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Abstract. When faced with learning a set of inter-related tasks from a
limited amount of usable data, learning each task independently may lead
to poor generalization performance. (MTL) exploits the latent relations
between tasks and overcomes data scarcity limitations by co-learning all
these tasks simultaneously to offer improved performance. We propose a
novel Multi-Task Multiple Kernel Learning framework based on Support
Vector Machines for binary classification tasks. By considering pair-wise
task affinity in terms of similarity between a pair’s respective feature
spaces, the new framework, compared to other similar MTL approaches,
offers a high degree of flexibility in determining how similar feature spaces
should be, as well as which pairs of tasks should share a common feature
space in order to benefit overall performance. The associated optimiza-
tion problem is solved via a block coordinate descent, which employs a
consensus-form Alternating Direction Method of Multipliers algorithm
to optimize the Multiple Kernel Learning weights and, hence, to deter-
mine task affinities. Empirical evaluation on seven data sets exhibits a
statistically significant improvement of our framework’s results compared
to the ones of several other Clustered Multi-Task Learning methods.

1 Introduction

Multi-Task Learning (MTL) is a machine learning paradigm, where several
related task are learnt simultaneously with the hope that, by sharing information
among tasks, the generalization performance of each task will be improved. The
underlying assumption behind this paradigm is that the tasks are related to each
other. Thus, it is crucial how to capture task relatedness and incorporate it into
an MTL framework. Although, many different MTL methods [1,7,12,15,18,27]
have been proposed, which differ in how the relatedness across multiple tasks is
modeled, they all utilize the parameter or structure sharing strategy to capture
the task relatedness.

However, the previous methods are restricted in the sense that they assume
all tasks are similarly related to each other and can equally contribute to the joint
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learning process. This assumption can be violated in many practical applications
as “outlier” tasks often exist. In this case, the effect of “negative transfer”, i.e.,
sharing information between irrelevant tasks, can lead to a degraded generaliza-
tion performance.

To address this issue, several methods, along different directions, have been
proposed to discover the inherent relationship among tasks. For example, some
methods [3,26-28], use a regularized probabilistic setting, where sharing among
tasks is done based on a common prior. These approaches are usually com-
putationally expensive. Another family of approaches, known as the Clustered
Multi-Task Learning (CMTL), assumes that tasks can be clustered into groups
such that the tasks within each group are close to each other according to a
notion of similarity. Based on the current literature, clustering strategies can be
broadly classified into two categories: task-level CMTL and feature-level CMTL.

The first one, task-level CMTL, assumes that the model parameters used
by all tasks within a group are close to each other. For example, in [2,13,17],
the weight vectors of the tasks belonging to the same group are assumed to be
similar to each other. However, the major limitations for these methods are: (i)
that such an assumption might be too risky, as similarity among models does
not imply that meaningful sharing of information can occur between tasks, and
(ii) for these methods, the group structure (number of groups or basis tasks) is
required to be known a priori.

The other strategy for task clustering, referred to as feature-level CMTL, is
based on the assumption that task relatedness can be modeled as learning shared
features among the tasks within each group. For example, in [19] the tasks are
clustered into different groups and it is assumed that tasks within the same group
can jointly learn a shared feature representation. The resulting formulation leads
to a non-convex objective, which is optimized using an alternating optimization
algorithm converging to local optima, and suffers potentially from slow conver-
gence. Another similar approach has been proposed in [25], which assumes that
tasks should be related in terms of feature subsets. This study also leads to a
non-convex co-clustering structure that captures task-feature relationship. These
methods are restricted in the sense that they assume that tasks from different
groups have nothing in common with each other. However, this assumption is
not always realistic, as tasks in disjoint groups might still be inter-related, albeit
weekly. Hence, assigning tasks into different groups may not take full advantage
of MTL. Another feature-level clustering model has been proposed in [29], in
which the cluster structure can vary from feature to feature. While, this model
is more flexible compared to other CMTL methods, it is, however, more compli-
cated and also less general compared to our framework, as it tries to find a shared
feature representation for tasks by decomposing each task parameter into two
parts: one to capture the shared structure between tasks and another to capture
the variations specific to each task. This model is further extended in [16], where
a multi-level structure has been introduced to learn task groups in the context
of MTL. Interestingly, it has been shown that there is an equivalent relationship
between CMTL and alternating structure optimization [30], wherein the basic
idea is to identify a shared low-dimensional predictive structure for all tasks.
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In this paper, we develop a new MTL model capable of modeling a more gen-
eral type of task relationship, where the tasks are implicitly grouped according to
a notion of feature similarity. In our framework, the tasks are not forced to have a
common feature space; instead, the data automatically suggests a flexible group
structure, in which a common, similar or even distinct feature spaces can be
determined between different pairs of tasks. Additionally, our MTL framework
is kernel-based and, thus, may take advantage of the non-linearity introduced by
the feature mapping of the associated Reproducing Kernel Hilbert Space (RKHS)
H. Also, to avoid a degradation in generalization performance due to choos-
ing an inappropriate kernel function, our framework employs a Multiple Kernel
Learning (MKL) strategy [21], hence, rendering it a Multi-Task Multiple Kernel
Learning (MT-MKL) approach.

It is worth mentioning that a widely adopted practice for combining kernels is
to place an L,-norm constraint on the combination coefficients 8 = [6, ..., 0],
which are learned during training. For example, a conically combination of task
objectives with an L,-norm feasible region is introduced in [23] and further
extended in [22]. Also, another method introduced in [24] proposes a partially
shared kernel function k; 2 3™ (4™ 4 X7)k,,, along with L;-norm constraints
on p and A. The main advantage of such a method over the traditional MT-MKL
methods, which consider a common kernel function for all tasks (by letting
APY = 0,Vt,m), is that it allows tasks to have their own task-specific feature
spaces and, potentially, alleviate the effect of negative transfer. However, popu-
lar MKL formulations in the context of MTL, such as this one, are capable of
modeling two types of tasks: those that share a global, common feature space
and those that employ their own, task-specific feature space. In this work we
propose a more flexible framework, which, in addition to allowing some tasks to
use their own specific feature spaces (to avoid negative transfer learning), it per-
mits forming arbitrary groups of tasks sharing the same, group-specific (instead
of a single, global), common feature space, whenever warranted by the data.
This is accomplished by considering a group lasso regularizer applied to the set
of all pair-wise differences of task-specific MKL weights. For no regularization
penalty, each task is learned independently of each other and will utilize its own
feature space. As the regularization penalty increases, pairs of MKL weights are
forced to equal each other leading the corresponding pairs of tasks to share a
common feature space. We demonstrate that the resulting optimization problem
can be solved by employing a 2-block coordinate descent approach, whose first
block consists of the Support Vector Machine (SVM) weights for each task and
which can be optimized efficiently using existing solvers, while its second block
comprises the MKL weights from all tasks and is optimized via a consensus-form,
Alternating Direction Method of Multipliers (ADMM)-based step.

The rest of the paper is organized as follows: In Sect. 2 we describe our for-
mulation for jointly learning the optimal feature spaces and the parameters of
all the tasks. Sect. 3 provides an optimization technique to solve our non-smooth
convex optimization problem derived in Sect. 2. Sect. 4 presents a Rademacher
complexity-based generalization bound for the hypothesis space corresponding
to our model. Experiments are provided in Sect. 5, which demonstrate the
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effectiveness of our proposed model compared to several MTL methods. Finally,
in Sect. 6 we conclude our work and briefly summarize our findings.

Notation: In what follows, we use the following notational conventions: vectors
and matrices are depicted in bold face. A prime ’ denotes vector/matrix trans-
position. The ordering symbols > and < when applied to vectors stand for the
corresponding component-wise relations. If Z_ is the set of postivie integers, for
a given S € Z,, we define Ng = {1,...,5}. Additional notation is defined in
the text as needed.

2 Formulation

Assume T supervised learning tasks, each with a training set {(z},yj")}'", .t €

Np, which is sampled from an unknown distribution P;(z,y) on X x {—1,1}.
Here, X denotes the native space of samples for all tasks and 41 are the
associated labels. Without loss of generality, we will assume an equal num-
ber n of training samples per task. The objective is to learn T binary classi-
fication tasks using discriminative functions f;(x) = (Wi, & (T))4y, , + be for
t € Ny, where w; is the weight vector associated to task ¢. Moreover, the
feature space of task ¢ is served by H; ¢ = @%:1 \/WHm with induced fea-

ture mapping qbt [VOld1 - /OMpr'] and endowed with the inner product
(3 )y e = Zmzl o (-, >Hm' The reproducing kernel function for this feature
space is given as k(i 2]) = Z%zl 07 ke () for all zf, 2] € X. In our
framework, we attempt to learn the w;’s and b;’s jointly with the 6,’s via the
following regularized risk minimization problem:

T—-1 T
[[w:?
+C [1- zt LA 0, — 0,
weQ(w) eerz(e), zz: ;; yifi(zy) ; Z:t 160 — 65,
2 (w) 2w = (w1, ,wr) : w; € Hip,0 € 2(0)}
Q(O) é{e = (Ot’ e 701’*) : 015 i 0, ||0t||1 S I,Vt S NT} (1)

where w £ (wy,--- ,wr) and 8 £ (0;,--- ,07), 2 (w) and (2 (0) are the corre-
sponding feasible sets for w and @ respectively, and [u]; = max{u,0}, u € R
denotes the hinge function. Finally, C' and A\ are non-negative regularization
parameters.

The last term in Problem 1 is the sum of pairwise differences between the
tasks’ feature weight vectors. For each pair of (6, 8), the pairwise penalty ||60;—
0.||2 may favor a small number of non-identical 6;. Therefore, it ensures that
a flexible (common, similar or distinct) feature space, will be selected between
tasks t and s. In this manner, a flexible group structure of shared features across
multiple tasks can be achieved by this framework. It is also worth mentioning
that two special cases are covered by the proposed model: (i) if A — oo (A is only
required to be sufficiently large), for all task pairs ||6; — 6|, — 0 and, thus, all
tasks share a single common feature space. (ii) As A — 0, the proposed model
reduces to T independent classification tasks.
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It is easy to verify that Problem 1 is a convex minimization problem, which
can be solved using a block coordinate descent method alternating between the
minimization with respect to 8 and the (w, b) pair. Motivated by the non-smooth
nature of the last regularization term, in Sect. 3 we develop a consensus version
of the ADMM to solve the minimization problem with respect to 6.

3 The Proposed Consensus Optimization Algorithm

Problem 1 can be formulated as the following equivalent problem, which entails

T inter-related SVM training problems:
T M

w T
> LSS

t=1 i=

n

T-1 T
E4+AY D 16— 6],
1 1 s>t

t=

sty (<wt,¢(x;)>m +b)Z1-¢, €20, VieNyieN,
HtEO,HBtHlSLVtENT (2)

It can be shown that the primal-dual form of Problem 2 with respect to 6
and {w, b, £} is given by

T—1 T
- 07 (Y, K"Yyees) + A 6, — 6,
By 5 20~ 5 S AT £2 23 000l

2 (a) é{04: (s, ,ar):0=<a; <Cl,, oz;yt:O7 VteNr}
2(0) é{ez (O, ,07): 0, =0,]|0]]1 <1,VteNp} (3)

where 1,, is a vector containing n 1’s, Y, £ diag(y,), Km R™*™ is the kernel
matrix, whose (i,7) entry is given as ky,(z%,x]), 0; = [9,51, oo, OM) ) and oy is
the Lagrangian dual variable for the minimization problem w.r.t.{w;, b, &,}.

It is not hard to verify that the optimal objective value of the dual prob-
lem is equal to the optimal objective value of the primal one, as the strong
duality holds for the primal-dual optimization problems w.r.t.{w,b, £} and «
respectively. Therefore, a block coordinate descent framework! can be applied
to decompose Problem 3 into two subproblems. The first subproblem, which is
the maximization problem with respect to «, can be efficiently solved via LIBSVM
[8], and the second subproblem, which is the minimization problem with respect
to 6, takes the form

T-1 T
mmAZZII(’t 0”2"’20%&

bt=1 s>t
5.t.0: = 0,01 <1, Vte NT (4)

1 A MATLAB® implementation of our framework is available at
https://github.com /niloofaryousefi/ECML2015
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where we defined ¢ £ —fothtK Yoy and q, = g}, ..., qM]. Due to the non-
smooth nature of Problem 4, we derive a consensus ADMM-based optimization
algorithm to solve it efﬁciently. Based on the exposition provided in Sections
5 and 7 of [6], it is straightforward to verify that Problem 4 can be written in
ADMM form as

N
min A hi(si) +g(0) + Lo (2)
s,0,z =1
s.t. Si*éi:07 iGNN
s 0—0 (5)

where N £ T(T;l), and the local variable s; € R?M consists of two vector
variables (s;); and (s ) #, where (8;); = @ j)- Note that the index mapping
t = M(i,7) maps the j* compongnt of the local variable s; to the t'" component
of the global variable 8. Also, 8; can be considered as the global variable’s
idea of what the local variable s; should be. Moreover, for each i, the function

hi(si) 1s defined as ||(si); — (8i);]l,, and the objective term g(O) is given as

Zthl +q;- Finally, Ig)(z) is the indicator function for the constraint set @
(i.e., In@e)(z) = 0 for z € £2(0), and I(g)(z) = oo for z ¢ 2(6)).
The augmented Lagrangian (using scaled dual variables) for Problem 5 is

N
Ly(s,0,2,u,v) )\Zh 0) + Inw)(2) + (p/2) Y _llsi — 05 + will3
=1

(ﬂ/2)||z—9+'v||§, (6)
where u; and v are the dual variables for the constraints s; = éi and z =

6 respectively. Applying ADMM on the Lagrangian function given in (6), the
following steps are carried out in the k" iteration

~k

si = argmin{Ahi(s:) + (p/2)l|s: — 0; +ul|3} (7)

N ~
6! = argmin{g(0) + (p/2) Y _llsi™" — 8; +ulll3 + (p/2)l|2" — 0+ |13}

=1

(8)

2 = argmin{Io)(2) + (p/2)z — 0" + v*|I3} ()
ubtl = yb 4 ght it (10)
ot = pk 4 PR+l _ ghtl (11)

where, for each ¢ € Ny, the s- and u-updates can be carried out independently
and in parallel. It is also worth mentioning that the s-update is a proximal
operator evaluation for ||.||2 which can be simplified to

sHHL=8,,,(0) +uk), Vie Ny (12)
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where S, is the vector-valued soft thresholding (or shrinkage) operator and which
is defined as

Sx(a) = (1—r/lall2)+a, S.(0) =0. (13)

Furthermore, as the objective term ¢ is separable in 6, the @-update can be
decomposed into 1" independent minimization problems, for which a closed from
solution exists

1
Ot = | Do ()T (w)f) + (2 +01) = (1/p)ay | Yt €Ny

T [ Mg)=t
(14)

Algorithm 1. Algorithm for solving Problem 3.
Require: X,..., X7, Y4,...., Y7, C A
Ensure: 64,... 0T,a1,.., or

1: Initialize: 6\ .. e(TO>, r=1

2: Calculate: Base kernel matrices K{" using X ’s for the T tasks and the M kernels.

3: while not converged do

4: a(T) T argmax oen(a) ZzT 1 a;e - Zt 1 Z (em)(r 1)(atlfth Y;tat)
5 (g — =1 (o) YK Yi(0) ", Vt m

6

0" — argmin gc (o) )\thl Zs>t |16 — H2—|—Zt 1 tht using Algorithm
2

7: end while

& a*=a

9: 0" =0

In the third step of the ADMM, we project (0k+1 — v*) onto the constraint
set 2(0). Note that, this set is separable in 6, so the projection step can also
be performed independently and in parallel for each variable z;, i.e.,

=Tl (0, +vF), Vi € Np. (15)

The z;-update can also be seen as the problem of finding the intersection
between two closed convex sets (21 (0) = {6; = 0, V¢ € Ny} and 2 (0) =
{]|6¢]l1 < 1, ¥V t € N}, which can be handled using Dykstra’s alternating
projections method [5,11] as follows

g = Tlo o) (08 + o} = B) = 5 011 + vf—ﬁf]+7VteNT (16)

2 =Tl (yi ™! + ) = (‘“*wﬂt) bl VieNs  (17)

P =Byt = 2T Ve Ny (18)
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where Py, £ (I M — W) is the centering matrix. Furthermore, the y,- and 2z

updates are the Euclidean projections onto £2; () and {25 (6) respectively with
dual variables 3, € RM>1 ¢ =1,...,T. Finally, we update the dual variables
u; and v using the equations given in (10) and (11).

Algorithm 2. Consensus ADMM algorithm to solve optimization Problem 4
(r) (r)

Require: q;’,...,q1’,p
Ensure: 6\, .., B(T)
1: Initialize: 8\”,...,0% k=0

2: while not converged do
3: forieNpy,t € Nr do

4: k+1 <—S>\/p(ék+ul)
Ak+1
58, ST (St (05 + (@a)}) + (=F +98) = (1/p)a,
k+1
6: yf+1 [et +’Ut 54
7: ziﬁL <—P1u( k+1+ﬂt)+1\1/[1]\/[
8: REL gk gl gkt
9: u§+1 - u s Sk+1 0k+1
10: 'uf“ —vf+ z’CJrl éf“

11:  end for
12: end whﬁi%&_l)
13: 6 — 6

3.1 Convergence Analysis and Stopping Criteria

Convergence of Algorithm 2 can be derived based on two mild assumptions
similar to the standard convergence theory of the ADMM method discussed
in [6]; (i) the objective functions h(s) = ZZJ\LI (si); — (8i)j]l, and g(8) =
ZtT:l 0;qt are closed, proper and convex, which implies that the subproblems
arising in the s-update (7) and @-update (8) are solvable, and (ii) the augmented
Lagrangian (6) for p = 0 has a saddle point. Under these two assumptions, it
can be shown that our ADMM-based algorithm satisfies the following

— Convergence of residuals : s;* — éf — 0, Vie Ny, and ¥ — 0 — 0 as
k — oo.

— Convergence of dual variables: u¥ — u},Vi € Ny, and v* — v* as k — oo,
where u* and v* are the dual optimal points.

— Convergence of the objective : h(s*) + g(z¥) — p* as k — oo, which means
the objective function (4) converges to its optimal value as the algorithm
proceeds.

Also, the algorithm is terminated, when the primal and dual residuals satisfy
the following stopping criteria

) )

lep,ll2 < €™, llep,llz < €™, lep,ll2 < &7
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e, llz < e, Jleg,llz < €5, [leg, |l2 < 5" (19)
where the primal residuals of the k'™ iteration are given as egl = sk — 9",

622 = zF—0" and e’;S = y*— 2% Similarly e’(jl = p(OF T —6%), 6’32 = p(zF—2F+1)

and 623 = p(y* — y**t1)are dual residuals at iteration k. Also, the tolerances
€’ > 0, and €% > ( can be chosen appropriately using the method described
in Chapter 3 of [6].

3.2 Computational Complexity

Algorithm 1 needs to compute and cache T'M kernel matrices; however, they
are computed only once in O(T'Mn?) time. Also, as long as the number of tasks
T is not excessive, all the matrices can be computed and stored on a single
machine, since (i) the number M of kernels, is typically chosen small (e.g., we
chose M = 10), and (ii) the number n of training samples per task is not usually
large; if it were large, MTL would probably not be able to offer any advantages
over training each task independently. For each iteration of Algorithm 1, 7" inde-
pendent SVM problems are solved at a time cost of O(n?®) per task. Therefore,
if Algorithm 2 converges in K iterations, the runtime complexity of Algorithm 1
becomes O(Tn3 + KMT?) per iteration. Note, though, that K is not usually
more than a few tens of iterations [6].

On the other hand, if the number of tasks T is large, the nature of our problem
allows our algorithm to be implemented in parallel. The a-update can be handled
as T independent optimization problems, which can be easily distributed to T’
subsystems. Each subsystem N needs to compute once and cache M kernel
matrices for each task. Then, for each iteration, one SVM problem is required to
be solved by each subsystem, which takes O(n?) time. Moreover, our ADMM-
based algorithm updating the 8 parameters can also be implemented in parallel
over i € Ny. Assuming that exchanging data and updates between subsystems
consumes negligible time, the ADMM only requires O(K M) time. Therefore,
taking advantage of a distributed implementation, the complexity of Algorithm 1
is only O(n® + K M) per iteration.

4 Generalization Bound Based on Rademacher
Complexity

In this section, we provide a Rademacher complexity-based generalization bound
for the Hypothesis Space (HS) considered in Problem 1, which can be identified
with the help of the following Proposition !.

! Note that Proposition 1 here utilizes the first part of Proposition 12 in [20] and does
not require the strong duality assumption, which is necessary for the second part of
Proposition 12 in [20].
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Proposition 1. (Proposition 12 in [20], part (a)) LetC C X and let f,g: C — R
be two functions. For any v > 0, there must exist a n > 0, such that the optimal
solution of (20) is also optimal in (21)

miy f(z) + vg(z) (20)
pediin f(z) (21)

Using Proposition 1, one can show that Problem 1 is equivalent to the fol-
lowing problem

T n
min CZZZ (wt,¢t (95%) 7y11t)

weN (w) =1 i=1

/

2 (w) &{w = (w1, ,wr) : w; € Hy 9,0 € 2 (8), ||wi||> < Ry, t € Ny}
(22)

where

T—1 T
Q’(e)é(z(a)m{a (O, ,07): > > [0, — 0||2<7}

t=1 s>t

The goal here is to choose the w and 6 from their relevant feasible sets,
such that the objective function of (22) is minimized. Therefore, the relevant
hypothesis space for Problem 22 becomes

Felow (i), . (wr ¢r)]  Viw, € Hyp, |wi|* < Ri,0 € 2'(6)}
(23)

Note that finding the Empirical Rademacher Complexity (ERC) of
F is complicated due to the non-smooth mnature of the constraint

T8, — 641, < 7. Instead, we will find the ERC of the HS H defined
n (24); notice that F C H.

H2{a e [(w,), ., (wr, ép)] : Viw, € Hyo, |wi]]* < Ri0 € 27(0)
(24)
where
T—-1 T
> o605 <~ } (25)
1 s>t

Using the first part of Theorem (12) in [4], it can be shown that the ERC
of H upper bounds the ERC of function class F. Thus, the bound derived for
‘H is also valid for F. The following theorem provides the generalization bound
for H.

t=
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Theorem 1. Let H defined in (24) be the multi-task HS for a class of functions

f=(,....fr): X = RT. Then for all f € H, for § > 0 and for fized p > 0,
with probability at least 1 — § it holds that

log %
2Tn

s (1) < B (1) = | VLN (1)

where Rg(H), the ERC of H, is given as

T n
S I R »

F=(fr, o fr)E€F 121 121

R(f) < R,(f) + %%(H) +3 (26)

where

{}} 8

the p-empirical large margin error Rp(f), for the training sample S =
i il
{(xtayt)}i’tzl 1s defined as

T n
Ry(f) = = 30> min (1,11~ yifulad)/o]1)

t=1 i=1

Also, R(f) = Prlyf(z) < 0] is the expected risk w.r.t. 0-1 loss, n is the number
of training samples for each task, T is the number of tasks to be trained, and M
s the number of kernel functions utilized for MKL.

The proof of this theorem is omitted due to space constraints. Based on
Theorem 1, the second term in (26), the upper bound for ERC of H, decreases
as the number of tasks increases. Therefore, it is reasonable to expect that the
generalization performance to improve, when the number T of tasks or the num-
ber n of training samples increase. Also, due to the formulation’s group lasso
(L1/Lo-norm) regularizer on the pair-wise MKL weight differences, the ERC in
(27) depends on M as Ov/M. It is worth mentioning, that, while this could be
improved to O+v/log M as in [9], if one considers instead a L,/L,-norm regular-
izer, we won’t pursue this avenue here. Let us finally note, that (26) allows one
to construct data-dependent confidence intervals for the true, pooled (averaged
over tasks) misclassification rate of the MTL problem under consideration.

5 Experiments

In this section, we demonstrate the merit of the proposed model via a series
of comparative experiments. For reference, we consider two baseline methods
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referred to as STL and MTL, which present the two extreme cases discussed in
Sect. 2. We also compare our method with five state-of-the-art methods which,
like ours, fall under the CMTL family of approaches. These methods are briefly
described below.

— STL: single-task learning approach used as a baseline, according to which
each task is individually trained via a traditional single-task MKL strategy.

— MTL: a typical MTL approach, for which all tasks share a common feature
space. An SVM-based formulation with multiple kernel functions was utilized
and the common MKL parameters for all tasks were learned during training.

— CMTL [17]: in this work, the tasks are grouped into disjoint clusters, such
that the model parameters of the tasks belonging to the same group are close
to each other.

— Whom [19]: clusters the task, into disjoint groups and assumes that tasks of
the same group can jointly learn a shared feature representation.

— FlexClus [29]: a flexible clustering structure of tasks is assumed, which can
vary from feature to feature.

— CoClus [25]: a co-clustering structure is assumed aiming to capture both the
feature and task relationship between tasks.

— MeTaG [16]: a multi-level grouping structure is constructed by decomposing
the matrix of tasks’ parameters into a sum of components, each of which
corresponds to one level and is regularized with a Ls-norm on the pairwise
difference between parameters of all the tasks.

5.1 Experimental Settings

For all experiments, all kernel-based methods (including STL, MTL and our
method) utilized 1 Linear, 1 Polynomial with degree 2, and 8 Gaussian kernels
with spread parameters {20, cee 27} for MKL. All kernel functions were normal-
ized as k(x,y) — k(x,y)//k(z, z)k(y,y). Moreover, for CMTL, Whom and
CoClus methods, which require the number of task clusters to be pre-specified,
cross-validation over the set {1,...,7/2} was used to select the optimal number
of clusters. Also, the regularization parameters of all methods were chosen via
cross-validation over the set {2710,... 210}

5.2 Experimental Results

We assess the performance of our proposed method compared to the other meth-
ods on 7 widely-used data sets including 3 real-world data sets: Wall-Following
Robot Navigation (Robot), Statlog Vehicle Silhouettes (Vehicle) and Statlog
Image Segmentation (Image) from the UCI repository [14], 2 handwritten digit
data sets, namely MNIST Handwritten Digit (MNIST) and Pen-Based Recog-
nition of Handwritten Digits (Pen), as well as Letter and Landmine.

The data sets from the UCI repository correspond to three multi-class
problems. In the Robot data set, each sample is labeled as: “Move-Forward,
“SlightRight-Turn”, “Sharp-Right-Turn” and “Slight-Left-Turn”. These classes
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are designed to navigate a robot through a room following the wall in a clock-
wise direction. The Vehicle data set describes four different types of vehicles as
“4 Opel”, “SAAB”, “Bus” and “Van”. On the other hand, the instances of the
Image data set were drawn randomly from a database of 7 outdoor images which
are labeled as “Sky”, “Foliage”, “Cement”, “Window”, “Path” and “Grass”.

Also, two multi-class handwritten digit data sets, namely MNIST and Pen,
consist of samples of handwritten digits from 0 to 9. Each example is labeled as
one of ten classes. A one-versus-one strategy was adopted to cast all multi-class
learning problems into MTL problems, and the average classification accuracy
across tasks was calculated for each data set. Moreover, an equal number of
samples from each class was chosen for training for all five multi-class problems.

We also compare our method on two widely-used multi-task data sets, namely
the Letter and Landmine data sets. The former one is a collection of handwritten
words collected by Rob Kassel of MIT’s spoken Language System Group, and
involves eight tasks: ‘C’ vs. ‘E’, ‘G’ vs. Y, ‘M’ vs. ‘N7, ‘A’ vs. ‘G’, ‘T" vs. ‘J7, ‘A’
vs. ‘O’ ‘F’ vs. “T” and ‘H’ vs. ‘N’. Each letter is represented by a 8 by 16 pixel
image, which forms a 128 dimensional feature vector per sample. We randomly
chose 200 samples for each letter. An exception is letter J, for which only 189
samples were available. The Landmine data set consists of 29 binary classifica-
tion tasks collected from various landmine fields. The objective is to recognize
whether there is a landmine or not based on a region’s characteristics, which are
described by four moment-based features, three correlation-based features, one
energy ratio feature, and one spatial variance feature.

In all our experiments, for all methods, we considered training set sizes of
10%, 20% and 50% of the original data set to investigate the influence of the
data set size on generalization performance. An exception was the Landmine
data set, for which we used 20% and 50% of the data set for training purposes
due to its small size. The rest of data were split into equal sizes for validation
and testing.

In Table 1, we report the average classification accuracy over 20 runs of
randomly sampled training sets for each experiment. Note that we utilized the
method proposed in [10] for our statistical analysis. More specifically, Fried-
man’s and Holm’s post-hoc tests at significance level o = 0.05 were employed to
compare our proposed method with the other methods.

As shown in Table 1, for each data set, Friedman’s test ranks the best per-
forming model as first, the second best as second and so on. The superscript next
to each value in Table 1 indicates the rank of the corresponding model on the
relevant data set, while the superscript next to each model reflects its average
rank over all data sets for the corresponding training set size. Note that methods
depicted in boldface are deemed statistically similar to our model, since their
corresponding p-values are not smaller than the adjusted « values obtained by
Holm’s post-hoc test. Overall, it can be observed that our method dominates
three, six and five out of seven methods, when trained with 10%, 20% and 50%
training set sizes respectively.
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Table 1. Experimental comparison between our method and seven benchmark methods

10% STL(™ MTL®*? CMTL®?* Whom®?% FlexClus**» Coclus®  MetaG® Our Method *+67)
Robot 84.51(M 84.82(9  84.15®  88.90" 88.34( 87.83(%) 88.77» 88.67)
Vehicle  79.73®  80.38®  80.23(" 83.144 82.45() 86.79)  83.53() 84.51®
Image 97.08("  97.43®)  97.09®)  97.27™ 98.05() 97.24)  97.05® 98.19()
Pen 98.16(7 98.28(>:%)  9578®) 98 28(%5) 98.67%) 99.26("  98.57 99.12
MNIST  94.097  94.87)  94.49(® 95.56(%) 94.59(%) 93.09® 96.13(» 96.70Y
Letter 84.12(9  83.12® 8562 86.82(%) 83.72(" 85.46(1) 85.41() 87.41)
20% STL® MTL**® CMTL® ' Whom®?? FlexClus©®%" Coclus**" MetaG* ™) Our Method *-*%)
Robot 87.67M  88.23% 8508  90.76V 90.15® 88.43%)  89.124 90.34®
Vehicle  85.88Y  86.16®)  82.29®® 8567 85.29(7 87.15  85.78(» 87.761
Image 97.41©  98.02)  97.32(" 98.46?) 97.44®) 97.50( 97.29®) 98.54(1)
Pen 98.57M  99.01®  96.06®  99.14 99.13® 99.30  99.02® 99.631)
MNIST  96.13©®  96.71Y  96.56®  96.76(>) 95.04(M 94.09®)  96.84» 97.86"
Landmine 58.76®® 61.89(7  65.28(2 62.53() 62.46(%) 63.52( 62.59 65.82(1
Letter 88.75(1  89.98»  88.24( 88.88(%) 83.79(" 82.26(%) 87.99(®) 90.72(V
50% STLG6) MTLEG#») CMTL(2? Whom 2 FlexClus®2) Coclus®?” MetaG**?  Our Method™®
Robot  91.26% 91.49®)  86.26(® 91.70» 91.26% 89.04(" 91.27% 92.41M
Vehicle — 88.33)  88.71®  83.91® 87.30%) 86.72(7 87.55(0  86.81(9 89.831)
Image 98.4009 98.43()  97.56®  98.58( 98.04(" 98.52(®  98.49( 99.07()
Pen 98.77(7  99.23)  96.17® 99.32(1) 99.33() 99.34(» 99.21(® 99.77)
MNIST  97.20® 97.37%  97.31® 97.78%®) 96.60(7 95.87(®) 98.46(» 98.64()
Landmine 63.76® 64.98¢®)  66.76®  65.57( 64.87(7 65.15%)  66.24» 67.151)
Letter 91.18¥  91.62®  90.97® 91.25®) 86.47(" 86.27%) 90.66(9) 92.49(")

Table 2. Comparison of our method against the other methods with the Holm test

10% STL MTL CMTL Whom FlexClus Coclus MeTaG
Test statistic 3.93 2.13 3.49 1.25 2.40 2.62 2.29
p value 0.0005 0.0138 0.0022 0.2869 0.0777 0.1214 0.1214
Adjusted a 0.0071 0.0083 0.0100  0.0125 0.01667 0.0250 0.0500
20% STL MTL CMTL Whom FlexClus Coclus MeTaG
Test statistic 3.71 2.51 3.82 1.64 3.38 2.62 2.73
p value 0.00021 0.0121  0.0001 0.1017 0.0007 0.0088 0.0064
Adjusted a 0.0083 0.0250 0.0071  0.0500 0.0100 0.01667 0.0125
50% STL MTL CMTL Whom  FlexClus Coclus MeTaG
Test statistic 3.55 2.18 4.04 1.75 3.98 3.27 2.61
p value 0.0004 0.0291 0.0001 0.0809 0.0001 0.0011 0.0089
Adjusted a 0.0100  0.0250 0.0071  0.0500 0.0083 0.0125 0.01667

Also, in Figure 1, we provide better insight of how the grouping of task feature
spaces might be determined in our framework. For the purpose of visualization,
we applied two Gaussian kernel functions with spread parameters 2 and 2% and
used the Letter multi-task data set.

In this figure, the = and y axes represent the weights of these two kernel
functions for each task. From Figure 1(a), when a small training size (10%) is
chosen, it can be seen that our framework yields a cluster of 3 tasks, namely {“A”
vs “G”, “A” vs “O”, “G” vs “Y”} that share a common feature space to benefit
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Fig. 1. Feature space parameters for Letter multi-task data set

from each other’s data. However, as the number n of training samples per task
increases, every task is allowed to employ its own feature space to guarantee
good performance. This is shown in Figure 1 (b), which displays the results
obtained for a 50% training set size. Note, that the displayed MKL weights lie
on the 0, + 05 = 1 line due to the framework’s Ly MKL weight constraint.

6 Conclusions

In this work, we proposed a novel MT-MKL framework for SVM-based binary
classification, where a flexible group structure is determined between each pair of
tasks. In this framework, tasks are allowed to have a common, similar, or distinct
feature spaces. Recently, some MTL frameworks have been proposed, which also
consider clustering strategies to capture task relatedness. However, our method
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is capable of modeling a more general type of task relationship, where tasks may
be implicitly grouped according to a notion of feature space similarity. Also, our
proposed optimization algorithm allows for a distributed implementation, which
can be significantly advantageous for MTL settings involving large number of
tasks. The performance advantages reported on 7 multi-task SVM-based classifi-
cation problems largely seem to justify our arguments in favor of our framework.
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