
Data Split Strategies
for Evolving Predictive Models

Vikas C. Raykar(B) and Amrita Saha

IBM Research, Bangalore, India
{viraykar,amrsaha4}@in.ibm.com

Abstract. A conventional textbook prescription for building good pre-
dictive models is to split the data into three parts: training set (for
model fitting), validation set (for model selection), and test set (for final
model assessment). Predictive models can potentially evolve over time
as developers improve their performance either by acquiring new data
or improving the existing model. The main contribution of this paper
is to discuss problems encountered and propose workflows to manage
the allocation of newly acquired data into different sets in such dynamic
model building and updating scenarios. Specifically we propose three
different workflows (parallel dump, serial waterfall, and hybrid) for allo-
cating new data into the existing training, validation, and test splits.
Particular emphasis is laid on avoiding the bias due to the repeated use
of the existing validation or the test set.
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1 Introduction

A common data mining task is to build a good predictive model which generalizes
well on future unseen data. Based on the annotated data collected so far the goal
for a machine learning practitioner is to search for the best predictive model
(known as supervised learning) and at the same time have a reasonably good
estimate of the performance (or risk) of the model on future unseen data. It is well
known that the performance of the model on the data used to learn the model
(training set) is an overly optimistic estimate of the performance on unseen data.
For this reason it is a common practice to sequester a portion of the data to assess
the model performance and never use it during the actual model building process.
When we are in a data rich situation a conventional textbook prescription (for
example refer to Chapter 7 in [6]) is to split the data into three parts: training
set, validation set, and test set (See Figure 1). The training set is used for
model fitting, that is, estimate the parameters of the model. The validation set
is used for model selection, that is, we use the performance of the model on
the validation set to select among various competing models (e.g. should we
use a linear classifier like logistic regression or a non-linear neural network) or
to choose the hyperparameters of the model (e.g. choosing the regularization
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Training 50%  Validation 25% Test 25%  

model fitting model selection model assessment

Fig. 1. Data splits for model fitting, selection, and assessment. The training split is used
to estimate the model parameters. The validation split is used to estimate prediction
error for model selection. The test split is used to estimate the performance of the final
chosen model.

parameter for logistic regression or the number of nodes in the hidden layer for
a neural network). The test set is then used for final model assessment, that is,
to estimate the performance of the estimated model.

However in practice searching for the best predictive model is often an itera-
tive and continuous process. A major bottleneck typically encountered in many
learning tasks is to collect the data and annotate them. Due to various con-
straints (either time or financial) very often the best model based on the data
available so far is deployed in practice. At the same time the data collection and
annotation process will continue so that the model can be improved at a later
stage. Once we have reasonably enough data we refit the model to the new data
to make it more accurate and then release this new model. Sometimes after the
model has been deployed in practice we find that the model does not perform
well on a new kind of data which we do not have in our current training set. So
we redirect our efforts into collecting more data on which our model fails. The
main contribution of this paper is to discuss problems encountered and propose
various workflows to manage the allocation of newly acquired data into different
sets in such dynamic model building/updating scenarios.

With the advent of increased computing power it is very easy to come up
with a model that performs best on the validation set by searching over an
extremely large range of diverse models. This procedure can lead to non-trivial
bias (or over-fitting to the validation set) in the estimated model parameters. It
is very likely that we found the best model on the validation set by chance. The
same applies to the testing set. One way to think of this is that every time we
use the test set to estimate the performance the dataset becomes less fresh and
can increase the risk of over-fitting. The proposed data allocation workflows are
designed with a particular emphasis on avoiding this bias.

2 Data Splits for Model Fitting, Selection,
and Assessment

A typical supervised learning scenario consists of an annotated data set T =
{(xi, yi)}n

i=1 containing n instances, where xi ∈ X is an instance (typically a
d-dimensional feature vector) and yi ∈ Y is the corresponding known label. The
task is to learn a function f : X → Y which performs well on an independent test
data and also have a reasonably good estimate of the performance (also known
as the test error of the model). Let ̂f(x) be the prediction model/function that
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has been learnt/estimated using the training data T . Let L(y, ̂f(x)) be the loss
function 1 for measuring errors between the target response y and the prediction
from the learnt model ̂f(x). The (conditional) test error, also referred to as
generalization error, is the prediction error over an independent test sample,
that is, ErrT = E(x,y)[L(y, ̂f(x))|T ], where (x, y) are drawn randomly from their
joint distribution. Since the training set T is fixed, and test error refers to the
error obtained with this specific training set. Assessment of this test error is very
important in practice since it gives us a measure of the quality of the ultimately
chosen model (referred to as model assessment) and also guides the choice of
learning method or model (also known as model selection). Typically our model
will also have tuning parameters (for example the regularization parameter in
lasso or the number of trees in random forest) and we write our predictions as
̂fθ(x). The tuning parameter θ varies the complexity of our model, and we wish
to find the value of θ that minimizes the test error. The training error is the
average loss over the entire training sample, that is, err = 1

n

∑n
i=1 L(yi, ̂fθ(xi)).

Unfortunately training error is not a good estimate of the test error. A learning
method typically adapts to the training data, and hence the training error will
be an overly optimistic estimate of the test error. Training error consistently
decreases with model complexity, typically dropping to zero if we increase the
model complexity large enough. However, a model with zero training error is
overfit to the training data and will typically generalize poorly.

If we are in a data-rich situation, the best approach to estimate the test error
is to randomly divide the dataset into three parts [2,4,6]: a training split T , a
validation split V, and a test split U . While it is difficult to give a general rule on
the split proportions a typical split suggested in [6] is to use 50% for training, and
25% each for validation and testing (see Figure 1). The training split T is used to
fit the model (i.e. estimate the parameters of the model for a fixed set of tuning
parameters). The validation split V is used to estimate prediction error for model
selection. We use the performance on the validation split to select among various
competing models or to choose the tuning parameters of the model. The test split
U is used to estimate the performance of the final chosen model. Ideally, the test
set should be sequestered and be brought out only at the end of the data analysis.

In this paper we specifically assume that we are in a data-rich situation, that
is we have a reasonably large amount of data. In data poor situations where we
do not have the luxury of reserving a separate test set, it does not seem possible
to estimate conditional error effectively, given only the information in the same
training set. A related quantity sometimes used in data poor situations is the
expected test error Err = E[ErrT ]. While the estimation of the conditional test
error ErrT will be our goal the expected test Err is more amenable to statistical
analysis, and most methods like cross-validation [15] and bootstrap [3] effectively
estimate the expected error [6].

1 Typical loss functions include the 0-1 loss (L(y, ̂f(x)) = I(y �= ̂f(x)),where I is
the indicator function) or the log-likelihood loss for classification and the squared

error (L(y, ̂f(x)) = (y − ̂f(x))2) or the absolute error (L(y, ̂f(x)) = |y − ̂f(x)|) for
regression problems.
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3 Issues with Evolving Models

Arrival of New Data After Model Deployment. Having done model selec-
tion using the validation split the parameters of the model are estimated using
the training split and the performance on unseen data is assessed using the test
split. If this performance is reasonable enough the model is finally deployed in
practice. This scenario has implicitly assumed that we start the data analysis
after all the data is collected. However in practice data collection and annotation
is a continuous ongoing process, often in a non-iid fashion. After the final model
is frozen and deployed in practice after a few months let us say we have more
annotated data. Now the question that arises is how do we use this data. Should
we dump all this data into the training split to improve the model performance?
Or should we dump this into the test split so that we have a better estimate of
the model performance?

Model Driven Data Collection. Very often it so happens that once the model
is deployed in practice we discover that the model performs poorly on a certain
class of data. The most likely cause of this is that we did not have enough data
of that particular kind in our dataset. This drives the collection of specific kind
of data on which our model performs poorly. Having collected the data similar
questions arise. What options should we pursue for allocating the new data to
different splits ?

Test Set Reuse. When developing predictive models in many domains (and
especially in medical domains) it is a common practice to completely sequester
the test set from the data mining practitioners. Once the model has been finalized
a review board (such as the Food and drug administration) evaluates the model
and then gives a final decision as to whether the model passed the test or not.
The feedback could be binary(pass/fail) or more detailed like the error or the
kind of mistakes made. If the model failed the test then they have to go back and
build a better model and test it again. With the advent of increased computing
power it is very easy to come up with a model that performs best on the test set
by searching over an extremely large range of diverse models. In such a scenario
multiple reuse of the test set can often lead to overfitting on the test set. The
ideal solution is to completely replace the test set, but having a new test set every
time can be expensive given that the data mining practitioners keep churning out
new models extremely fast. Another approach to avoid this is that the test set
has to be kept fresh by supplementing it with new data every time a developer
requests it for testing. At the same time the practitioners would like to learn
from the mistakes in the test set. This can be achieved by releasing some part
of the test set to the practitioners to improve the model.

These issues arise across different domains. In natural language processing
tasks textual resources are acquired one at a time and annotated. The resource
acquisition is often guided by various non-technical constraints and often arrives
in a non-iid fashion. In the medical domain a common task is to build a predictive
model to predict whether a suspicious region on a medical image is malignant or
benign. In order to train such a classifier, a set of medical images is collected from
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hospitals. These scans are then read by expert radiologists who mark the suspi-
cious locations. Ideally we would like our model to handle all possible variations—
different scanners, acquisition protocols, hospitals, and patients. Collecting such
data is a time consuming process. Typically we can have contracts with different
hospitals to collect and process data. Each hospital has a specific kind of scanners,
acquisition protocols, and patient demographics. While most learning methods
assume that data is randomly sampled from the population in reality due to var-
ious constraints data does not arrive in a random fashion. Based on the contracts
at the end of a year we have data from say around five hospitals and the data from
the another hospital may arrive a year later. Based on the data from five hospitals
we can deploy a model and later update the model when we acquire the data from
the other hospital.

These kind of issues also arise in data mining competitions which tradition-
ally operate in a similar setup. Kaggle [1], for example, is a platform for data
prediction competitions that allows organizations to post their data and have
it scrutinized by thousands of data scientists. The training set along with the
labels is released to the public to develop the predictive model. Another set for
which the labels have been withheld is used to track the performance of the com-
petitors on a public leader board. Very often is happens that the competitors
try to overfit the model on this leader board set. For this reason only a part of
this set is used for the leader board and the remaining data is used to decide the
final rankings. An important feature of our proposed workflows is that there is
a movement of data across different sets at regular intervals and this can help
avoid the competitors trying to overfit their models to the leader board.

4 Data Splits for Evolving Models

Based on the data collected so far let us assume we start with a 50% training-
25% validation-25% test split as described earlier. In this paper we propose a
workflow to allocate newly acquired data into the existing splits. Any workflow
to split new data should balance the following desired objectives:

1. Exploit large portion for training quickly. We want to exploit as much
of the new data as quickly as possible for training our final predictive model.
For most models, the larger the dataset the more accurate are the estimated
parameters.

2. Reserve sufficient amount for testing. However, at the same time we
want to reserve a sufficient amount of the data (in the validation and testing
set) for getting an unbiased estimate of the performance of the learnt model.
It is very likely that the new data is a different kind of data not existing in
the current splits and hence we want to have a sufficient representation of
the new data in all the three splits.

3. Keep the test set fresh. We want to keep the testing/validation sets fresh
to avoid the bias due to the reuse of the test set.

4. Learn from your mistakes. At the same time we do not want to com-
pletely sequester the test set and make sure that data mining practitioners
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Fig. 2. (a) Parallel dump workflow The new data is split into three parts (according to
the ratio β : γ : 1− (β +γ)) and directly dumped into the existing training, validation,
and test splits. (b) Serial waterfall workflow A δ3 fraction of the validation set moves
to the training set, a δ2 part of the test set moves to the validation set, and a δ1 fraction
of the new data is allocated to the test set.

learn from our mistakes in the test set. This is especially useful in scenarios
where then the data mining practitioners have to go back to their drawing
boards and re-design their model because it failed on a sequestered test set.

In the next section we describe two workflows: the parallel dump (§ 4.1) and the
serial waterfall (§ 4.2) each of which can address some of these objectives. In
§ 4.3 we describe the proposed hybrid workflow which can balance all the four
objectives described above.

4.1 Parallel Dump Workflow

The most obvious method is to split the new data into three parts and directly
dump each part into the existing test, validation, and training splits as shown
in Figure 2(a). One could use a 50% training-25% validation-25% test split as
earlier or any desired ratio β : γ : 1−(β+γ). The main advantage of this method
is that we have immediate access to the new data in the training set and the
model can be improved quickly. Also a sufficient portion of the new data goes
into the validation and the test set immediately. However once the new data is
allocated we end up using the validation and test splits again one more time
(the split is now no longer as fresh as the first time) thus leading to the model
selection bias. In this workflow the splits are static and there is no movement
across the splits. As a result we do not have a chance to learn from mistakes in
the validation and testing set. Generally it may not be to our advantage to let
the test split to keep growing without learning from the errors the model makes
on the test set. So it makes sense to move some part of the data from the test
set to either the training or validation set.
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Fig. 3. (a) The hybrid workflow There is a movement of data among different sets in
the serial mode and at the same time there is an immediate fresh influx of data from
the parallel mode. (b) The continuum workflow In this setting instead of having 3 sets
(training, testing, unseen) we will in theory have a continuum of sets (with samples
trickling to the lower levels), with the lowest one for training and the top most one to
give the most unbiased estimate of performance.

4.2 Serial Waterfall Workflow

In this workflow data keeps trickling from one level to the other as illustrated
in Figure 2(b). Once new data arrives, a δ3 fraction of the validation set moves
to the training set, a δ2 part of the test set moves to the validation set, and a
δ1 fraction of the new data is allocated to the test set. The training set always
keeps getting bigger and once a data moves to the training set it stays there
forever. This mode has the following advantages: (1) the test and validation sets
are always kept fresh. This avoids over fitting due to extensive model search
since the validation and test sets are always refreshed. (2) Since part of the data
from the validation and the test set eventually moves to the training we have a
chance to learn from the mistakes. The disadvantage of this serial workflow is
that the new data takes some time to move to the training set, depending on
how often we refresh the existing sets. This restricts us from exploiting the new
data as quickly as possible as it takes some time for the data to trickle to the
training set.

4.3 Hybrid Workflow

Our proposed workflow as illustrated in Figure 3(a) is a combination of the above
two modes of dataflow. It combines the advantages of both these modes. The
key feature of the proposed workflow is that there is a movement of data among
different sets in the serial mode and at the same time there is an immediate
fresh influx of data from the parallel mode. We split the new data randomly
into two sets according to the ratio 1 − α : α. One split is used for the Serial
Waterfall mode and the other split is used for the Parallel Dump mode. A value
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of α = 0.5 seems to be a reasonable choice 2. The value of α can be increased if
a more dominant parallel workflow is desired. Note that α = 0 corresponds to
the serial workflow and α = 1 corresponding to the parallel workflow. The value
of parameter α is more of design choice and can be chosen based on the domain
and various constraints.

In principle the proposed workflow can be extended to more than 3 levels
(see Figure 3(b)). In this setting instead of having 3 sets (training, validation,
test) we will in theory have a continuum of sets (with samples trickling to the
lower levels), with the lowest one to be used for training and the top most one to
give the most unbiased estimate of performance of the model. Presumably levels
could be: training/tweaking data, cross validation data, hold out testing data,
up to highly unbiased very fresh test data. Lower levels would obviously be used
more often than higher ones, and testing on higher levels would presumably only
happen when tests on lower levels were successful.

5 Bias Due to Test Set Reuse

A key idea in the serial mode is to move data from one level to another to avoid
bias due to multiple reuse. We derive a simple rule to decide how much of the
new data has to be moved to the test set to avoid the bias due to reuse of the
test set multiple times. The same can be used to move data from the test set
to the validation set to keep the validation set fresh. This analysis is based on
ideas in [14]. Our goal is not to get a exact expression but to get the nature of
dependence on the set size. We will consider a scenario where we have a test set
of N examples. At each reuse we supplement the test set with M new examples

2 The parameter α decides the proportion of the incoming data that will go into the
train and the test splits. Without any prior knowledge or assumption, the reasonable
value of α is a constant fixed at 0.5. But α can be further made to vary every time
a new batch of data arrives. For example consider a batch scenario where for every
incoming batch of data we can compute the similarity of the current batch with the
previously seen batches (for example using the Kullback-Leilbler (KL) divergence).
The parameter α can then be made to vary based on the estimated KL divergence.
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Fig. 5. Workflow simulation setup (a) A two-dimensional binary classification simula-
tion setup with data sampled from four Gaussians. (b) The decision boundary obtained
by a neural network at the start of the workflow simulation. At each time step we add
50 new examples into the data pool, allocate the new data according to different work-
flows (either the parallel dump, serial waterfall, or the hybrid workflow) and repeat the
model building process. (c) The final decision boundary obtained when all the data
has been acquired.

and remove M of the oldest examples. Specifically we will prove the following
result (see the appendix for the proof):

After each reuse if we supplement the test set (consisting of N samples) with
M > N/(k

√
N + 1) new samples for some small constant k then the bias due to

test set reuse can be safely ignored.
Figure 4 plots the ratio M/N as a function of N for two values of k. We need

to replace a smaller fraction of the data when N is large. Small datasets lead to
a larger bias after each use and hence need to be substantially supplemented.

6 Illustration on Synthetic Data

We first illustrate the advantages and the disadvantages of the three differ-
ent workflows on a two-dimensional binary classification problem shown in
Figure 5(a) with data sampled from a mixture of four Gaussians. The positive
class consists of 1000 examples from two Gaussians centered at [-1,1] and [1,-1].
The negative class consists of 1000 examples from a mixture of two Gaussians
centered at [1,1] and [-1,-1] respectively. We use a multi-layer neural network
with one hidden layer and trained via back propagation. The number of units
in the hidden layer is considered as the tuning parameter and selected using the
validation split. In order to see the effect of having a non-representative set of
data during typical model building scenarios, we consider a scenario where at
the beginning of the model building process we have collected data only from
two Gaussians (positive class centered at [-1,1] and negative class centered at
[-1,-1]) as shown in Figure 5(b). Based on the data collected so far we will use
the validation split to tune the number of hidden units in the neural network,
the training split to train the neural network via back propagation, and the test
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split to compute the misclassification error of the final trained model. Figure 5(b)
shows the decision boundary obtained for the trained neural network using such
splits at the start of the model building process. At each time step we add 50
new examples into the data pool, allocate the new data according to different
workflows (either the parallel dump, the serial waterfall, or the hybrid work-
flow) and repeat the model building process. The new data does not arrive in a
random fashion. We first sample data from the Gaussian centered at [1,1] and
then the data from the remaining Gaussian centered at [1,-1]. While this may
not be a fully realistic scenario it helps us to illustrate the different workflows.
One way to think of this is to visualize that each Gaussian represents data from
different hospital/scanner and the data collection may not be designed such that
data arrives in a random fashion. Figure 5(c) shows the final decision boundary
obtained when all the data has been acquired. Once we have all the data all
different workflows reach the same performance. Here we are interested in the
model performance and our estimate of it at different stages as new data arrives.

Actual Performance of The Model. Figure 6 plots the misclassification
error at each time point (until all the data has been used) for the parallel dump
(with parameters β = 0.5 and γ = 0.3 ), the serial waterfall (with δ parameters
automatically chosen), and the hybrid workflow (with α = 0.1). The error is
computed on the entire dataset 3. If we had the entire dataset the final model
should have an error of around 0.15. It can be seen that the parallel dump
workflow exploits the new data quickly and reaches this performance in around
20 time steps. The serial waterfall moves the data to the training set slowly and
achieves the same performance in around 40 time steps. The hybrid workflow
can be considered as a compromise between these two workflows and exploits all
the new data in around 25 time steps. The sharp drops in the curve occur when
the decision boundary changes abruptly because we have now started collecting
data from a new cluster.

Estimate of The Performance of The Model. We want to exploit as much
of the new data as quickly as possible for training our final predictive model.
However at the same time we want to keep the test set fresh in order to get
the most unbiased estimate of the performance of the final model. Note that
Figure 6 plotted the test error assuming that some oracle gave us the actual
data distribution. However in practice we do not have access to this distribution
and should use the existing data collected so far (more precisely the test split)
to also get a reasonably good estimate of the test error. Figure 7(a), (b), and (c)
compares the training error, test error, and the actual error for three different
workflows. The results are averaged over 100 repetitions and the standard devi-
ation is also shown. While the test error for all the three workflows approaches
the true error when all the data has been collected we want to track how the
test error changes during any stage of the model building process. While the

3 We have shown how to select the delta parameter automatically in the serial waterfall
model. The other parameters are more of design choice and have to be chosen based
on the various constraints (time, financial, etc.).
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Fig. 6. Comparison of workflows The error (computed on the entire dataset) at each
time point (until all the data has been used) for the parallel dump (with parameters
β = 0.5 and γ = 0.3 ), the serial waterfall (with δ automatically chosen), and the
hybrid workflow (with α = 0.1).

parallel dump workflow (see Figure 7(a)) gave us a predictive model quickly the
test error is highly optimistic (and close to the training error) and is close to the
true error only at the end when we have access to all the data. The test error for
serial waterfall workflow (see Figure 7(b)) does not track the training error and is
better reflection of the risk of the model than the parallel dump workflow. These
variations in the test error can be explained because the composition of the test
set is continuously changed at each time step and it takes some time for the new
data to finally reach the training set. However the serial waterfall workflow can
be overly pessimistic and the proposed hybrid workflow (see Figure 7(c)) can be
a good compromise between the two—it can give a good model reasonably fast
and at the same time produce a reasonably good estimate of the performance
of the model. By varying the parameter α one can obtain a desired compromise
between the serial and the parallel workflow. Figure 7(d) compares the hybrid
workflow for two different values of the split parameters α = 0.1 and α = 0.5
with α = 0 corresponding to the serial workflow and α = 1 corresponding to the
parallel workflow. The value of parameter α is more of design choice and can be
chosen based on the domain and various constraints.

7 Case Study: Paraphrase Detection

We demonstrate the tradeoffs of the different workflows on a natural language
processing task of paraphrase detection [8]. Given a pair of sentences, for exam-
ple, Video game violence is not related to serious aggressive behavior in real
life. and Violence in video games is not causally linked with aggressive tenden-
cies., we would like to learn a model which predicts whether the two sentences
are semantically equivalent (paraphrases) or not. We take a supervised learning
approach to this problem by first manually collecting a labeled data, extracting
features from the sentences, and then training a binary classifier. Given a pair



14 V.C. Raykar and A. Saha

0 5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time step

M
isc

las
sif

ica
tio

n 
er

ro
r

 

 

Oracle
Test
Training

(a) Parallel—Optimistic test error

0 5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time step

M
isc

las
sif

ica
tio

n 
er

ro
r

 

 

Oracle
Test
Training

(b) Serial—Pessimistic test error
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Fig. 7. The estimated training error, test error, and the actual error (oracle) for (a)
the parallel dump, (b) the serial waterfall and (c) the hybrid workflow. (d) The effect
of varying the split parameter α.

of sentences one can construct various features which quantify the dissimilarity
between two sentences. One of the most import set of features are the based
on machine translation (MT) metrics. For example the BLEU score [11] (which
measures n-gram overlap) which is an widely used evaluation metric for MT
systems is an important feature for paraphrase detection. In our system we used
a total of 14 such features and then trained a binary decision tree using the
labeled data to train the classifier.

To collect the labeled data we show a pair of sentences to three in-house
annotators and ask them to label them as either semantically equivalent or not.
The sentences were taken from wikipedia articles corresponding to a specified
topic. Due to the overall project design the labeling proceeded one topic at a
time. We currently have a labeled data of 715 sentence pairs from a total of 6
topics (56, 76, 88, 108, 140, 247 sentence for each of the six topics) of which 112
were annotated as semantically equivalent by a majority of the annotators. We
analyse a situation where the data arrives one topic at a time. The new data
is allocated into train, validation, and test splits according the parallel dump,
serial waterfall, and the hybrid workflow. At each round a binary decision tree
is trained using the train split, the decision tree parameters are chosen using the
validation split, and the model performance is assessed using the test split.
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(a) Parallel (b) Serial (c) Hybrid (α = 0.5)

Fig. 8. Paraphrase detection (see § 7) (a) The misclassification error at each round
(until all data has been used) on the oracle, train and test split for (a) the parallel
dump (with parameters β = 0.6 and γ = 0.2 ), (b) the serial waterfall (with δ1 = 0.5,
δ2 = 0.3, and δ3 = 0.2), and (b) the hybrid workflow (with α = 0.5). The oracle is a
surrogate for the true model performance which is evaluated on 30 % of entire original
data.

Figure 8 shows the misclassification error on the train and the test splits as a
function of the number of rounds, here each round refers to a point in time when
we acquire a new labeled data and data reallocation/movement happens. The
results are averaged over 50 replications, where for each replication the order of
the topics is randomly permuted. We would like to see how close is the model
performance assessed using the test split to the true model performance on the
entire data (which we call the oracle). Since we do not have access to the true
data distribution we sequester 30 % of original data (which includes data from
all topics) and use this as a surrogate for the true performance. The following
observations can be made (see Figure 8): (1) The test error for all the three
workflows approaches the true oracle error at steady state when a large amount
of data has been collected. (2) However in the early stages the performance of
the model on the test split as assessed by the parallel workflow (Figure 8(a))
is relatively optimistic while that of the serial workflow(Figure 8(b)) is highly
pessimistic. (3) The proposed hybrid workflow (see Figure 8(d)) estimates the
test error much closer to the oracle error.

8 Related Work

There is not much related work in this area in the machine learning literature.
Most earlier research has focussed on settings with either unlimited data or finite
fixed data, while this paper proposes data flow strategies for finite but growing
datasets. The bias due to repeated use of the test set has been pointed out in
a few papers in the cross-validation setting [10,13]. However main focus of this
paper is on data rich situations where we estimate the prediction capability of
a classifier on a independent test data set (called the conditional test error). In
data poor situations techniques like cross-validation [7] and bootstrapping [3]
are widely used as a surrogate to this, but they can only estimate the expected
test error (averaged over multiple training sets).



16 V.C. Raykar and A. Saha

There is a rich literature in the area of learning under concept drift [5] and
dataset shifts [12]. Concept drift primarily refers to an online supervised learn-
ing scenario when the relation between the input data and the target variable
changes over time. Dataset shift is a common problem in predictive modeling that
occurs when the joint distribution of inputs and outputs differs between training
and test stages. Covariate shift, a particular case of dataset shift, occurs when
only the input distribution changes. The other kinds of concept-drifts are prior
probability shift where the distribution over true label y changes, sample selection
bias where the data distributions varies over time because of an unknown sample
rejection bias and source component shift where the datastream can be thought
to be originating from different unknown sources at different time points.

Various strategies have been proposed to correct for these shifts in test dis-
tribution [5,12]. In general the field of concept drift seeks to develop shift-aware
models that can capture these specific types of variations or a combination of
the different modes of variations or do model selection to assess whether dataset
shift is an issue in particular circumstances [9]. In our current work the focus is
to investigate into different kinds of dynamic workflows for assigning data into
train, test and validation splits to reduce the effect of bias in the scenario of a
time-shifting dataset. In our setting the drift arises as a consequence of that data
arriving in an non-iid fashion. Hence this body of work mainly deals with the
source component shift of the datasets where for example in the medical domain
where a classifier is built from the training data obtained from various hospitals,
each hospital may have a different machine with different bias, each producing
different ranges of values for the covariate x and possibly even the true label y.

We are mainly concerned with allocating the new data to the existing splits
and not with modifying any particular learning method to account for the shifts.
One of our motivations was not to make the allocation strategies model or data
distribution specific. We wanted to come up with strategies that can be used
with any model or data distribution. The main contribution of our work is to
propose these strategies and empirically analyze them. These kind of strategies
have not been discussed in the concept drift literature.

9 Conclusions

We analysed three workflows for allocating new data into the existing training,
validation, and test splits. The parallel dump workflow splits the data into three
parts and directly dumps them into the existing splits. While it can exploit the
new data quickly to build a good model the estimate of the model performance
is optimistic especially when the new data does not arrive in a random fashion.
The serial waterfall workflow which trickles the data from one level to another
avoids this problem by keeping the test set fresh and prevents the bias due to
multiple reuse of the test set. However it takes a long time for the new data to
reach the training split. The proposed hybrid workflow which balances both the
workflows seems to be a good compromise—it can give a good model reasonably
fast and at the same time produce a reasonably good estimate of the model
performance.
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A Appendix: Bias Due to Test Set Reuse

We will consider a scenario where we have a test set of N examples. At each
reuse we supplement the test set with M new examples and remove M of the
oldest examples. In this appendix we prove the following result:

After each reuse if we supplement the test set (consisting of N samples) with
M > N/(k

√
N + 1) new samples for some small constant k then the bias due to

test set reuse can be safely ignored.

Maximum Bias Due to Test Set Reuse: Let Ej be the estimated error of
the model ̂fj on a test set consisting of N samples after the test set having been
reused j times, i.e.,

Ej =
1
N

N
∑

i=1

L(yi, ŷij) =
1
N

N
∑

i=1

L(yi, ̂fj(xi)), (1)

where yi is the true response, ŷij = ̂fj(xi) is the response predicted by the learnt
model after the test set has been reused j times, and L is the loss function used
to measure the error. If the test set is used multiple times the final model will
overfit to the testing set. In other words the performance of the model on the
test set will be biased and will not reflect the true performance of the model.

Let Biasmax(Ej) be the maximum possible bias in the estimate of the error
Ej caused due to multiple reuse of the test set. The first time the test set is
used the bias is zero, i.e., Biasmax(E1) = 0. Every subsequent use increases the
bias. The worst case scenario (the perhaps the easiest for the developer) is when
the developer directly observes the predictions ŷij and learns a model on these
predictions to match the desired response yj for all examples in the test set. Since
we have N examples in the test set by reusing the test set N + 1 times one can
actually drive the error EN+1 = 0 since we will have N unknowns to estimate
(y1, . . . , yN ) and N new tests. Hence Biasmax(EN+1) = E1. We will further
assume that at each test we lose one degree of freedom and hence approximate

Biasmax(Ej) =
j − 1
N

E1, j = 1, . . . , N. (2)

Supplement the Test Set to Avoid the Bias: In order to avoid this bias our
strategy is to supplement the test set with M new examples and move the oldest
M examples to the lower validation set. We do this every time we reuse the test
set. If we keep doing this then in the long run we will have a set of N examples
which has been reused N/M times. Hence if we supplement the test set with M
examples at each reuse the bias in the test set at steady state will be

Biasmax(E∞) =
N − M

NM
E1, (3)

where E∞ is the error in this steady state scenario.
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How Much to Supplement?: If we require that for some small constant k,
|Biasmax(E∞)| < sd(E∞)k then the bias can be safely ignored,where sd(E∞) is the
standard deviation of the error estimate. For analytical tractability we will assume
a squared loss error function, i.e., L(y, ŷ) = (y − ŷ)2. Hence at steady state

E∞ =
1
N

N
∑

i=1

(yi − ŷi∞)2. (4)

Since we have a sum of squares we assume E∞ ∼ Γ (N,σ2/N), a gamma distri-
bution with N degrees of freedom and σ2 = Var(yi − ŷi∞). Hence

sd(E∞) = σ2/
√

N. (5)

We also approximate E1 by its expected value E1 ≈ E[E1] = σ2.
Hence |Biasmax(E∞)| < sd(E∞)k implies N−M

NM σ2 < σ2
√

N
k that is M >

N
k
√

N+1
. Hence after each reuse if we supplement the test set (consisting of N

samples) with M > N/(k
√

N + 1) new samples for some small constant k then
the bias due to test set reuse can be safely ignored. Note that M has approxi-
mately

√
N dependency.
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