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Abstract. Discriminative models for classification assume that training
and deployment data are drawn from the same distribution. The perfor-
mance of these models can vary significantly when they are learned and
deployed in different contexts with different data distributions. In the lit-
erature, this phenomenon is called dataset shift. In this paper, we address
several important issues in the dataset shift problem. First, how can we
automatically detect that there is a significant difference between train-
ing and deployment data to take action or adjust the model appropri-
ately? Secondly, different shifts can occur in real applications (e.g., linear
and non-linear), which require the use of diverse solutions. Thirdly, how
should we combine the original model of the training data with other
models to achieve better performance? This work offers two main contri-
butions towards these issues. We propose a Versatile Model that is rich
enough to handle different kinds of shift without making strong assump-
tions such as linearity, and furthermore does not require labelled data to
identify the data shift at deployment. Empirical results on both synthetic
shift and real datasets shift show strong performance gains by achieved
the proposed model.

Keywords: Versatile model · Decision Trees · Dataset shift ·
Percentile · Kolmogorov-Smirnov test

1 Introduction

Supervised machine learning is typically concerned with learning a model using
training data and applying this model to new test data. An implicit assumption
made for successfully deploying a model is that both training and test data
follow the same distribution. However, the distribution of the attributes can
change, especially when the training data is gathered in one context, but the
model is deployed in a different context (e.g., the training data is collected in
one country but the predictions are required for another country). The presence
of such dataset shifts can harm the performance of a learned model. Different
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kinds of dataset shift have been investigated in the literature [10]. In this work we
focus on shifts in continuous attributes caused by hidden transformations from
context to another. For instance, a diagnostic test may have different resolutions
when produced by different laboratories, or the average temperature may change
from city to city. In such cases, the distribution of one or more of the covariates
in X changes. This problem is referred as a covariate observation shift [7].

We address this problem in two steps. In the first step, we build Decision Trees
(DTs) using percentiles for each attribute to deal with covariate observation
shifts. In this proposal, if a certain percentage of training data reaches a child
node after applying a decision test, the decision thresholds in deployment are
redefined in order to preserve the same percentage (60%) of deployment instances
in that node. In the original learned DT, the learned threshold in a decision node
corresponds to the 60th percentile of the training data. The updated threshold
in deployment will be the 60th percentile of the deployment data.

The percentile approach assumes that the shift is caused by a monotonic
function preserving the ordering of attribute values but ignoring the scale. For
some shifts it may be more appropriate to assume a transformation from one
linear scale to another. We therefore develop a more general and versatile DT
that can choose between different strategies (percentiles, linear shifts or no shift)
to update the DT thresholds for each deployment context, according to the shifts
observed in the data.

The rest of the paper is organised as follows. Section 2 presents the dataset
shift problem and the existing approaches addressing it. In Section 3 we introduce
the use of percentiles and the versatile model proposed in our work. Section 4
presents the experiments performed to evaluate the versatile model on both
synthetic and non-synthetic dataset shifts, and Section 5 concludes the paper.

2 Dataset Shift

We start by making a distinction between the training and deployment contexts.
In the training context, a set of labelled instances is available for learning a
model. The deployment context is where the learned model is actually used
for predictions. These contexts are often different in some non-trivial way. For
instance, a model may be built using training data collected in a certain period of
time and in a particular country, and deployed to data in a future time and/or in
a different country. A model built in a training context may fail in a deployment
context due to different reasons: in the current paper we focus on performance
degradation caused by dataset shifts across contexts.

A simple solution to deal with shifts would be to train a new classifier for
each new deployment context. However, if there are not enough available labelled
instances in the new context, training a new model specific for that context
is then unfeasible as the model would not sufficiently generalise. Alternative
solutions have to be applied to reuse or adapt existing models, which will depend
on the kind of shift observed.
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Shifts can occur in the input attributes, in the output or both. Dataset shift
happens when training and deployment joint distributions are different [10], i.e.:

Ptr(Y,X) �= Pdep(Y,X) (1)

A shift can occur in the output, i.e., Ptr(Y ) �= Pdep(Y ), while the condi-
tional probability distribution remains the same Ptr(X|Y ) = Pdep(X|Y ). This
is referred in the literature as the prior probability shift and can be addressed
in different ways (e.g., [5]).

In our work we are mainly concerned with situations where the marginal dis-
tribution of a covariate changes across contexts, i.e.: Ptr(X) �= Pdep(X). Given
a change in the marginal distribution, we can further define two different kinds
of shifts depending on whether the conditional distribution of the target also
changes between training and deployment. In the first case, the marginal distri-
bution of X changes, while the conditional probability of the target Y given X
remains the same:

Ptr(X) �= Pdep(X)
Ptr(Y |X) = Pdep(Y |X) (2)

For instance, the smoking habits of a population may change over time due to
public initiatives but the probability of lung cancer given smoking is expected
to remain the same [12]. In the same problem, a labelled training set may be
collected biased to patients with bad smoking habits. Again, the marginal dis-
tribution in deployment may be different from training while the conditional
probability is the same. The above shift is referred in the literature by different
terms such as simple covariate shift [12] or sample selection bias [15]. A com-
mon solution to deal with simple covariate shifts is to modify the training data
distribution by considering the deployment data distribution. A new model can
then be learned using the shift-corrected training data distribution. This strat-
egy is adopted by different authors using importance sampling which corrects
the training distribution using instance weights proportional to Pdep(X)/Ptr(X).
Examples of such solutions include Integrated Optimisation Problem IOP [3],
Kernel Mean Matching [6], Importance Weighted Cross Validation IWCV [14]
and others.

In this paper we focus on the second kind of shift in which both the marginal
and the conditional distributions can change across contexts, i.e.:

Ptr(X) �= Pdep(X)
Ptr(Y |X) �= Pdep(Y |X) (3)

This is a more difficult situation that can be hard to solve and requires additional
assumptions. A suitable assumption in many situations is that there is a hidden
transformation of the covariates Φ(X) for which the conditional probability is
unchanged across contexts, i.e.:

Ptr(X) �= Pdep(X)
Ptr(Y |X) = Pdep(Y |Φ(X)) (4)
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This is defined in [7] as a covariate observation shift. For instance, in prostate
cancer detection, shifts can be observed in data from different laboratories due
to differences in their equipments and resolution of diagnostic tests [9]. A map-
ping between attributes can be performed to correct the existing differences in
data [9]. As another example [7], suppose that in an image recognition problem,
pictures are taken by a camera with two different colour adjustments settings,
thus representing two different contexts. This can result in a shift in the covari-
ates. The conditional probability, however, may be the same given an invariant
hidden raw camera representation. Finally, a sensor used to detect an event may
degrade over time. Such degradation can be seen as a transformation function
in the sensor outputs that causes a covariate observation shift.

Previous authors dealt with covariate observation shifts by finding a trans-
formation function Φ to correct the deployment data [1]. Once transformed or
‘unshifted’ using Φ, the deployment data is given as input to the model learned
in the training context. Finding a linear transformation is a natural choice in
this approach. In [1], for instance, the authors adopted Stochastic Hill Climbing
to find the best linear transformation to apply in the given deployment data.
In that work, labelled deployment instances are required in order to evaluate
the suitability of a candidate linear map. The parameters of the linear transfor-
mation are then optimised to maximise the accuracy obtained by the learned
model on the labelled deployment instances (once transformed). A similar idea
was proposed in [9], using genetic programming techniques to find more com-
plex transformation functions (both linear and non-linear). As [1], it requires
that labelled instances are available in the deployment data to evaluate the ade-
quacy of the transformation functions.

In summary, we emphasise that it can be difficult to recognise or distinguish
between the different kinds of shifts that may occur in a dataset. It can be simple
in some cases to identify a shift in the covariates, relying on a sufficient number
of unlabelled instances in the deployment context. On the other hand, verifying
a shift in the conditional probabilities P (Y |X) is not possible if there are only
unlabelled instances in deployment or may be unreliable if the number of labelled
instances in deployment is low. Additionally, suppose that we have evidence that
a change is caused by a transformation in a covariate. Trying to detect a linear
transformation to apply in the deployment data may be counter-productive if
the true transformation is non-linear instead. Finally, applying a shift-aware
method in a deployment context that did not actually change compared to the
training context may be detrimental as well. These considerations motivated our
proposal of a more sophisticated approach that can adapt to different kinds of
dataset shifts under different assumptions.

3 Versatile Decision Trees

In this work, we propose different strategies to build Decision Trees (DTs) in the
presence of covariate observation shifts. We make two main contributions. First,
we propose a novel approach to build DTs based on percentiles (see Sections 3.1
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Fig. 1. Two types of models; on the left is the model using a fixed threshold while on
the right is the model using percentiles. For each deployment context, the decision tree
is deployed in such a way that the deployment instances are split to the leaves in the
same percentile amounts of 63% and 37%.

and 3.2). The basic idea is to learn a conventional DT and then to replace the
internal decision thresholds by percentiles, which can deal with monotonic shifts.
Secondly, we propose a more general Versatile Model (VM) that deploys differ-
ent strategies (including the percentiles) to update the DT thresholds for each
deployment context, according to the shifts observed in the data (see Section 3.3).
The shifts are identified by applying a non-parametric statistical test.

3.1 Constructing Splits Using Percentiles

We consider an example using the diabetes dataset from the UCI repository,
which has 8 input attributes and 768 instances. Suppose we train a decision
stump and the discriminative attribute is the Plasma glucose concentration
attribute, which is a numerical attribute. Suppose the decision threshold is 127.5,
meaning that any patient with plasma concentration above 127.5 will be clas-
sified as diabetic, otherwise classified as non-diabetic as seen in Figure 1 (left).
If there is no shift in the attribute from training to deployment, the decision
node can be directly applied, i.e., the threshold 127.5 is maintained to split data
in deployment. However, if the attribute is shifted in deployment, the original
threshold may not work well.

In the current work, we propose to adopt the percentiles1 of continuous
attributes to update the decision thresholds for each deployment context. Back
to the example, instead of interpreting the data split in an absolute sense, we
will interpret it in terms of ranks: 37% of the training examples with the highest
values of Plasma reach the right child, while 63% of the training examples with
the lowest values of Plasma in turn reach the left child (see the right side of
Figure 1). We can say that the data was split at the 63th percentile in training.
Given a batch set of instances in deployment to classify, the DT can apply the
same split rule: the 37% of the examples in deployment with the highest val-
ues of Plasma are associated to the right child, while 63% of the examples with
the lowest values of Plasma in deployment are associated to the left child. The
decision threshold in deployment is updated in such a way that the percentage

1 Percentile is the value below which a given percentage of observations in a group is
observed.
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of instances split to each child is maintained. In this proposal, it is assumed
that the shift is caused by a monotonic transformation Φ. Such functions when
applied to an input attribute preserve the order of its original values. Different
from the previous work [1] the transformation function in the versatile DT is not
explicitly estimated, but it is implicitly treated by deploying the percentiles.

Formally, let L = {c1, . . . , cL} be the set of class labels in a problem. Let thtr

be the threshold value applied on a numerical attribute X in a decision node.
In the previous example thtr = 127.5 for the Plasma attribute. Let ncl

left be the
number of training instances belonging to class cl that are associated to the left
child node after applying the decision test, i.e., for which X ≤ thtr. The total
number of instances nleft associated to this node is:

nleft =
∑

cl∈L
ncl

left (5)

Let Rtr(thtr) = 100 ∗ nleft/n be the percentage of training instances in the
left node, where n is the total number of training instances. Then, thtr is the
percentile associated to Rtr(thtr) for the attribute X. In the above example:
Rth(127.5) = 63% and thtr is the 63th percentile of Plasma in the training data.
Then the threshold adopted in deployment is defined as:

thdep = R−1
dep(Rtr(thtr)) (6)

In the above equation, the threshold thdep is the attribute value in deployment
that, once adopted to split the deployment data, maintains the percentage of
instances in each child node: Rdep(thdep) = Rtr(thtr).

Fig. 2. Example of DT with percentiles when a shift is identified in the class distri-
bution. Part (a) illustrates the percentiles of each leaf for the training context, with
prior probability equal to 0.5. Part (b) illustrates the correction of the percentiles for
a new deployment context where the prior probability is 0.6. The correction of per-
formed using the ratios of 0.6/0.5 and 0.4/0.5 respectively for the positive and negative
instances (left side - (b)). Corrected number of instances expected at each leaf resulted
in new estimated percentiles (right side - (b))

.
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3.2 Adapting for Output Shifts

The percentile rule can be adapted to additionally deal with shifts in the class
distribution across contexts. Figure 2 illustrates a situation where the prior prob-
ability of the positive class was 0.5 in training and then shifted to 0.6 in deploy-
ment. In Figure 2(a) we observe a certain number of positives and negatives
internally in each child node, which is used to derive the percentiles. If a shift is
expected in the target, the percentage of instances expected in deployment for
each child node may change as well. For instance, a higher percentage of instances
may be observed in the right node in deployment because the probability of pos-
itives has increased and the proportion of positives related to negatives in this
node is high. In our work, we estimate the percentage of instances in each child
node according to the class ratios between training and deployment.

Let P cl
tr and P cl

dep be the probability of class cl, respectively in training and
deployment. P cl

dep can be estimated using available labelled data in deployment
or just provided as input. There is a prior shift related to this class label when
P cl

tr �= P cl
dep. For each instance belonging to cl observed in training we expect

to observed P cl
dep/P cl

tr instances of cl in deployment. The number of instances
associated to the left child node in deployment is then estimated by the following
equation:

n̂left =
∑

cl∈L
ncl

left

P cl
dep

P cl
tr

(7)

The percentile is then computed using the corresponding percentage:
Rtr(thtr) = 100 ∗ n̂left/n. In Figure 2(b), the class ratios of 0.6/0.5 and 0.4/0.5
are respectively adopted to correct the number of positive and negative instances
in each node. In the left node, for instance, the expected number of positive and
negative instances is respectively 48 and 64, resulting in 112 instances. The per-
centage to be adopted in deployment is now 56%, instead of 60% if no correction
is performed. The 56th percentile in the deployment data is then adopted as the
decision threshold.

3.3 Versatile Model for Decision Trees

By adopting percentiles in the DT, we are assuming a monotonic transformation
Φ across contexts. In this sense, our work is more general compared to the
previous work [1] that assumes a linear transformation. Monotonic shifts can
not only cover the linear case but also a broad range of non-linear monotonic
transformations (e.g., piecewise linear transformations). Even the case where
there is no shift can be seen as a monotonic transformation when Φ is the identity
function. Despite this generality, the use of percentiles has limitations too. First,
percentile estimates (either in training or deployment) can be inaccurate when
there is few or sparse data for estimation. Also, it may be worth trying alternative
methods if the assumptions made by these methods about the context shifts are
actually met. For instance, if we expect the shift to be linear we might be better
off fitting an explicit linear transformation between training and deployment.
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Algorithm 1. Versatile Model Threshold Selection Algorithm
Input: training attribute vector Xtr = (x1, . . . , xn) with n the number of training
instances (i.e., a column of the data matrix),; deployment attribute vector Xdep =
(x′

1, . . . , x
′
m); decision threshold in training thtr for attribute Xtr.

Output: deployment decision threshold thdep.
/* Test for no shift. Null hypothesis H0 : F (Xtr) = F (Xdep) */
pvalue=Kolmogorov-Smirnov(Xtr,Xdep)
if pvalue <0.05 then

/* Reject H0, Xdep is shifted. Try a linear transformation */
(Xu

dep, α, β)= Linear Transformation(Xtr,Xdep)
/* Test corrected shift. Null hypothesis H0 : F (Xtr) = F (Xu

dep) * /
pvalue=Kolmogorov-Smirnov(Xtr,X

u
dep)

if pvalue <0.05 then
/* Reject H0, Xu

dep is still shifted. Use the percentile. */
thdep = R−1

dep(Rtr(thtr))
else

/* Accept H0, Xu
dep is not shifted. Use the linearly corrected threshold */

thdep = α · thtr + β
end if

else
/* Accept H0, Xdep is not shifted. Use training threshold. */
thdep = thtr

end if
Return thdep

In this section, we propose a versatile decision tree model that employs differ-
ent strategies to choose the decision threshold according to the shift observed in
deployment. Algorithm 1 presents the proposed versatile model, which receives as
input the original threshold applied on an attribute, the training and the deploy-
ment data of that attribute and returns the appropriate threshold to adopt in
deployment. This versatile model (VM) can be described in three steps:

1. Initially a statistical test is applied to verify whether the distribution of the
attribute differs between training and deployment. In this step, we aim to
avoid dealing with shifts when they do not really exist, which could lead to
overfitting. In our implementation, the non-parametric Kolgomorov-Smirnoff
(KS) test was adopted2. If there is no shift in the attribute, the versatile DT
is applied using the original thresholds learned in the training context, i.e.
thdep = thtr.

2. If a shift is detected by the previous test, a linear transformation is fitted and
applied to the attribute in deployment, aiming to correct a potential linear
shift. In our implementation, α and β parameters were estimated based on

2 We employed the KS test on the values of the attribute: training Xtr and deployment
Xdep. The KS test tests the null hypothesis that the empirical cumulative distribution
functions of Xtr and Xdep are identical against the alternative hypothesis that the
two distributions are different.
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Algorithm 2. Linear Transformation
Input: training attribute vector Xtr = (x1, . . . , xn); deployment attribute vector Xdep =
(x′

1, . . . , x′
m).

Output: ‘Unshifted’ deployment attribute vector Xu
dep and corresponding parameters α, β.

/* Estimate the mean and standard deviation of X in training and deployment */

μtr = 1
n

∑n
i=1 xi , σtr =

√
1
n

∑n
i=1(xi − μtr)2

μdep = 1
m

∑m
i=1 x′

i, σdep =
√

1
m

∑m
i=1(x

′
i − μdep)2

/* Estimate α and β considering that: σdep = ασtr and μdep = αμtr + β */

α = σdep
σtr

β = μdep − α · μtr

/* Produce unshifted deployment data Xu
dep according to α and β */

Xu
dep = ∅

for i = 1 to m do
xu

i =
(x′

i−β)

α
Xu

dep = Xu
dep ∪ xu

i
end for
Return Xu

dep, α, β

the change in mean and standard deviation of the attribute in training and
deployment (see Algorithm 2). We then apply the KS test again to compare
the distribution of the transformed attribute in deployment and the attribute
in the training data. If no shift is observed now, we assume that the linear
transformation applied was adequate. The versatile DT is then deployed with
a threshold thdep = α · thtr + β.

3. Finally, if the second test indicates that there is still a shift in the attribute
(i.e., the shift was not corrected using the linear transformation), then the
percentiles are deployed, assuming a non-linear monotonic shift. In this case
the adopted threshold is: thdep = R−1

dep(Rtr(thtr)).

4 Experimental Results

The VM combines 3 strategies for defining the DT thresholds in deployment:
original thresholds, linear transformations, and monotonic transformations using
percentiles. In the experiments, each strategy was individually compared to the
VM, respectively named as Original Model (OM), (α, β) and Perc. Additionally,
(α, β) and the Percentile methods were combined with the KS test, referred in
the experiments as KS+(α, β) and KS+Perc, respectively. In the former, linear
transformation is applied to all shifted attributes, whereas, in the latter, Per-
centiles are utilised. In both approaches, the original model was applied if there
is no shift detected by the KS test.

The first set of experiment applies synthetic shifts to UCI datasets to analyse
the performance of the shift detection approach adopted by the VM. We inject
two types of shifts into the deployment data to test the VM: a non-linear mono-
tonic transformation and linear shifts with different degrees (see Sections 4.1



Versatile Decision Trees for Learning Over Multiple Contexts 193

Table 1. Values used in the experiments for ϕ and γ in order to generate the synthetic
linear shifts.

ϕ γ Effect

0 0 unshifted data (original)
0 1 μdep shifted to right
0 -1 μdep shifted to left
1 0 stretch data
-1 0 compress data
1 1 μdep shifted to right and stretch the data
1 -1 μdep shifted to left and stretch the data
-1 1 μdep shifted to right and compress the data
-1 -1 μdep shifted to left and compress the data

and 4.2). In Section 4.3 we report on experiments with actual context changes
occurring in real-world datasets.

4.1 Generating Synthetic Shifts

In these experiments, linear transformations were applied to numerical attributes
in order to simulate shifts between two contexts. Two parameters, α and β,
were adopted in each simulation to perform the linear transformation Xdep =
α · Xtr + β. Let μtr and σtr be the mean and standard deviation of attribute
X in training. When X is shifted using the parameters α and β, the mean and
standard deviation of the transformed variable become

μdep = α · μtr + β

σdep = α · σtr

It is useful to re-parametrise α and β as follows.

α = 2ϕ

β = (1 − 2ϕ) · μtr + γ · σtr

If ϕ is negative the attribute values are compressed across contexts, and if ϕ is
positive the values are stretched. The mean is shifted by γ times the standard
deviation in training: μdep = μtr + γ · σtr. Table 1 shows the values used in the
experiments for ϕ and γ.

To create non-linear monotonic shifts we use the following transformation:

Xdep = σtr ·
(

Xtr − μtr

σtr

)3

+ μtr (8)

We use a cubic rather than a square transformation to ensure monotonicity. In
order to preserve the mean and standard deviation of the data we first convert
the attribute values to z-scores, apply the cubic transformation and then restore
the mean and standard deviation.
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4.2 Results of the Synthetic Shifts

We selected 10 datasets from UCI [8] and KEEL [2] with all numerical (real-
valued as well as integer-valued) attributes. Each dataset was randomly parti-
tioned into 5 folds. Using 4 folds for training and the 5th fold for deployment,
after shifting according to each set of parameters in Table 1. The same shift
is applied to all attributes in each dataset. Results are averaged over 5 cross-
validation runs for each dataset. Table 2 reports the average accuracy of 5 dif-
ferent runs for all used methods in 4 cases: unshifted, linear shift, non-linear
and mixture shift data. Performance of these methods applied to linear shifts
is the average of 8 degrees of linear shift as reported in Table 1. We conducted
the Friedman test based on the average ranks for all datasets in order to verify
whether the differences between algorithms are statistically significant [4]. At
significance level 0.05 the Friedman test gives significance for all experiments
except the non-linear shifts, so we show critical difference diagrams based on
the Nemenyi post-hoc test for the former in Figure 3. We proceed to discuss the
results of each experiment.

Unshifted Data. Unsurprisingly, the original model is the best when there is no
shift from training to deployment, but the CD diagram demonstrates that the
Versatile Model is not significantly worse. Percentiles don’t work well in this
case, confirming the need for a multi-strategy approach.

Linear Shifts. Estimating a linear shift is the right thing to do here so it is
not surprising that 〈α, β〉 performs strongest, with KS+〈α, β〉 trailing slightly
behind as the KS test may sometimes fail to detect the shift. The original model is
significantly outperformed by all context-sensitive models except the percentiles.
The Versatile Model is a good representative of the context-sensitive models.

Non-Linear Shift. Here the Versatile Model outperforms all other methods in
terms of the average ranks, but not significantly. Notice that, while the original
model performs worst, there are 2 datasets where the original model performs
best: in these datasets many attribute values are in the range [−1, 1] where the
cubic transformation has less effect.

Mixture Shift. The aim of this experiment was to test how well the Versatile
Model deals with a mixture of different shifts: one-third of the attributes was
shifted linearly, one-third non-linearly, and one-third remained unchanged. The
results demonstrate that the Versatile Model derives a clear advantage from the
ability of being able to distinguish between these different kinds of shift and
adapt its strategy.

4.3 Results on Non-synthetic Shifts

The aim of this experiment is to evaluate the Versatile Model on real dataset
shift and compared it the with state-of-art covariate shift solvers Integrated
Optimisation Problem (IOP) [3] and Kernel Mean Matching (KMM) [6]. IOP
and KMM algorithms were retrieved from [11] and run using default parameters.



Versatile Decision Trees for Learning Over Multiple Contexts 195

Fig. 3. Critical Difference diagrams using pairwise comparisons for those experiments
where the Friedman test gives significance at 0.05.

Diabetes. Our first benchmark is a dataset of 4 different ethnic groups of diabetes
patients [13]. The original dataset consists of 47 attributes and 101 766 instances.
Each instance corresponds to a unique patient diagnosed with diabetes. The
features describe the diabetic encounters such as diagnoses, medications, and
number of visits in the year preceding the encounter. We rank features using
information gain ratio then we select the best 8 numerical features. The classi-
fication task is whether the patient was re-admitted to the hospital. The values
of the readmission attribute are two: “yes” or “no”. In the original dataset, the
classes are: readmitted within 30 days “< 30”, readmitted after 30 days “> 30”
or no.

In our experiment, we split the dataset in 4 subsets according to the “ethnic
group” the patient belongs to. There are 4 different groups: Caucasian, African
American, Asian, and Hispanic. We evaluate the performance of models trained
on ethnic group X and deployed on ethnic group Y, denoted by X-Y. Table 3
shows the performance of the Versatile Model against the original model, IOP
and KMM. We also report the number of shifted attributes according to the KS
test. The Versatile Model wins most often, followed by the original model.

Heart. Our next benchmark is the heart disease dataset. We split it into two
subsets according to gender: male and female. In this dataset there are 5 con-
tinuous attributes, 3 of them are indicated as shifted between gender according
to KS test, which are age, heart rate and serum cholesterol. Table 4 shows the
performance of versatile method against the original model, IOP and KMM. In
both contexts the VM has the best accuracy among all three methods including
the original model.

Bike Sharing. This dataset [8] contains the hourly and daily count of rental bikes
between years 2011 and 2012 in addition to weather information. It contains 4
continuous attributes: actual and apparent temperature in Celsius, humidity and
wind speed. The classification task is whether there is a demand in this period of
time or not. In order to evaluate the shift effects, we split the dataset as proposed
in [1] to obtain the 4 seasons datasets. According to KS, all these 4 attributes are
detected as shifted except in 3 cases. First, between Summer-Spring, wind speed
is not shifted. Second, in both Summer-Autumn and Autumn-Winter, humidity
is not shifted. The performance of Versatile Model and others are shown in
Table 5. Again we note the solid performance of the Versatile Model.
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Table 2. Cross-validated classification accuracy for both unshifted, linear shift, non-
linear shift and mixture shift. The numbers between brackets are ranks. VM is the
Versatile Model, OM is the original model, 〈α, β〉 corresponds to a linear shift, Perc
corresponds to a percentile shift, and KS+. . . indicates that the Kolmogorov-Smirnov
test is used for detecting the shift.

VM OM 〈α, β〉 KS+〈α, β〉 Perc KS+Perc
unshifted data

Phoneme 0.851(3) 0.856(1) 0.846(5) 0.854(2) 0.819(6) 0.850(4)
Bupa 0.631(3) 0.632(1.5) 0.619(5) 0.632(1.5) 0.578(6) 0.625(4)
Appendicitis 0.846(5.5) 0.849(4) 0.853(1) 0.846(5.5) 0.851(2.5) 0.851(2.5)
Pima 0.728(1.5) 0.725(4) 0.728(1.5) 0.727(3) 0.711(6) 0.721(5)
Breast-w 0.947(3) 0.947(3) 0.947(3) 0.947(3) 0.820(6) 0.947(3)
Magic 0.821(4) 0.834(1) 0.830(3) 0.833(2) 0.773(6) 0.814(5)
Threenorm 0.674(2.5) 0.682(1) 0.673(4) 0.674(2.5) 0.635(6) 0.671(5)
Ringnorm 0.735(2.5) 0.731(4.5) 0.744(1) 0.735(2.5) 0.678(6) 0.731(4.5)
Ionosphere 0.893(2.5) 0.894(1) 0.851(4) 0.893(2.5) 0.825(5.5) 0.825(5.5)
Sonar 0.752(2.5) 0.754(1) 0.739(5) 0.752(2.5) 0.716(6) 0.746(4)
Average 0.787(3) 0.790(2.2) 0.783(3.25) 0.789(2.7) 0.740(5.6) 0.778(4.25)

linear shift
Phoneme 0.825(3) 0.660(6) 0.846(1.5) 0.846(1.5) 0.819(4.5) 0.819(4.5)
Bupa 0.601(3) 0.558(6) 0.619(1.5) 0.619(1.5) 0.578(4.5) 0.578(4.5)
Appendicitis 0.844(4.5) 0.776(6) 0.853(1) 0.844(4.5) 0.851(2) 0.846(3)
Pima 0.726(3) 0.624(6) 0.728(1.5) 0.728(1.5) 0.711(4.5) 0.711(4.5)
Breast-w 0.820(4) 0.782(6) 0.947(1.5) 0.947(1.5) 0.820(4) 0.820(4)
Magic 0.761(5) 0.579(6) 0.830(1.5) 0.830(1.5) 0.773(3.5) 0.773(3.5)
Threenorm 0.672(2.5) 0.606(6) 0.673(1) 0.672(2.5) 0.635(4.5) 0.635(4.5)
Ringnorm 0.744(1.5) 0.608(6) 0.744(1.5) 0.743(3) 0.678(4.5) 0.678(4.5)
Ionosphere 0.810(5) 0.694(6) 0.851(1.5) 0.851(1.5) 0.825(3.5) 0.825(3.5)
Sonar 0.739(2) 0.624(6) 0.739(2) 0.739(2) 0.716(4.5) 0.716(4.5)
Average 0.754(3.35) 0.651(6) 0.783(1.45) 0.781(2.1) 0.740(4) 0.740(4.1)

non-linear shift
Phoneme 0.819(2) 0.746(4) 0.720(5.5) 0.720(5.5) 0.819(2) 0.819(2)
Bupa 0.594(1) 0.506(6) 0.571(4.5) 0.571(4.5) 0.578(2.5) 0.578(2.5)
Appendicitis 0.847(4.5) 0.240(6) 0.849(3) 0.847(4.5) 0.851(1.5) 0.851(1.5)
Pima 0.715(3) 0.478(6) 0.728(1.5) 0.728(1.5) 0.711(4.5) 0.711(4.5)
Breast-w 0.820(4) 0.464(6) 0.916(1.5) 0.916(1.5) 0.820(4) 0.820(4)
Magic 0.761(3) 0.398(6) 0.744(4.5) 0.744(4.5) 0.773(1.5) 0.773(1.5)
Threenorm 0.651(2.5) 0.671(1) 0.607(6) 0.635(4.5) 0.635(4.5) 0.651(2.5)
Ringnorm 0.698(2.5) 0.731(1) 0.667(6) 0.680(4) 0.678(5) 0.698(2.5)
Ionosphere 0.825(2) 0.820(4) 0.781(5.5) 0.781(5.5) 0.825(2) 0.825(2)
Sonar 0.744(2) 0.478(6) 0.744(2) 0.744(2) 0.716(4.5) 0.716(4.5)
Average 0.747(2.65) 0.553(4.6) 0.732(4) 0.736(3.8) 0.740(3.2) 0.744(2.75)

mixture shift (unshifted, linear shift, non-linear)
Phoneme 0.828(1) 0.749(6) 0.787(5) 0.789(4) 0.819(3) 0.823(2)
Bupa 0.605(1) 0.551(6) 0.595(2) 0.594(3) 0.578(5) 0.592(4)
Appendicitis 0.843(4.5) 0.718(6) 0.847(2.5) 0.843(4.5) 0.851(1) 0.847(2.5)
Pima 0.710(5) 0.512(6) 0.727(1) 0.724(2) 0.711(4) 0.712(3)
Breast-w 0.935(3.5) 0.797(6) 0.947(1.5) 0.947(1.5) 0.819(5) 0.935(3.5)
Magic 0.805(1.5) 0.510(6) 0.802(3) 0.805(1.5) 0.773(5) 0.785(4)
Threenorm 0.672(1) 0.647(4) 0.635(5.5) 0.653(2) 0.635(5.5) 0.649(3)
Ringnorm 0.739(1) 0.674(6) 0.728(2.5) 0.720(4) 0.678(5) 0.728(2.5)
Ionosphere 0.843(3.5) 0.792(6) 0.843(3.5) 0.865(1) 0.825(5) 0.848(2)
Sonar 0.740(1) 0.631(6) 0.737(3) 0.738(2) 0.716(4) 0.712(5)
Average 0.772(2.3) 0.658(5.8) 0.764(2.95) 0.767(2.55) 0.740(4.25) 0.763(3.15)

AutoMPG. AutoMPG dataset [8] concerns the consumption in miles per gal-
lon of vehicle from 3 different regions: USA, Europe and Japan. It contains
4 numerical attributes: displacement, horsepower, weight and acceleration. All
these input attributes have been detected as shifted between regions using KS
test. This dataset has been binarised according to the mean value of the target.
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Table 3. Classification accuracy for Diabetes dataset. Symbols denote ethnic groups as
follows: African-American (AA), Asian (A), Caucasian (C), Hispanic (H). X-Y denotes
trained on X, deployed on Y.

A-AA A-C A-H AA-A AA-C AA-H C-A C-AA C-H H-A H-AA H-C
# shifted 6 5 4 6 5 4 5 5 4 4 4 4

VM 0.569 0.529 0.576 0.653 0.530 0.590 0.645 0.546 0.588 0.624 0.565 0.564
OM 0.574 0.538 0.554 0.642 0.526 0.587 0.641 0.566 0.595 0.642 0.562 0.563
IOP 0.526 0.499 0.547 0.500 0.494 0.463 0.520 0.488 0.469 0.519 0.509 0.452
KMM 0.467 0.499 0.419 0.352 0.530 0.474 0.647 0.557 0.580 0.400 0.442 0.507

Table 4. Classification accuracy for Heart dataset, with contexts by gender (F: Female,
M: Male).

M-F F-M
# shifted 3 3

VM 0.735 0.568
OM 0.712 0.557
IOP 0.703 0.500
KMM 0.724 0.540

Table 5. Classification accuracy for Bike Sharing dataset, with contexts by season
(Sp: Spring, S: Summer, A: Autumn, W: Winter).

Sp-S Sp-A Sp-W S-Sp S-A S-W A-Sp A-S A-W W-Sp W-S W-A
# shifted 3 4 4 3 3 4 4 3 3 4 4 3

VM 0.641 0.558 0.601 0.519 0.579 0.601 0.602 0.543 0.556 0.646 0.565 0.526
OM 0.538 0.468 0.544 0.607 0.547 0.612 0.574 0.521 0.528 0.718 0.657 0.558
IOP 0.489 0.468 0.533 0.635 0.510 0.657 0.585 0.534 0.522 0.658 0.630 0.510
KMM 0.559 0.468 0.522 0.635 0.521 0.651 0.585 0.521 0.589 0.690 0.521 0.521

Table 6. Classification accuracy for AutoMPG dataset, with contexts by origin (U:
USA, E: Europe, J:Japan).

U-E U-J E-U E-J J-U J-E
# shifted 4 4 4 3 4 3

VM 0.676 0.759 0.873 0.772 0.780 0.647
OM 0.544 0.607 0.670 0.746 0.747 0.691
IOP 0.558 0.493 0.400 0.417 0.600 0.441
KMM 0.558 0.582 0.600 0.582 0.400 0.485

We split the dataset as proposed in [1] to obtain the 3 regions datasets. The
performance of Versatile Model and others are shown in Table 6. The VM out-
performs all three methods and has only one loss against the original model.

Finally, we report the result of a Friedman test and post-hoc analysis on all
non-synthetic shifts. Figure 4 demonstrates that the Versatile Model outperforms
all others, significantly so except for the original model.
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Fig. 4. Critical Difference diagram using pairwise comparisons for non synthetic shift.
Average ranks as follows: VM=1.671, OM=2.140, KMM=2.875 and IOP= 3.312. The
Friedman test gives significance at 0.05.

5 Conclusion

We proposed a model for adapting to covariate observation shift using unlabelled
deployment data. The proposed model is called the Versatile Model and is a
Decision Tree model with enhanced splits. The main idea of the VM is that
it captures more information about the context during the training process in
order to be able to adapt this model for deployment contexts. The VM trains a
classifier over the available data and then adapts some of its decisions according
to the (usually unlabelled) deployment data. We use a non-parametric test to
choose among different strategies to update the decision thresholds in a DT.
The VM does not make any strong assumptions such as linear transformation
between contexts. Furthermore, it does not need any tuning parameters to adjust
the model. Finally, empirical results on both synthetic shift and real dataset shift
show strong performance gains by achieved the proposed methods.

This work opens up many avenues for future work. One direction is to adapt
the VM to other predictive problems, such as regression. Another direction is to
assume that the deployment data is partially labelled and utilise this knowledge
in the VM.
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9. Moreno-Torres, J.G., Lloŕı, X., Goldberg, D.E., Bhargava, R.: Repairing fractures

between data using genetic programming-based feature extraction: A case study in
cancer diagnosis. Inf. Sci. 222, 805–823 (2013)

10. Moreno-Torres, J.G., Raeder, T., Alaiz-Rodŕıguez, R., Chawla, N.V., Herrera, F.:
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