6231
Same 0.7237 0.4779 0.6896 0.4749 0.1470 0.6796 0.1806 0.6929 0.2575 0.7121

GHA 0.7722 0.4133 0.7425 0.4007 0.1501 0.6316 0.2135 0.6390 0.2665 0.6053

Two-way ANOVA (α = 0.05) � � � � � �

We observe that the models built using our climate indices yield a significantly
(p < 0.05) higher correlation and lower RMSE than those built using climate
indices discovered using unsupervised methodologies. This suggests that climate
indices more highly associated with the response variable of interest, as the ones
discovered using our proposed methodology, have greater predictive power.

We further assess the predictive power of our climate indices by comparing
our predictions with the official forecasts of the OND rainfall season issued by
the TMA every year on September. To this end, the rainfall season for each year
was categorized according to the guidelines of the TMA as below normal, normal,
or above normal (rainfall below 75%, between 75% and 125%, or above 125%
of long-term averages, respectively). Long-term averages were computed using
the training set. Similarly to the regression models, decision trees to classify the
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OND rainfall season at each station were trained using data up to the month
of August and considering only the top six (6) climate indices discovered with
our proposed methodology as predictors. The decision trees were built using the
Gini index as the split criterion and pruning to avoid overfitting.

The classification accuracies obtained are shown in Figure 3. We observe that
the accuracy of the decision trees built using our climate indices is higher than
that of the official forecasts for three (3) out of four (4) stations. This suggests
that the use of the climate indices discovered using our proposed methodology
can potentially improve forecasts of the response variable of interest.

4.6 Physical Interpretation of Climate Indices Discovered

Finally, we discuss the climate indices discovered in terms of their climatological
relevance. Rainfall variability in the GHA is known to be mainly associated with

Fig. 3. Classification accuracy of the prediction of the OND rainfall season at each
station in the GHA region from 1998 to 2011 obtained using the proposed methodol-
ogy with the Louvain method (LM) and simulated annealing (SA) as the community
detection algorithms, as well as official forecasts issued by the TMA.

Fig. 4. Time series of the Niño 3.4 index (upper, solid line) and the IOD index (lower,
solid line) with climate indices discovered in July (upper, dashed line) and October
(lower, dashed line) using our proposed methodology with the adapted Louvain method
as the community detection algorithm and OND rainfall variability in the GHA as the
response variable of interest. The linear correlation between the time series is shown
in the lower left corner of each figure.



750 G.A. Bello et al.

ENSO in the equatorial Pacific Ocean [18] and the Indian Ocean Dipole (IOD)
in the tropical Indo-Pacific Ocean [1].

Climate indices significantly correlated (p < 0.01) with ENSO, in particular
with the Niño 3.4 index, were discovered in June, July, August, September, and
October using both adapted community detection algorithms (for example, see
Figure 4). The representative climate variable selected for these climate indices
is mostly either SST or PW, a close proxy of SST in the equatorial Pacific Ocean
in the NCAR/NCEP Reanalysis 1 data set. Higher SSTs in the equatorial Pacific
Ocean are associated with a suppression of East African rainfall, by modulating
the strength of the global upper level wind flow [18].

Climate indices significantly correlated (p < 0.01) with the IOD were discov-
ered in July, August, September and October using both adapted community
detection algorithms (for example, see Figure 4). These climate indices were gen-
erally discovered closer to the onset of the OND rainfall season than the ones
in the equatorial Pacific Ocean, as the IOD exerts its influence on East African
rainfall on a shorter timescale through local wind anomalies [1].

5 Conclusions

In this paper, we introduced the problem of response-guided community detec-
tion through its application to the task of climate index discovery. We proposed
a methodology for the discovery of climate indices associated with a response
variable of interest from multivariate spatiotemporal data, the contribution of
which is twofold. First, we proposed a general strategy for response-guided com-
munity detection, and second, we introduced a network representation of the
data that incorporates information from multiple variables.

We applied our proposed methodology to the discovery of climate indices
associated with seasonal rainfall variability in the GHA. The climatological rel-
evance of the climate indices discovered is supported by domain knowledge,
as evidenced by their association with traditional climate indices known to be
related to seasonal rainfall in the region. Furthermore, our results show that our
methodology improves the forecast skill for this response variable with respect
to existing methodologies for climate index discovery, as well as official forecasts.
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