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Gunnar Rätsch3(B), and Marius Kloft4(B)

1 Berlin Institute of Technology, 10587 Berlin, Germany
marina.vidovic@ml.tu-berlin.de,

{nico.goernitz,klaus-robert.mueller}@tu-berlin.de
2 Department of Brain and Cognitive Engineering, Korea University, Anam-dong,

Seongbuk-gu, Seoul 136-713, Republic of Korea
3 Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA

raetsch@mskcc.org
4 Humboldt University of Berlin, 10099 Berlin, Germany

kloft@hu-berlin.de

Abstract. This work is in the context of kernel-based learning algo-
rithms for sequence data. We present a probabilistic approach to
automatically extract, from the output of such string-kernel-based
learning algorithms, the subsequences—or motifs—truly underlying the
machine’s predictions. The proposed framework views motifs as free
parameters in a probabilistic model, which is solved through a global
optimization approach. In contrast to prevalent approaches, the proposed
method can discover even difficult, long motifs, and could be combined
with any kernel-based learning algorithm that is based on an adequate
sequence kernel. We show that, by using a discriminate kernel machine
such as a support vector machine, the approach can reveal discriminative
motifs underlying the kernel predictor. We demonstrate the efficacy of
our approach through a series of experiments on synthetic and real data,
including problems from handwritten digit recognition and a large-scale
human splice site data set from the domain of computational biology.

1 Introduction

In the view of the rapidly increasing amount of data collected in science and
technology, effective automation of decisions is necessary. To this end, kernel-
based methods [13,17,19,26,31,32] such as support vector machines (SVM)
[5,7] have found diverse applications due to their distinct merits such as the
descent computational complexity, high usability, and the solid mathematical
foundation [24]. Kernel-based learning allows us to obtain more complex non-
linear learning machines from simple linear ones in a canonical way, since the
learning and data representation processes are decoupled in a modular fashion.
Yet, after more than a decade of research, kernel methods are widely consid-
ered as black boxes, and it remains an unsolved problem to make their decisions
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accessible or interpretable to domain experts. This is especially pressing in nat-
ural and life sciences, where not maximum prediction accuracy but unveiling the
underlying natural principles is the foremost aim.

In several important application fields, the data exhibits an inherent sequence
structure. This includes DNA sequences in genomics, text data in natural lan-
guage processing, and speech data in speech recognition. A state-of-the-art app-
roach to learn from such sequence data consists in the weighted-degree (WD)
kernel [4,27,28,31] in combination with a kernel-based learning machine such as
an SVM. Given two discrete sequences x = (x1, . . . , xL), x′ = (x′

1, . . . , x
′
L) ∈ AL

of length L over the alphabet A with |A| < ∞, the weighted-degree kernel is
defined by

κ(x, x′) =
�max∑

�=1

L−�+1∑

j=1

I{x[j]� = x′[j]�} , (1)

where x[j]� denotes the length-� subsequence of x starting at position j and ter-
minating at position j + � − 1. In a nutshell, it breaks x and x′ into all possible
subsequences up to a maximum length �max ≤ L and computes the number of
matching subsequences. The WD-kernel SVM has been shown to achieve state-
of-the-art prediction accuracies in many genomic discrimination tasks, including
the detection of transcription start sites [38] and splice sites [37]—achieving the
winning entry in the international comparison by [1] of 19 leading gene finders
and remains still unbeaten. Efficient implementations such as the one contained
in the SHOGUN machine-learning toolbox [33], which employs effective fea-
ture hashing techniques [36], have been applied to problems where millions of
sequences, each with more than thousand positions, are processed at the same
time [34].
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Fig. 1. Example of a motif, that is, an
“interesting” subsequence in a sequence
learning task that has a significance or
impact on the label. The task here was gene
detection and the motif has been gener-
ated using the WebLogo 3 software [8]. The
motif is illustrated as a positional weight
matrix (PWM), where the size of a letter
indicates the probability of its occurrence
at a certain position in the motif. The like-
liest entries are arranged top down.

Like many other kernels, the
WD kernel is a black-box that hin-
ders direct interpretation and analy-
sis of the classifier that is output by
the kernel-based learning algorithm
(for other approaches for interpreting
non-linear classification see e.g.
[2,3,14,25,41]). It is an aim of this
paper to work toward unveiling the
function of such a classifier by com-
puting the most important subse-
quences that determine the classi-
fier’s decision—the so-called motifs. A
motif is a widespread and typical pat-
tern in the input data that has, or is
conjectured to have, a significance or
impact on the associated label. For instance in the detection of gene starts, a
motif is a nucleotide sequence (i.e., a string over the alphabet A = {A,C,G, T}),
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which frequently appears at the start positions of genes in the DNA. For instance
in Figure 1, we give an illustration of the motif TACTGTATATATATACAGTA.

The main contributions of this work can be summarized as follows:

1. Putting forward the work of [35] on positional oligomer importance matri-
ces (POIMs), we propose a novel probabilistic framework to finally go the
full way from the output of a WD-kernel SVM to the relevant motifs truly
underlying the kernel machine’s predictions.

2. To deal with the sheer exponentially large size of the feature space associated
with the WD kernel, we propose a very efficient optimization framework
based on advanced sequence decomposition techniques.

3. Our approach is able to even find multiple motifs consisting of hundreds of
positions, while previous approaches are limited to either comparably short
or contiguous motifs.

4. We demonstrate the efficiency and efficacy of our approach on synthetic data
sets, on the USPS hand-written digits dataset, as well as on a human splice
data set, where we achieve near-perfect motif reconstruction quality when
evaluated by means of the JASPAR database [29].

2 Preliminaries

A first step towards the identification of motifs from the WD-kernel classifiers is
achieved in [35], where the concept of positional oligomer importance matrices
(POIMs) is introduced, which we review below, after giving more details on the
concept of the WD kernel.

2.1 Weighted-Degree (WD) Kernel

The weighted-degree kernel is formally defined in (1). It is important to note,
however, that we may equivalently represent the WD kernel by the corresponding
binary feature embedding Φ, with κ(x, x′) = 〈Φ(x), Φ(x′)〉, where each entry of
Φ(x) represents a valid positional subsequence y of length � ∈ {1, . . . , �max}
starting at position j ∈ {1, . . . , L − � + 1}. A WD-kernel SVM then simply fits
the parameter w of the linear model s(x) := 〈w,Φ(x)〉, which can, more concisely,
be expressed as

s(x) =
�max∑

�=1

L−�+1∑

i=1

w(x[i]�,i) (2)

since Φ(x) is inherently sparse (only the entries in Φ(x) corresponding to the
subsequences y = x[i]� with � ∈ {1, . . . , �max} and i ∈ {1, . . . , L − � + 1} are
non-zero).

2.2 Positional Oligomer Importance Matrices (POIMs)

Given the base sequence length L, a positional k-gram is a subsequence (y, j) ∈
Σk × {1, . . . , L − k + 1} of length k starting at a position j. Positional oligomer
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importance matrices (POIMs) assign each positional k-gram with an importance
score. This allows us to visualize the significance of the various positional k-grams
as illustrated in Fig. 2. To formally introduce the POIM approach, let Σ be a
discrete alphabet, let X ∼ U(ΣL) be a random variable that uniformly takes
values in ΣL, and let x ∈ ΣL be a realization thereof. For any positional k-gram
(y, j) starting at position j, denote as

Qk,y,j := E[s(X )|X [j]k = y] − E[s(X )] , (3)

the POIM of order k is defined as the tupel

Q ≡ Qk :=
(
Qk,y,j

)
(y,j)∈Σk×{1,...,L−k+1}.

We may interpret (3) as a measure for the contribution of the positional k-gram
(y, j) to the SVM prediction function s as follows: a high value of w(y,j), by (2),
implies a strong contribution to the prediction score s(x) if and only if y = x[j]k.
We can very well visualize POIMs in terms of heatmaps as illustrated in Fig. 2,

Fig. 2. Illustra-
tion of a POIM of
k-grams (k = 4)
over the binary
alphabet A = {0, 1}
and sequence length
L = 5 for a trained
kernel predictor.
Each positional
4-gram corresponds
to a cell, where the
color indicates the
significance of the
positional 4-gram to
the kernel predictor.

from which we may obtain the most discriminative fea-
tures by manual inspection. As a first step towards a more
automatic analysis of POIMs, [40] propose an extension of
the POIM method, the so-called differential POIM, which
aims to identify the most relevant motif lengths as well as
the corresponding starting positions. Formally, the differ-
ential POIM Ω is defined as a �max×L matrix Ω :=

(
Ω�,j

)

with entries

Ω�,j :=
{

q�,j
max − max{q�−1,j

max , q�−1,j+1
max } if � ∈ {2, . . . , L}

0 elsewise ,

where q�,j
max := max

y∈Σ�
|Q�,y,j | . We can interpret Ω�,j as an

overall score for the general importance of the subsequence
of length � at position j.

2.3 Shortcomings of POIMs

Although being a major step towards the explanation of
trained WD kernel models, POIMs suffer from the fact
that their size grows exponentially with the length of the
motif, which renders their computation feasible only for
rather small motif sizes, typically k ≤ 12. It also ham-
pers manual inspection (in order to determine candidate
motifs) already for rather small motif sizes such as k ≈ 5
and is prohibitive for k ≥ 10. For example, a POIM of
order k = 5 contains, at each position, already 45 ≈ 1, 000
oligomers that a domain expert would have to manually
inspect. Slightly increasing the motif length to k = 10
leads to an unfeasible amount of 410 ≈ 1, 000, 000 subse-
quences per position in the POIM.
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2.4 What is Coming Up: The Proposed Approach in a Nutshell

0
1
00001111

0
100001111

Fig. 3. Illustration of the pro-
posed approach: extracting a motif
(top right) from a trained kernel
machine (top left) by approximat-
ing the corresponding POIM (bot-
tom left) by another POIM (bot-
tom right) that is derived from a
set of candidate motifs, over which
we optimize (top right).

In this paper, we tackle obtaining motifs from
a trained kernel machine via the use of POIMs
from a different perspective. In a nutshell, our
approach is the other way round (!): we pro-
pose a probabilistic framework to reconstruct,
from a given motif, the POIM that is the most
likely to be generated by the motif. By sub-
sequently minimizing the reconstruction error
with respect to the truly given POIM, we can
in fact optimize over the motif in order to find
the one that is the most likely to have gen-
erated the POIM at hand. The latter poses
a substantial numerical challenge due to the
extremely high dimensionality of the feature
space. Figure 3 illustrates our approach.

3 Methodology for Revealing
Discriminative Motifs by
Mimicking POIMs

In this section, we introduce the proposed motifPOIM methodology for extrac-
tion of motifs from POIMs, state the optimization problem, and derive an effi-
cient optimization procedure. In a nutshell, our motifPOIM methodolology (illus-
trated in Figure 3) is based on associating each candidate motif by a probability
of occurrence at a certain location—which we call probabilistic positional motif
(PPM)—and then (re-)construct from each PPM the POIM that is the most
likely to be generated from the candidate PPM, which we call motifPOIM. The
final motif is obtained by optimizing over the candidate motifs such that the
reconstruction error of the motifPOIM with respect to the truly given POIM is
minimized.

To this end, let us formally define the PPM as a tuple mk := (r, μ, σ), where
r ∈ R

|Σ|×k and μ, σ ∈ R. We think of mk as a candidate motif with PWM r and
estimated starting position μ of which the variable σ encodes the uncertainty in
the location of the motif. For this PPM we define a probabilistic model, with a
probability of the starting position given by a Gaussian function with parameters
μ and σ

P 1
(z,i)(mk) :=

1√
2πσ

exp

(
− (i − μ)2

2σ2

)
,

and a probability for the motif sequence itself, given by the product of its PWM
entries

P 2
(z,i)(mk) :=

k∏

�=1

rz�,� .

Under this probabilistic model, we define, in analogy to the SVM weight
vector w occurring in (2), a motif weight vector v ≡ v(mk) with entries
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(
v(mk)

)
z,i

= v(z,i)(mk) defined as v(z,i)(mk) := P 1
(z,i)(mk)P 2

(z,i)(mk) , for any
positional k-gram of length k, (z, i) ∈ Σk ×{1, . . . , L− k +1}. Consequently, we
define in analogy to (2) a function

s̄(x|mk) :=
L−k+1∑

i=1

v(x[i]k,i)(mk) . (4)

By means of the above function, we can construct, from a PPM as defined in
the paragraph above, a POIM R ≡ R(mk) with entries

Ry,j(mk) := E[s̄(X|mk)|X [j]k = y] − E[s̄(X|mk)] . (5)

Our overall aim is, by optimizing over the motifPOIM R, to approximate the
original POIM (cf. also the illustration given by Figure 3). Due to the fact that
searching for motifs of length k means computing POIMs of degree k, which
is for longer PPMs (k ≥ 5) computationally expensive, we have modified our
optimization problem in a way that finding long PPMs can be accomplished
using POIMs of lower degrees k̃ ∈ {2, 3}.The basic idea is to split longer PPMs
of length k into shorter overlapping PPMs of length k̃ ≤ k and use only the
small POIM of degree k̃ for our optimization approach. First we define a set of
smaller overlapping motifs, the SubPPMs, which should be devoted to the large
PPM: A PPM of length k is modeled as a set of D SubPPMs, D := k − k̃ + 1
with length k̃ ≤ k. The SubPPMs are defined by:

m̃d(mk, k̃) := (r̃, μ̃, σ), ∀ d = 0, . . . , D − 1

with μ̃ := μ + d and r̃ := r[d, d + k̃], where r[d, d + k̃] is the d-th until the
(d + k̃)-th column of the PPMs PWM r.

3.1 Optimization Problem
We now derive the optimization problem for the extraction of motifs from
POIMs. The core idea is to determine a motif mk with an corresponding motif-
POIM R(mk) that approximates the original POIM Qk. To this end, let us
introduce some notation. Let K ⊂ N be the set of all motif lengths to be con-
sidered and kmax = max

k∈K
k the maximum length. The vector T ∈ N

kmax
0 con-

tains the number of PPMs for each motif length, where Tk is the given number
of PPMs of length k for all k ∈ K. For example, when K = {2, 4, 10} and
T = (0, 6, 0, 3, 0, 0, 0, 0, 0, 2), then the goal is to find 6 PPMs of length 2, 3
PPMs of length 4, and 2 PPMs of length 10. Our optimization method is as
follows: given the set K and the vector T , we randomly initialize the PPMs
mk,t t = 1, . . . , Tk , k ∈ K and generate a set of motifPOIMs for the SubPPMs
m̃d(mk, k̃), d = 0, . . . , D−1. The optimization variables are the Tk many PPMs
for all k ∈ K. For obtaining the priorities of the PPMs we weight the PPMs by
λk,t, t = 1, . . . , Tk , k ∈ K and additionally optimize over the weights. Hence,
the optimization variables are:

– PPM mk,t = (rk,t, μk,t, σk,t), t = 1, . . . , Tk , k ∈ K ,

where μk,t ∈ R, σk,t ∈ R, rk,t ∈ R
|Σ|×k, t = 1, . . . , Tk , k ∈ K
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– weight of mk,t λk,t ∈ R, t = 1, . . . , Tk , k ∈ K .

A PPM generates a motifPOIM, which is given by the sum of D motif-
POIMs generated by its SubPPMs. The sum of the weighted motifPOIMs,
λk,tR(mk,t), t = 1, . . . , Tk, should estimate the POIM Qk̃ for each k ∈ K.
The optimization problem is now that of minimizing the distance between the
sum of the motifPOIMs and the original POIM, which leads to a non-convex
optimization problem with the following objective function:

f(η) =
1
2

∑

k∈K

∑

y∈Σk̃

L∑

j=1

( Tk∑

t=1

λk,t

D−1∑

d=0

Ry,j(m̃d(mk,t, k̃)) − Qk̃,y,j

)2

, (6)

where η = (mk,t, λk,t, k̃)t=1,...,Tk,k∈K . The associated constrained non-linear
optimization problem is thus as follows:

min
(mk,t,λk,t)t=1,...,Tk,k∈K

f(η) (7)

subject to ε ≤ σk,t ≤ k, t = 1, . . . , Tk , k ∈ K
1 ≤ μk,t ≤ L − k + 1, t = 1, . . . , Tk , k ∈ K

0 ≤ λk,t ≤ W, t = 1, . . . , Tk , k ∈ K
ε ≤ rk,t,o,s ≤ 1, t = 1, . . . , Tk , k ∈ K

o = 1, . . . , |Σ|, s = 1, . . . , k ,

|Σ|∑

o=1

rk,t,o,s = 1

where W ∈ R
+. The objective function f(η) is defined on compact set U , since all

parameters are defined in a closed and bounded, convex space. Consequently, if U
is not empty, f(η) is a continuously differentiable function, since its conforming
parts, that is, the Gaussian function and the product of the PWM entries, all
are continuously differentiable. Thus the global minimum of the optimization
problem (7) is guaranteed to exist. Due to the non-convex nature of (7), however,
there may exist multiple local minima.

3.2 Efficient Computation of motifPOIM
To allow for numerical optimization of (7), we need an efficient way of comput-
ing (5). To this end, note that (5) consists of two summands. The right-hand
summand can be computed as follows:

E[s̄(X|mk)] =
1

|ΣL|
∑

x∈ΣL

s̄(x;mk) =
1

|ΣL|
∑

x∈ΣL

k∑

�=1

L−�+1∑

i=1

v(x[i]�,i)(mk)

=
k∑

�=1

L−�+1∑

i=1

1
|ΣL|

∑

x∈ΣL

v(x[i]�,i)(mk) =
k∑

�=1

L−�+1∑

i=1

1
|Σ�|

∑

z∈Σ�

v(z,i)(mk)

=
k∑

�=1

∑

z∈Σ�

L−�+1∑

i=1

v(z,i)(mk)P(X [i]� = z) . (8)
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Furthermore, by an analogous computation, we compute the left-hand summand
in (5) and obtain

E[s̄(X|mk)|X [j]k = y] =
k∑

�=1

∑

z∈Σ�

L−�+1∑

i=1

v(z,i)(mk)P(X [i]� = z|X [j]k = y) . (9)

We now consider this probability term and its influence on the summation in
(5). To this end, we introduce the following notation as in [37].

Definition 1. Two positional subsequences (z, i) and (y, j) of length � and k are
independent if and only if they do not share any position; in this case we write
(y, j) ⊀ (z, i) and (y, j) ≺ (z, i) otherwise (i.e., when they are dependent). If they
are dependent and also agree on all shared positions we say they are compatible
and we write (y, j) � (z, i) (and (y, j) � (z, i) if they are not compatible).

According to the cases discussed in the above definition, the conditioned
probability term can take the following values:

P(X [i]� = z|X [j]k = y) =

⎧
⎪⎨

⎪⎩

1
|Σ�| if (y, j) ⊀ (z, i)
0 if (y, j) � (z, i)
|Σc|
|Σ�| if (y, j) � (z, i)

, (10)

where c is the number of shared and compatible positions of two positional
subsequences:

c
(
(y, j), (z, i)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

� − |i − j| if i < j and (y, j) � (z, i)
� if i = j and (y, j) � (z, i)
k − |i − j| if i > j and (y, j) � (z, i)
0 else.

.

Taken the case (y, j) ⊀ (z, i), the probability terms in the motifPOIM formula
(5) subtract to zero, so that the positional subsequence (z, i) is not considered
in the sum Ry,j(mk). Hence, in order to compute Ry,j(mk), it is sufficient to
sum over two positional subsequence sets, where one contains all (z, i) with
(y, j) � (z, i), I�

(y,j), and the others contains all (z, i) with (y, j) � (z, i), I�
(y,j):

Ry,j(mk) =
∑

(z,i)∈I�
(y,j)

v(z,i)(mk)
( |Σc|
|Σk| − 1

|Σk|
)

+
∑

(z,i)∈I�
(y,j)

v(z,i)(mk)
( − 1

|Σk|
)
) , (11)

where I◦
(y,j) :=

{
(z, i) ∈ Σ|y|×{

1, . . . , L−|y|+1
}|(y, j)◦(z, i)

}
and ◦ ∈ {�, �} .

4 Empirical Analysis

In this section, we analyze our proposed mathematical model (7) empirically.
After introducing the experimental setup, we evaluate our approach on the USPS
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data set, containing grayscale handwritten digit images. Afterwards, we con-
duct a biology experiment with a synthetic data set where we fully control the
underlying ground truth. Finally, we investigate our model on a real human
splice data set and compare our results to motifs contained in the JASPAR
database [29]. As kernel-based learning algorithm, we use a support vector
machine in all experiments.

4.1 Experimental Setup

For SVM training, we use the SHOGUN machine-learning toolbox [33]. The
regularization constant C of the SVM and the degree d of the weighted-degree
kernel are set to C = 1 and d = 20 for the biological experiments, which are
proven default values. For the experiments on the USPS data, we set d = 8 and
select C through model selection.

After SVM training, the POIM Q is generated through the Python script
compute poims.py included in the SHOGUN toolbox. The Python frame-
work obtains the trained SVM and the POIM of order k as parameters and
returns the differential POIM and the regular POIMs Ql, l = 1, . . . , kpoim. We
set k = 7 because of memory requirements (storing all POIMs up to a degree
of 10 requires about 4 gigabytes of space). Note that this is no restriction as
our modified optimization problem (7) requires POIMs of degree two or three
only. Nevertheless, POIMS of higher degree than three can provide additional
useful information since they contain prior information about the optimization
variables.

We then compute the differential POIM using the Python scripts included
in the SHOGUN toolbox, where we search for points of accumulation of high
scoring entries, from which we estimate the number of motifs as well as their
length and starting position. Throughout the experiments, we use a greedy app-
roach for estimating the initial values of PWMs given a POIM. Once the motif
interval is estimated, we select the leading nucleotide from the highest scoring
column entry within the interval from the corresponding POIM and initialize the
respective PWM entry with a value of 0.7 and 0.1 for non-matches. Indeed, we
found that this approach is more stable and reliable than using random initializa-
tions. These parameters serve as initialization for our non-convex optimization
problem (7). To compute a PWM from the computed POIMs, we employ the
L-BFGS-B Algorithm [23], where the parameters λ and σ are initialized as 1 and
0.01, respectively.

As a measure of the motif reconstruction quality (MRQ), we employ in the
biological experiments the same score as in the established JASPAR SPLICE
database [30]. Given a ground truth sequence motif t we test the reconstruction
quality of an equally-sized, revealed motif r according to the following formula:

MRQ =
∑k

p=1

[
1
k − 1

2k

∑
c∈{A,C,G,T}

(tcp − rcp)2
]

We also introduce a second mea-

sure, the maximal-value MRQ (mvMRQ), which is defined in exactly the same
way as the MRQ but uses the maximum posteriori motif r̂ ∈ {0, 1}4×k, that
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is, it considers only the most likely sequence in the motif, which can have the
advantage of discarding potential noise in the data and motif.

4.2 Experimental Results for USPS Dataset

We first evaluate the proposed methodology on the USPS data set [15,16], which
includes 9298 images of handwritten digits, encoded through gray scale values
ranging in [−1, 1]. For pre-processing, the data was converted to a binary format
by setting a threshold at −0.2 for the gray scale values. To preserve locality in
the vectorial image representation, we further preprocessed the data by scanning
the image using a Hilbert curve of order 4, which is a proven method for mapping
images to sequences [6,9]. Fig. 4 (a) shows the path of the Hilbert-curve scan for
the handwritten images of the digit three. To determine the justification of the
use of a high-dimensional weighted degree kernel, we compare it with a linear
kernel on the gray scale values as well as with the weighted degree kernel of degree
one only. The results in terms of multi-class classification accuracy are shown in
Fig 4 (b), where the SVM was trained in one-vs.-all scheme. We observe that a
weighted degree kernel of degree 8 (dimensionality: 28 ∗ 256 = 65536) performs
best in our experiments.

For the remaining experiments, we focus on the binary classification tasks
of the handwritten digits three vs. eight and two vs. nine, respectively. These

(a) Hilbert Curve (b) SVM performance

Fig. 4. (a) Foreground: illustration of Hilbert-curve scanning (of order 4) of an image
depicting of the handwritten digit three. The image is converted into a sequence through
a curve that traverses the image in a way that mimics a fractal structure. It has been
shown in [6,9] that this strategy is able to well capture the image’s locality structure.
The heatmap in the background shows the average feature values for the images of the
digit three.
(b) The one-vs.-all SVM prediction accuracy is shown as a function of the number of
training sequences per class for various WD sequence kernels over the Hilbert-scanned
sequences and for a linear kernel on the gray-scale pixel values. The WD kernel of
degree 8 performers best, even for only a small number of training sequences.
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(a) (b) (c) (d)

Fig. 5. Illustration of the results found by our proposed framework, when training a
WD-kernel SVM of degree 8 for the handwritten digits three vs. eight and two vs. nine,
respectively. The highest scoring positions in the motif are highlighted in red. Note that
these are very characteristic positions for the dissimilarities between both digits. The
background the average feature values for the images of the respective digit.

respective digit pairs are considered to be especially difficult to discriminate. For
both digit pairs we train a WD-kernel SVM of degree 8 on the Hilbert-scanned
sequences. Afterward, we compute the POIM as described in Section 4.1 and
use our presented methodology to find a motif that incorporates the discrim-
inative positions of the SVM decision for both classes. In this experiment, we
simply fix the length of the motif to 256, which thus coincides with the sequence
length. The step of intializing the POIM parameter through analyzing the dif-
ferential POIM is thus omitted in this experiment. The results, illustrated in
Figure 5, show the precise coherence between the discriminative motifs found
and the obvious individually characteristic differences of the two digits, respec-
tively. For instance in the discriminative task three-vs.-eight, we can observe that
the most distinctive positions in the motif of the digit eight (highlighted in red in
Figure 5 (b)) are exactly the parts that are missing in the digit-three image.

4.3 Results for Synthetic Splice Site Experiments

Next, we evaluate the proposed methodology for biology DNA sequence data,
by generating a synthetic data set, where we have full access to the underlying
ground truth. This experiment aims at demonstrating the ability of our method
in reconstructing the truly underlying motifs.

To this end, we generate the following sample sets: the sample set S1 con-
sists of 10,000 DNA sequences of length 30 over the alphabet {A,C,G, T}30,
randomly drawn from a uniform distribution U(ΣL) over ΣL. We subsequently
modify 25% of the sequences by replacing the positions 6 to 11 by the synthetic
target sequence CCTATA. These modified sequences form the positively labeled
examples, while the remaining 75% of sequences are assigned with a negative
label. The sample set S2 includes the motif GATACATTAGGC of length 12
starting at position 16 in the positively labeled sequences. In the third sample
set S3 we insert both motifs at the same time.

The result of the realization of this synthetic experiments using the base
sample S1 and S2 are shown in Figure 6. The corresponding motif/PWM com-
puted by our approach correctly identifies the true underlying motif sequence as
the most likely path in the PWM. More detailed results are shown in Table 1,
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Fig. 6. Illustration of the motifs computed by our approach in the synthetic experi-
ment: the size of a letter indicates the probability of occurrence of the corresponding
nucleotide at a certain position in the motif. The left- and right-hand figures show
the results for the synthetic data sets S1 and S2, respectively. Note that the truly
underlying motifs where CCTATA for S1 and GATACATTAGGC for S2.

Table 1. Experimental results for the synthetic experiments on the three different
sample sets S1, S2, and S3.

sample set SVM acc #iter time (s) fevals λopt MRQ mvMRQ

S1 0.9987 157 13.2 116 1.0 0.93 1.0
S2 1.0 31 19.7 64 1.0 0.65 1.0
S3 1.0 31 25.87 64 0.42 0.85 1.0 (motif 1)

0.58 0.84 1.0 (motif 2)

where, besides the MRQ and the mvMRQ value, we report also on the runtime of
our approach, as well as the number of function evaluations, the optimal param-
eters for λ, the number of iterations needed, and the achieved SVM accuracy.
Inspecting the mvMRQ, one can observe that even for the difficult dataset S3,
where we implanted both motives into the training sequences, we reconstruct
both truly underlying motifs with 100% accuracy. The runtime of our approach
ranges between 13 and 26 seconds.

4.4 Real-World Experiments on Human Splice Data

In this section, we evaluate our methodology on a human splice data set, which
we downloaded from http://www.fml.tuebingen.mpg.de/raetsch/projects/lsmkl.
For verifying our results we use the JASPAR database [29] (Available from
http://jaspar.genereg.net), which provides us with a collection of important
DNA motifs and also contains a splice site database. Note that real DNA
sequences may contain non-polymorphic loci, which is why such a motif is not

Table 2. Execution times and optimal parame-
ters for the human splice data set.

σ fixed λopt fopt time (s) f evals MRQ
0.01 0.005 78.97 37.91 24 90.1
0.1 0.84 59.48 28.3 20 97.58
1 1.67 57.18 33.53 17 97.03

discriminative and we may thus
not expect the SVM to iden-
tify this locus. We thus catch
this special case and place this
positional oligomer in the solu-
tion sequence. We apply the full
experimental pipeline described
in Section 4.1 to this data set.

http://www.fml.tuebingen.mpg.de/raetsch/projects/lsmkl
http://jaspar.genereg.net
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Fig. 7. Results of the real-world human splice experiment: Figures (a) and (c) show
the differential POIM and the POIM of degree 2, respectively, for the entire sequence
length of 200, while Figures (b) and (d) zoom into the “interesting” positions 70–110
only.

Figure 7 shows the preliminary results in terms of the differential POIM and
the corresponding POIM of degree 2, shown for the entire sequence (see Figures
7 (a) and (c), respectively) as well as zoomed in for the “interesting” positions
70–110 of the sequence (see Figures 7 (b) and (d)). According to Figure 7 (b)
the largest entry corresponds to a 7-mer that is found at position 95; further-
more, we observe high scoring entries for 7-,6- and 5-mers at position 85, from
which we conclude that the discriminative motif starts at position 85 and ends
at position 102. Thus, the motif we are searching is expected to have a length of
18 nucleotides, which we use as an initialization for our motifPOIM approach.
We also account for non-polymorphic loci and find that the nucleotides A and G
appear in all DNA sequences of the data set, always at the positions 100 and 101,
respectively. We thus place them in the final PWM with a probability of 10%.
The JASPAR splice database provides us with splice site motifs of length 20
only, which is why we search for motifs of the same size instead of the expected
motif length 18.

The final results are shown in Figure 8, where the true underlying motif
taken from the JASPAR splice database is shown in Figure (a), while the motif
computed by our approach is shown in Figures (b)–(d). We observe a striking
accordance with the true motif as evidenced by a high consensus score of 98.39

Ground Truth σ=0.01 σ=0.1 σ=1.0

Fig. 8. Further results of the real-world human splice experiment: Figure (a) shows
the (normalized) real splice sequence as taken from JASPAR. Figure (b)–(d) show
the (normalized) computed PWMs for different values of the parameter σ. The best
JASPAR score of 97.58, is achieved with σ = 0.1. This is, interestingly, followed by
σ = 1 with a JASPAR score of 97.03 although the reconstructed motif of b) with
σ = 0.01 and a score of 90.1 appears much more similar to the true motif in a).
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for σ = 0.1, shown in Figure (c). Note that, for example, a completely random
sequence (uniformly drawn nucleotides) has an average consensus of 89.31, which
is greatly exceeded by our result. It is interesting to note that the function value
corresponding to the best consensus score is suboptimal; this might indicate
that the function is highly nonconvex with many local minima. Moreover, it is
interesting to note that the PWM with the mixed nucleotides, shown in (d), is
assigned a much higher accordance with the true motif than the well ordered one,
shown in (b), which is more similar to the original JASPAR PWM. Furthermore,
from Table 2, we observe moderate execution times of up to 32 seconds.

5 Conclusion and Discussion

Putting forward the work of [35] on positional oligomer importance matrices
(POIMs), we have developed a new probabilistic methodology to automatically
extract discriminative motifs from trained weighted-degree kernel machines such
as support vector machines. To deal with the exponentially large size of the
feature space associated with the SVM weight vector and the corresponding
POIM (“[..] we realize that the list of POs can be prohibitively large for manual
inspection.” [35], page 8), we proposed an efficient optimization framework.

The results clearly illustrate the power of our approach in discovering
discriminative motifs. For the experiment on handwritten digits, the proposed
approach excels in finding intuitive motifs, as can be seen in Figure 5. In the
synthetic experiments, the hidden motifs could be found and almost perfectly
reconstructed. For the human splice site experiments, we recovered known motifs
up to a very high precision of 98.39% as compared to the Jaspar splice data base.

We will provide the core algorithms as an add-on to the Python interface
of the SHOGUN Machine Learning Toolbox. It is not only an established
machine-learning framework, moreover, it already incorporates the possibility
to extract positional-oligomer importance matrices (POIMs) of trained support
vector machines using a WD-kernel. Ultimately, the usage by experimentalists
will determine the utility of this approach and govern the direction of further
extensions. A core issue might be the extension to other interesting kernels,
such as, e.g., spectrum kernels [22], multiple kernels [17–19,21], other learning
methods [11,12], or learning settings [10,20,39].
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33. Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A.,

Bona, F.D., Binder, A., Gehl, C., Franc, V.: The SHOGUN machine learning tool-
box. Journal of Machine Learning Research 11, 1799–1802 (2010)
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Site Prediction. BMC Bioinformatics, Special Issue from NIPS workshop on New
Problems and Methods in Computational Biology Whistler, Canada, December
18, 2006, vol. 8(Suppl. 10), p. S7, December 2007
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41. Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.R.: Engi-
neering support vector machine kernels that recognize translation initiation sites
in DNA. BioInformatics 16(9), 799–807 (2000)

http://arxiv.org/abs/1309.5211

	Opening the Black Box: Revealing Interpretable Sequence Motifs in Kernel-Based Learning Algorithms
	1 Introduction
	2 Preliminaries
	2.1 Weighted-Degree (WD) Kernel
	2.2 Positional Oligomer Importance Matrices (POIMs)
	2.3 Shortcomings of POIMs
	2.4 What is Coming Up: The Proposed Approach in a Nutshell

	3 Methodology for Revealing Discriminative Motifs by Mimicking POIMs
	3.1 Optimization Problem
	3.2 Efficient Computation of motifPOIM

	4 Empirical Analysis
	4.1 Experimental Setup
	4.2 Experimental Results for USPS Dataset
	4.3 Results for Synthetic Splice Site Experiments
	4.4 Real-World Experiments on Human Splice Data

	5 Conclusion and Discussion
	References


