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Abstract. We introduce both joint training of neural higher-order
linear-chain conditional random fields (NHO-LC-CRFs) and a new struc-
tured regularizer for sequence modelling. We show that this regularizer
can be derived as lower bound from a mixture of models sharing parts,
e.g. neural sub-networks, and relate it to ensemble learning. Further-
more, it can be expressed explicitly as regularization term in the training
objective.

We exemplify its effectiveness by exploring the introduced NHO-LC-
CRFs for sequence labeling. Higher-order LC-CRFs with linear factors
are well-established for that task, but they lack the ability to model
non-linear dependencies. These non-linear dependencies, however, can
be efficiently modeled by neural higher-order input-dependent factors.
Experimental results for phoneme classification with NHO-LC-CRFs
confirm this fact and we achieve state-of-the-art phoneme error rate of
16.7% on TIMIT using the new structured regularizer.

Keywords: Structured regularization · Ensemble learning · Additive
mixture of experts · Neural higher-order conditional random field

1 Introduction

Overfitting is a common and challenging problem in machine learning. It occurs
when a learning algorithm overspecializes to training samples, i.e. irrelevant or
noisy information for prediction is learned or even memorized. Consequently,
the learning algorithm does not generalize to unseen data samples. This results
in large test error, while obtaining small training error. A common assumption
is that complex models are prone to overfitting, while simple models have lim-
ited predictive expressiveness. Therefore a trade-off between model complexity
and predictive expressiveness needs to be found. Usually, a penalty term for
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the model complexity is added to the training objective. This penalty term is
called regularization. Many regularization techniques have been proposed, e.g. in
parameterized model priors on individual weights or priors on groups of weights
like the l1-norm and l2-norm are commonly used.

Recently, dropout [12] and dropconnect [33] have been proposed as regulariza-
tion techniques for neural networks. During dropout training, input and hidden
units are randomly canceled. The cancellation of input units can be interpreted
as a special form of input noising and, therefore, as a special type of data aug-
mentation [18,32]. During dropconnect training, the connections between the
neurons are dropped [33]. Dropout and dropconnect can be interpreted as mix-
tures of neural networks with different structures. In this sense, dropout and
dropconnect have been interpreted as ensemble learning techniques. In ensemble
learning, many different classifiers are trained independently to make the same
predictions, i.e. ensembles of different base classifiers. For testing, the predic-
tions of the different classifiers are combined. In the dropout and dropconnect
approaches, the mixture of models is trained and utilized for testing. Recently,
pseudo-ensemble learning [1] has been suggested as a generalization of dropout
and dropconnect. In pseudo-ensemble learning, a mixture of child models gener-
ated by perturbing a parent model is considered.

We propose a generalization of pseudo-ensemble learning. We introduce a
mixture of models which share parts, e.g. neural sub-networks, called shared-
ensemble learning. The difference is that in shared-ensemble learning, there is no
parent model from which we generate child models. The models in the shared-
ensemble can be different, but share parts. This is in contrast to traditional
ensembles which typically do no share parts. Based on shared-ensembles, we
derive a new regularizer as lower bound of the conditional likelihood of the
mixture of models. Furthermore, this regularizer can be expressed explicitly as
regularization term in the training objective. In this paper, we apply shared-
ensemble learning to linear-chain conditional random fields (LC-CRFs) [13] in
a sequence labeling task, derive a structured regularizer and demonstrate its
advantage in experiments. LC-CRFs are established models for sequence label-
ing [7,35], i.e. we assign some given input sequence x, e.g. a time series, to an
output label sequence y.

First-order LC-CRFs typically consist of transition factors, modeling the
relationship between two consecutive output labels, and local factors, mod-
eling the relationship between input observations (usually a sliding window
over input frames) and one output label. But CRFs are not limited to
such types of factors: Higher-order LC-CRFs (HO-LC-CRFs) allow for arbi-
trary input-independent (such factors depend on the output labels only) [35]
and input-dependent (such factors depend on both the input and output vari-
ables) higher-order factors [16,23]. That means both types of factors can include
more than two output labels. Clearly, the Markov order of the largest factor (on
the output side) dictates the order of LC-CRFs.

It is common practice to represent the higher-order factors by linear func-
tions which can reduce the model’s expressiveness. To overcome this limitation,
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a widely used approach is to represent non-linear dependencies by parametrized
models and to learn these models from data. Mainly kernel methods [14] and
neural models [15,19,20,22,24] have been suggested to parametrize first-order
factors in LC-CRFs, i.e. mapping several input frames to one output label. In
summary, most work in the past focused either on (a) higher-order factors repre-
sented by simple linear models, or (b) first-order input-dependent factors repre-
sented by neural networks. In this work, we explore joint-training of neural and
higher-order input-dependent factors in LC-CRFs.

Unfortunately, higher-order CRFs significantly increase the model complex-
ity and, therefore, are prone to overfitting. To avoid overfitting, the amount of
training data has to be sufficiently large or, alternatively, regularizers can be uti-
lized. In this work, we apply the structured regularizer derived from the shared-
ensemble framework to higher-order CRFs and demonstrate its effectiveness.

Our main contributions are:

1. We propose shared-ensemble learning as a generalization of pseudo-ensemble
learning, i.e. a mixture of models which share parts, e.g. neural sub-networks.

2. From this framework we derive a new regularizer for higher-order sequence
models. By lower-bounding the conditional likelihood of the mixture of mod-
els, we can explicitly express the regularization term in the training objective.

3. Furthermore, we introduce joint-training of neural higher-order input-
dependent factors in LC-CRFs depending on both sub-sequences of the input
and the output labels. These factors are represented by individual multi-layer
perceptron (MLP) networks.

4. We present experimental results for phoneme classification. NHO-LC-CRFs
with the proposed regularizer achieve state-of-the-art performance of 16.7%
phone error rate on the TIMIT phoneme classification task.

The remainder of this paper is structured as follows: In Section 2 we briefly
review related work. In Section 3 we introduce the NHO-LC-CRF model.
Section 4 provides details on the structured regularizer. In Section 5 we evaluate
our model on the TIMIT phoneme classification task. Section 6 concludes the
paper.

2 Related Work

Dropout applied to the input has been formalized for some linear and log-linear
models [18,32]. Assuming a distribution of the dropout noise, an analytical form
of the dropout technique has been presented. The training objective has been
formulated as the expectation of the loss function under this distribution. Fur-
thermore, this objective has been reformulated as the original objective and an
additive explicit regularization.

As mentioned before, HO-LC-CRFs have been applied to sequence label-
ing in tagging tasks, in handwriting recognition [23,35] and large-scale machine
translation [16]. In these works, higher-order factors have not been modeled
by neural networks which is the gap we fill. However, first-order factors have
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been already modeled by several types of neural networks. Conditional neural
fields (CNFs) [20] and multi-layer CRFs [22], propose a direct method to opti-
mize MLP networks and LC-CRFs under the conditional likelihood criterion
based on error back-propagation. Another approach is to pre-train an unsu-
pervised representation with a deep belief network, transform it into an MLP
network and finally fine-tune the network in conjunction with the LC-CRF [5].
Hidden-unit conditional random fields (HU-CRFs) [19] replace local factors by
discriminative RBMs (DRBMs) [15], CNN triangular CRFs [34] by convolutional
neural networks (CNNs) and context-specific deep CRFs [24] by sum-product
networks [6,21] which can be interpreted as discriminative deep Gaussian mix-
ture models generalizing discriminative Gaussian mixture models to multiple
layers of hidden variables.

In more detail, we contrast our work from [5]: First, although formulated
quite general that work focused on neural first-order factors in contrast to neu-
ral higher-order factors in our work. Second, they used one shared neural network
for all factors in contrast to individual neural networks as in our case. Third, that
work utilized unsupervised pre-training as initialization of their MLP network.
We jointly train the NHO-LC-CRF and we improved the classification perfor-
mance using the new structured regularizer. This work is an extension of [25]
which focused on discriminative pre-training of neural higher-order factors to
produce rich non-linear features. A linear higher-order LC-CRFs is subsequently
trained on these features. In contrast, here we train jointly the NHO-LC-CRF.
Furthermore, we introduce the new structured regularizer and show its relation
to mixture models and ensemble learning.

Finally, in computer vision higher-order factors in Markov random fields [26]
and conditional random fields [9,17,30] are much more common than in sequence
labeling. Most of that work focus on higher-order factors represented by products
of experts [11]. Typically, approximate inference such as belief propagation or a
sampling method is utilized.

3 Higher-Order Conditional Random Fields

We consider HO-LC-CRFs for sequence labeling. The HO-LC-CRF defines a
conditional distribution

pCRF (y|x) =
1

Z(x)

T∏

t=1

N∏

n=1

Φt(yt−n+1:t;x), (1)

for an output sequence y of length T given an input sequence x of length T
where Φt(yt−n+1:t;x) are non-negative factors that can depend on the label
sub-sequence yt−n+1:t and the whole input sequence x, and where Z(x) is an
input-dependent normalization computed as

Z(x) =
∑

y

T∏

t=1

N∏

n=1

Φt(yt−n+1:t;x). (2)
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Fig. 1. Factor graph of LC-CRFs using (a) input-dependent uni-gram features f1-1

and bi-gram transition features f2 (typical) and (b) additionally 3-gram features f3 as
well as input-dependent features f2-2 and f3-3.

An (N − 1)th-order CRF models label sub-sequences of maximal span N in the
corresponding factors. The factors Φt(yt−n+1:t;x) are assumed to be given in
log-linear form, i.e.

Φt(yt−n+1:t;x) = exp

(
∑

k

wt,n
k fk(yt−n+1:t; t,x)

)
, (3)

where fk(yt−n+1:t; t,x) are arbitrary vector-valued and (possibly) position-
dependent feature functions and wt,n

k are the weights. These functions can be
any functions ranging from simple indicator functions, linear functions, up to
functions computed using neural networks as we have in this work. We distin-
guish the following types of feature functions:

– n-Gram Input-Independent Features. These features are observation-
independent, i.e. fk(yt−n+1:t; t,x) = fn(yt−n+1:t). Each entry of the vec-
tors corresponds to the indicator function of a certain label sub-sequence
ai, i.e. fn(yt−n+1:t) = [1(yt−n+1:t = a1),1(yt−n+1:t = a2), . . .]T . Typically
a1,a2, . . . enumerate all possible label sub-sequences of length n. These tran-
sition functions are denoted as fn in Figure 1.
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– m-n-Gram Input-Dependent MLP Features. These features general-
ize local factors to longer label sub-sequences. In this way, these feature
functions can depend on the label sub-sequence yt−n+1:t and an input sub-
sequence of x, i.e. fm−n(yt−n+1:t; t,x) = [1(yt−n+1:t = a1)gm(x, t), . . .]T

where gm(x, t) is an arbitrary function. This function maps an input sub-
sequence into a new feature space. In this work, we choose to use MLP
networks for this function being able to model complex interactions among
the variables. More specific, the hidden activations of the last layer hm(x, t)
of the MLP network are used, i.e. gm(x, t) = hm(x, t). We call these features
m-n-gram MLP features. They are denoted as fm-n in Figure 1, assuming
that they only depend on input-output sub-sequences. Although possible,
we do not consider the full input sequence x to counteract overfitting, but
only use a symmetric and centered contextual window of length m around
position t or time interval t − n + 1 : t. Exemplary, in case of two labels and
four input sub-sequences we include the inputs from time interval t−2 : t+1.
An important extension to prior work [5] is that the m-n-gram MLP fea-
tures are modeled by individual networks to represent different non-linear
interdependences between input and output sub-sequences.

Figure 1 show two LC-CRFs as factor graph. A typical LC-CRF as shown in
the top of the Figure 1 consists of input-dependent uni-gram features f1−1 and
input-independent bi-gram features f2. In this work, we consider a rarely used
extension using higher-order input-dependent m-n-gram features, for example
f3−3, shown in the bottom of Figure 1.

The benefit of input-dependent higher-order factors for phoneme classifica-
tion is substantiated by the fact that the spectral properties of phonemes are
strongly influenced by neighboring phonemes. This is illustrated in Figure 2. In
conventional speech recognition systems, this well-known fact is tackled by intro-
ducing meta-labels in form of tri-phone models [10]. Input-dependent higher-
order factors in HO-LC-CRF support this by mapping an input sub-sequence
to an output sub-sequence, i.e. several output labels, without introducing meta-
labels. Further in HO-LC-CRF, we are able to model arbitrary mappings from
input sub-sequences of length m to output sub-sequences of length n, i.e we can
also model mono-phones, bi-phones and tri-phones within the same model.

3.1 Parameter Learning

Parameters w = {wt,n
k | ∀k, t, n} are optimized to maximize the conditional

log-likelihood of the training-data, i.e.

F(w) =
J∑

j=1

log p(y(j)|x(j)), (4)

where ((x(1),y(1)), . . . , (x(J),y(J))) is a collection of J input-output sequence
pairs drawn i.i.d. from some unknown data distribution. The partial derivatives
of (4) with respect to the weights wt,n

k can be computed as described in [23,35].
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Fig. 2. Three realizations of word-final /t/ in spontaneous Dutch. Left panel: Realization
of /rt/ in gestudeerd ’studied’. Middle panel: Realization of in leeftijd mag ‘age
is allowed’. Right panel: Realization of in want volgens ‘because according’ [28].

The weights are shared over time wt,n
k = wn

k as we use time-homogeneous fea-
tures. To perform parameter learning using gradient ascent all marginal posteri-
ors of the form p(yt−n+1:t|t,x(j)) are required. These marginals can be efficiently
computed using the forward-backward algorithm [23,35]. The algorithm can be
easily extended to CRFs of order (N − 1) > 2. However, for simplicity and as
we are targeting GPU platforms, we choose another approach. As we describe
in more detail in Section 3.2, we compute the conditional log-likelihood by com-
puting just the forward recursion. Then we utilize back-propagation [27] as com-
mon in typical neural networks to compute their gradients. The conditional
likelihood, the forward recursion and the corresponding gradients are computed
using Theano [2], a mathematical expression compiler for GPUs and automatic
differentiation toolbox.

3.2 Forward Algorithm for 2nd-Order CRFs

The main ingredient needed for applying the back-propagation algorithm is the
forward recursion and the computation of the normalization constant. For a
given input-output sequence pair (x,y), the forward recursion is given in terms
of quantities αt(yt−1:t) that are updated according to

αt(yt−1:t) = Φt(yt;x)Φt(yt−1:t;x)
∑

yt−2

Φt(yt−2:t;x)αt−1(yt−2:t−1). (5)

The recursion is initialized as

α2(y1:2) = Φ2(y2;x)Φ1(y1:2;x)Φ1(y1;x). (6)

Finally, the normalization constant can be computed as

Z(x) =
∑

yT−1:T

αT (yT−1:T ). (7)
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The most probable label sequence can be found by the Viterbi algorithm gener-
alized to HO-LC-CRFs: The summation in the forward recursion is exchanged
by the maximum operation, i.e. quantities α̂t(yt−1:t) are computed as

α̂t(yt−1:t) =Φt(yt;x)Φt(yt−1:t;x)max
yt−2

Φt(yt−2:t;x)α̂t−1(yt−2:t−1). (8)

At the end of the recursion, we identify the most probable state at the last
position and apply back-tracking. For details and for time complexities we refer
to [23,35].

4 Structured Regularizer

As mentioned in the introduction, NHO-LC-CRFs have high predictive expres-
siveness but are prone to overfitting. To fully exploit the potential of these mod-
els, special regularization techniques must be applied. Therefore, on top of the
NHO-LC-CRF, we add a new structured regularizer. In the following, we derive
this regularizer in a quite general form based on additive mixture of experts [3].
Our derivation is based on a single training sample (x,y), the generalization to
multiple samples is straightforward.

A mixture of models, i.e. additive mixture of experts, is defined as

log p(y|x) = log
∑

M∈M
p(y,M |x), (9)

where M is the set of models. We assume that the models in M have K
shared parts S1, . . . , SK , e.g. neural sub-networks. We consider the special case
M = {MS1,...,SK

,MS1 , . . . ,MSK
}, where MS1,...,SK

is the combination model
which contains all shared parts and MSi

are sub-models containing the cor-
responding parts Si. The intuition behind this model choice is the following:
Shared parts in the combination model should not rely on the predictions of the
other parts. Therefore, the sub-models should produce good predictions by itself.
This approach improves robustness by counteracting co-adaptation comparable
to dropout training in neural networks.

Expanding Equation 9 yields

log p(y|x) = log
(
p(y,MS1,...,SK

|x) +
∑

MS∈MS

p(y,MS |x)
)
, (10)

where the first term in the logarithm is the conditional joint probability of y
and the combination model MS1,...,SK

and the sum is over the conditional joint
probabilities of y and the sub-models in MS = {MS1 , . . . ,MSK

}. By the chain-
rule p(y,M |x) = p(y|x,M) p(M |x) and Jensen’s inequality, we obtain a lower
bound to the log-likelihood as

log
∑

M∈M
p(y|x,M) p(M |x) ≥

∑

M∈M
p(M |x) log p(y|x,M), (11)
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where
∑

M∈M p(M |x) = 1. By lower-bounding the log-likelihood we reformu-
lated the additive mixture of experts as a product of experts, i.e. summation in
log-space. By assuming that the model prior satisfies p(M |x) = p(M), i.e. the
prior is independent of the sample x, we obtain

∑
M∈M p(M) log p(y|x,M).

To this end, we can rewrite our lower bound as

p(MS1,...,SK
) log p(y|x,MS1,...,SK

) +
∑

MS∈MS

p(MS) log p(y|x,MS). (12)

We apply this result to our sequence labeling model introduced in Section 3.
We utilize the MLP networks for the different sub-sequences as sub-models MS

and the NHO-LC-CRF as the combination model MS1,...,SK
. Assuming a prior

probability of λ for the combination model, i.e. p(MS1,...,SK
) = λ, and a uniform

model prior p(MS) = (1 − λ)/|MS | for the label sub-sequence models, the final
training objective over sequences including the structured regularizer is

F(w) =
J∑

j=1

(
λ log pCRF (y(j)|x(j)) + (1 − λ)

1
|MS |

∑

n

log Rn(y(j)|x(j))
)
, (13)

where (x(j),y(j)) is the jth training sample. The regularizers Rn(y|x) for the
corresponding label sub-sequences are defined as

log Rn(y|x) =
∑

t=n:T

log pMLP(yt−n+1:t|t,m,x), (14)

where the conditional probabilities of the corresponding label sub-sequences are

pMLP(yt−n+1:t|t,m,x) =
exp

(
wT

n f
m−n(yt−n+1:t; t,x)

)

ZMLP
n (x)

(15)

and the normalization constants of the MLP networks are

ZMLP
n (x) =

∑

yt−n+1:t

exp
(
wT

n f
m−n(yt−n+1:t; t,x)

)
. (16)

This means the sub-models are MLP networks sharing the MLP features fm−n

with the NHO-LC-CRF, the combination model. The trade-off parameter λ bal-
ances the importance of the sequence model against the other sub-models.

For testing we drop the regularizer and find the most probable sequence by
utilizing the Viterbi algorithm for NHO-LC-CRFs as describled in Section 3.2.

5 Experiments

We evaluated the performance of the proposed models on the TIMIT phoneme
classification task. We compared isolated phone classification (without label
context information) with MLP networks to phone labeling with neural HO-
LC-CRFs. This comparison substantiates the effectiveness of joint-training of
neural higher-order factors. Furthermore, we show performance improvements
using our introduced structured regularizer during joint-training.
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5.1 TIMIT Data Set

The TIMIT data set [36] contains recordings of 5.4 hours of English speech from
8 major dialect regions of the United States. The recordings were manually seg-
mented at phone level. We use this segmentation for phone classification. Note
that phone classification should not be confused with phone recognition [10]
where no segmentation is provided. We collapsed the original 61 phones into
39 phones. All frames of Mel-frequency cepstral coefficients (MFCC), delta and
double-delta coefficients of a phonetic segment are mapped into one feature vec-
tor. Details are presented in [8]. The task is, given an utterance and a corre-
sponding segmentation, to infer the phoneme within every segment. The data set
consists of a training set, a development set (dev) and a test set (test), contain-
ing 140.173, 50.735 and 7.211 phonetic segments, respectively. The development
set is used for parameter tuning.

5.2 Experimental Setup

In all experiments, input features were normalized to zero mean and unit vari-
ance. Optimization of our models was in all cases performed using stochastic
gradient ascent using a batch-size of one sample. An �2-norm regularizer on the
model weights was used. We utilized early stopping determined on the devel-
opment data set. We trained for up to 500 epochs. However, in most cases
less iterations have been required. The proposed model was entirely trained on
NVIDIA GPUs using Theano [2], a mathematical expression compiler for GPUs
and automatic differentiation toolbox. The classification performance is mea-
sured by phone error rate (PER), i.e. Hamming distance between the reference
and predicted label sequence for all test samples.

5.3 Labeling Results Using Only MLP Networks

In the first experiment, we trained MLP networks with a single hidden layer to
predict the phone label of each segment. We tuned the number of hidden units
H ∈ {100, 150, 200, 300, 400, 500} and their activation functions, i.e. rectifier and
tanh. Furthermore, we analyzed the effect of the number of input segments, i.e.
we used the current segment and three or five surrounding segments centered at
the current position index as input. Results in Table 1 (only a sub-set is reported)
show that more hidden units result in better performance. For tanh activations,
the best performance of 21.0% is achieved with m = 3 input segments and using
H = 500 hidden units. More input segments reduced the performance. In pre-
liminary experiments, we found that more than one hidden layer decreased the
performance. Therefore, we used in the following experiments tanh activations
and one hidden layer.

5.4 Labeling Results Using LC-CRFs with Linear or Neural
Higher-Order Factors

Experiments with linear HO-LC-CRFs as shown in Table 2 reveal that classifi-
cation performance degrades with linear 3-3 gram factor. The best performance
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Table 1. Isolated Phone Classification using MLP networks (n = 1) with different
number of hidden units H and lengths of the contextual input window m. The classi-
fication performance is measured by phone error rate (PER).

rectifier tanh

H m dev test dev test

100 1 23.2 23.7 23.3 24.1
100 3 22.0 23.4 22.3 22.9
100 5 22.6 22.9 23.8 24.4

150 1 22.6 23.0 22.6 23.0
150 3 21.4 22.2 21.8 22.3
150 5 22.4 22.9 23.2 23.9

rectifier tanh

H m dev test dev test

200 1 22.5 23.2 22.4 22.6
200 3 21.3 21.8 21.4 22.6
200 5 22.3 22.7 22.7 22.9

500 1 22.1 22.6 22.1 22.9
500 3 20.9 22.1 20.6 21.0
500 5 22.3 22.7 21.9 22.7

Table 2. Linear higher-order CRFs. All results with m = 1 and n = 1 already include
input-independent 2-gram factors.

m=n 1 + 2 + 3

dev 25.8 20.4 20.7
test 25.9 20.5 21.6

of 20.5% is achieved with factors up to order n = m = 2. The plus sign indicates
additional higher-order factors on top to the ones from previous columns in the
table, i.e. the model of column +2 includes the linear factors {f1, f1−1, f2, f2−2}.

In the next set of experiments, we consider LC-CRFs with neural input-
dependent higher-order factors and we will show their effectiveness in contrast
to their linear counterparts in Table 2. In Table 3, we explore the combination
of higher-order factors up to the order n = m = 3 as described in Section 3. By
including more higher-order factors in the first column of Table 3, the classifica-
tion performance improves for the baseline using only l2 regularization only. For
the baseline, we tuned the learning rate 0.01, 0.001, 0.0001 and l2 regularizer
trade-off-parameter 0.1, 0.01, 0.001, 0.0001 and report the best observed perfor-
mance. The best result of 17.7% is achieved with 150 hidden units and factors
up to order n = m = 3 which is significantly better than the best performance
of 20.5% with linear factors.

Furthermore, we tested our new structured regularizer with factors up to
order n = m = 3 for various trade-off parameters λ ∈ {0.01, 0.3, 0.6} as
shown in Table 3. We used fixed a learning rate of 0.001 and l2 regularizer
of 0.001. We achieved the best performance of 16.8% with factors up to order
m = n = 3 and a trade-off parameter of 0.3. We further tuned the trade-off
parameter λ ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.95, 1.0} for different number of
hidden units H ∈ {100, 150, 200}. This is shown in the Figure 3. For different net-
work sizes, we observe a clear optimum with respect to the trade-off parameter
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Table 3. Neural higher-order LC-CRF without and with our structured regularizer.
The order m = n of the higher order factors is examined. Furthermore, the effectiveness
of the new structured regularizer is demonstrated for factors up to order m = n = 3.
All results with m = 1 and n = 1 already include input-independent 2-gram factors.
In all experiments, the number of hidden units is H = 150 and one hidden layer.

no reg. λ = 0.6 λ = 0.3 λ = 0.01

m = n dev test dev test dev test dev test

1 21.2 21.5 21.7 22.4 21.7 21.9 25.7 26.4
+ 2 17.6 18.3 17.9 18.3 17.5 18.0 19.8 20.4
+ 3 17.9 17.7 16.9 17.5 16.6 16.8 18.5 19.2

λ and a margin to the baseline results without the regularizer, i.e. λ = 1.0,
which we indicated by a dotted line in Figure 3. By this additional tuning, we
improved the result further and achieved the best overall performance of 16.7%
with factors up to order m = n = 3 and a trade-off parameter of 0.1.

Fig. 3. Performance using the structured regularizer for various trade-off parameters
λ. The number of hidden units H ∈ {100, 150, 200} in the neural higher-order fac-
tors varies in the different plots. Baseline results without the regularizer λ = 1.0 are
indicated by a dotted line.
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Fig. 4. Test performance for (left) various training set sample sizes with and with-
out our structured regularizer and (right) its zoomed presentation to illustrate the
effectiveness for small training set sample sizes.

In additional experiments, we explored the performance for varying numbers
of training samples Ntrain. We fixed the number of hidden units H = 150, trade-
off parameter λ = 0.3, learning rate of 0.001 and l2 regularizer of 0.001. Figure 4
shows the effectiveness of our structured regularizer for small and full training
sample set, i.e. we are able to outperform the same model without the structured
regularizer by a large margin over the range of used training samples. For small
sample sizes, the margin between the baseline performance results and the one
with the structured regularizer decreased slightly.

Finally, we compare our best result to other state-of-the-art methods based
on MFCC features as shown in Table 4. Using the code of [20] we tested CNFs

Table 4. Summary of labeling results. Results marked by (†) are from [31], by (††)
are from [29], by (†††) are from [8], by (††††) are from [24], and by (*) are from [4].
Performance measure: Phone error rate (PER) in percent.

Model PER [%]

GMMs ML†† 25.9

HCRFs† 21.5

Large-Margin GMM†† 21.1

Heterogeneous Measurements††† 21.0
CNF 20.67
Linear HO-LC-CRF 20.5

GMM+LC-CRF (1st order)†††† 22.10

CS-DCRF+MEMM (8th order)†††† 22.15

CS-DCRF+LC-CRF (1st order)†††† 19.95

Hierarchical Large-Margin GMMs* 16.7

NHO-LC-CRF 17.7
+ structured regularizer 16.7
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with 50, 100 and 200 hidden units as well as one and three input segments. We
achieved the best result with 100 hidden units and one segment as input. Fur-
thermore, hierarchical large-margin GMMs achieve a performance of 16.7% and
outperform most other referenced methods but exploit human-knowledge and
committee techniques. However, our best model, the HO-LC-CRF augmented
by m-n-gram MLP factors using our new structured regularizer achieves a per-
formance of 16.7% without human-knowledge and is outperforming most of the
state-of-the-art methods.

6 Conclusion

We considered NHO-LC-CRFs for sequence labeling. While these models have
high predictive expressiveness, they are prone to overfitting due to their high
model complexity. To avoid overfitting, we applied a novel structured regular-
izer derived from the proposed shared-ensemble framework. We show that this
regularizer can be derived as lower bound from a mixture of models sharing
parts of each other, e.g. neural sub-networks. We demonstrated the effectiveness
of this structured regularizer in phoneme classification experiments. Further-
more, we experimentally confirmed the importance of non-linear representations
in form of neural higher-order factors in LC-CRFs in contrast to linear ones.
In TIMIT phoneme classification, we achieved state-of-the-art phoneme error
rate of 16.7% using the NHO-LC-CRFs equipped with our proposed structured
regularizer. Future work includes testing of different types of neural networks.
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