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Abstract. Clustering can be improved with pairwise constraints that
specify similarities between pairs of instances. However, randomly select-
ing constraints could lead to the waste of labeling effort, or even degrade
the clustering performance. Consequently, how to actively select effec-
tive pairwise constraints to improve clustering becomes an important
problem, which is the focus of this paper. In this work, we introduce a
Bayesian clustering model that learns from pairwise constraints. With
this model, we present an active learning framework that iteratively
selects the most informative pair of instances to query an oracle, and
updates the model posterior based on the obtained pairwise constraints.
We introduce two information-theoretic criteria for selecting informa-
tive pairs. One selects the pair with the most uncertainty, and the other
chooses the pair that maximizes the marginal information gain about the
clustering. Experiments on benchmark datasets demonstrate the effec-
tiveness of the proposed method over state-of-the-art.

1 Introduction

Constraint-based clustering aims to improve clustering using user-provided pair-
wise constraints regarding similarities between pairs of instances. In particular,
a must-link constraint states that a pair of instances belong to the same cluster,
and a cannot-link constraint implies that two instances are in different clusters.
Existing work has shown that such constraints can be effective at improving
clustering in many cases [2,4,8,16,19,20,22,24,28]. However, most prior work
focus on “passive” learning from constraints, i.e., instance pairs are randomly
selected to be labeled by a user. Constraints acquired in this random manner
may be redundant and lead to the waste of labeling effort, which is typically
limited in real applications. Moreover, when the constraints are not properly
selected, they may even be harmful to the clustering performance as has been
revealed by Davidson et al. [7]. In this paper, we study the important problem
of actively selecting effective pairwise constraints for clustering.

Existing work on active learning of pairwise constraints for clustering has
mostly focused on neighbourhood-based methods [3,12,14,17,25]. Such meth-
ods maintain a neighbourhood structure of the data based on the existing con-
straints, which represents a partial clustering solution, and they query pairwise
constraints to expand such neighborhoods. Other methods that do not rely on
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such structure consider various criteria for measuring the utility of instance pairs.
For example, Xu et al. [26] propose to select constraints by examining the spec-
tral eigenvectors of the similarity matrix, and identify data points that are at
or close to cluster boundaries. Vu et al. [21] introduce a method that chooses
instance pairs involving points on the sparse regions of a k-nearest neighbours
graph. As mentioned by Xiong et al. [25], many existing methods often select
a batch of pairwise constraints before performing clustering, and they are not
designed for iteratively improving clustering by querying new pairs.

In this work, we study Bayesian active clustering with pairwise constraints
in an iterative fashion. In particular, we introduce a Bayesian clustering model
to find the clustering posterior given a set of pairwise constraints. At every
iteration, our task is: a) to select the most informative pair toward improving
current clustering, and b) to update the clustering posterior after the query is
answered by an oracle/a user. Our goal is to achieve the best possible clustering
performance with minimum number of queries.

In our Bayesian clustering model, we use a discriminative logistic model to
capture the conditional probability of the cluster assignments given the instances.
The likelihood of observed pairwise constraints is computed by marginalizing
over all possible cluster assignments using message passing. We adopt a special
data-dependent prior that encourages large cluster separations. At every iter-
ation, the clustering posterior is represented by a set of samples (“particles”).
After obtaining a new constraint, the posterior is effectively updated with a
sequential Markov Chain Monte Carlo (MCMC) method (“particle filter”).

We present two information-theoretic criteria for selecting instance pairs to
query at each iteration: a) Uncertain, which chooses the most uncertain pair
based on current posterior, and b) Info, which selects the pair that maximizes
the information gain regarding current clustering. With the clustering posterior
maintained at every iteration, both objectives can be efficiently calculated.

We evaluate our method on benchmark datasets, and the results demonstrate
that our Bayesian clustering model is very effective at learning from a small
number of pairwise constraints, and our active clustering model outperforms
state-of-the-art active clustering methods.

2 Problem Statement

The goal of clustering is to find the underlying cluster structure in a dataset
X = [x1, · · · , xN ] with xi ∈ R

d where d is the feature dimension. The unknown
cluster label vector Y = [y1, · · · , yN ], with yi ∈ {1, · · · ,K} being the cluster
label for xi, denotes the ideal clustering of the dataset, where K is the number of
clusters. In the studied active clustering, we could acquire some weak supervision,
i.e., pairwise constraints, by requesting an oracle to specify whether two instances
(xa, xb) ∈ X × X belong to the same cluster. We represent the response of the
oracle as a pair label za,b ∈ {+1,−1}, with za,b = +1 representing that instance
xa and xb are in the same cluster (a must-link constraint), and za,b = −1 meaning
that they are in different clusters (a cannot-link constraint). We assume the cost
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is uniform for different queries, and the goal of active clustering is to achieve the
best possible clustering with the least number of queries.

In this work, we consider sequential active clustering. In each iteration, we
select one instance pair to query the oracle. After getting the answer of the query,
we update the clustering model to integrate the supervision. With the updated
model, we then choose the best possible pair for the next query. So the task of
active clustering is an iterative process of posing queries and incorporating new
information to clustering.

An active clustering model generally has two key components: the clustering
component and the pair selection component. In every iteration, the task of the
clustering component is to identify the cluster structure of the data given the
existing constraints. The task of the pair selection component is to score each
candidate pair and choose the most informative pair to improve the clustering.

3 Bayesian Active Clustering

3.1 The Bayesian Clustering Model

In our model, we assume that the instance cluster labels yi’s are independent
given instance xi and the model parameter W . Each pair label za,b only depends
on the cluster labels ya and yb of the involved instances (xa, xb). The proposed
Bayesian clustering model consists of three elements: 1) the instance cluster
assignment model defined by P (Y |W,X), with parameter W ; 2) the conditional
distribution of the pair labels given the cluster labels P (Z|Y ), where Z contains
all pair labels in the constraints; and 3) the data-dependent prior P (W |X, θ)
with parameter θ. The joint distribution of the clustering model is factorized as

P (Z, Y,W |X, θ) = P (Z|Y )P (Y |W,X)P (W |X, θ) . (1)

We use the following discriminative logistic model as the clustering assign-
ment model P (Y |W,X):

P (yi = k|W,xi) =
exp(W�

·,kxi)
∑K

k′=1 exp(W�
·,k′xi)

, ∀1 ≤ k ≤ K, 1 ≤ i ≤ N , (2)

where W is a d × K matrix, d is the feature dimension, and K is the number of
clusters.

Here we use a special prior for W , which combines the Gaussian prior with a
data-dependent term that encourages large cluster separations of the data. The
logarithmic form of the prior distribution is

log P (W |X, θ) = −λ

2
‖W‖2F − τ

N

N∑

i=1

H(yi|W,xi) + constant , (3)

where the prior parameter θ = [λ, τ ]. The first term is the weighted Frobenius
norm of W . This term corresponds to the Gaussian prior with zero mean and
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diagonal covariance matrix with λ as the diagonal elements, and it controls the
model complexity. The second term is the average negative entropy of the cluster
assignment variable Y . We use this term to encourage large separations among
clusters, as similarly utilized by [11] for semi-supervised classification problems.
The constant term normalizes the probability. Although it is unknown, inference
can be carried out by sampling from the unnormalized distribution (e.g., using
slice sampling [18]). We will discuss more details in Sec. 3.3.

With our model assumption, the conditional probability P (Z|Y ) is fully fac-
torized based on the pairwise constraints. For a single pair (xa, xb), we define
the probability of za,b given cluster labels ya and yb as

P (za,b = +1|ya, yb) =
{

ε if ya �= yb

1 − ε if ya = yb
,

P (za,b = −1|ya, yb) = 1 − P (za,b = +1|ya, yb) ,

(4)

where ε is a small number to accommodate the (possible) labeling error. In the
case where no labeling error exists, ε allows for “soft constraints”, meaning that
the model can make small errors on some pair labels and achieve large cluster
separations.

Marginalization of Cluster Labels. In the learning procedure described
later, we will need to marginalize some or all cluster labels, for example, in the
case of computing the likelihood of the observed pair labels:

P (Z|W,X) =
∑

Y

P (Z, Y |W,X) =
∑

Yα(Z)

P (Z|Yα(Z))P (Yα(Z)|W,Xα(Z)) , (5)

where α(Z) denotes the set of indices for all instances involved in Z.
The marginalization can be solved by performing sum-product message pass-

ing [15] on a factor graph defined by all the constraints. Specifically, the set of all
instances indexed by α(Z) defines the nodes of the graph, and P (Yα(Z)|W,Xα(Z))
defines the node potentials. Each queried pair (xa, xb) creates an edge, and the
edge potential is defined by P (za,b|ya, yb). In this work, we require that the
graph formed by the constraints does not contain cycles, and message passing is
performed on a tree (or a forest, which is a collection of trees). Since inference
on trees are exact, the marginalization is computed exactly. Moreover, due to
the simple form of the edge potential (which is a simple modification to the
identity matrix as can be seen from (4)), the message passing can be performed
very efficiently. In fact, each message propagation only requires O(K) complexity
instead of O(K2) as in the general case. Overall the message passing only takes
O(K|Z|), even faster than calculating the node potentials P (Yα(Z)|W,Xα(Z)),
which takes O(dK|Z|).

3.2 Active Query Selection

Now we describe our approach for actively selecting informative pairs at every
iteration. Suppose our query budget is T . In each iteration t, 1 ≤ t ≤ T , we need
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to select a pair (xt
a, xt

b) from a pool of unlabeled pairs U t, and acquire the label
zt
a,b from the oracle. We let U1 ⊆ X × X be the initial pool of unlabeled pairs.

Then U t = U t−1\(xt−1
a , xt−1

b ) for 1 ≤ t ≤ T . Below we use Zt = [z1a,b, · · · , zt
a,b]

to denote all the pair labels obtained up to the t-th iteration.

Selection Criteria. We use two entropy-based criteria to select the best pair
at each iteration. The first criterion, which we call Uncertain, is to select the
pair whose label is the most uncertain. That is, at the t iteration, we choose
the pair (xt

a, xt
b) that has the largest marginal entropy of zt

a,b (over the posterior
distribution of W ):

(xt
a, xt

b) = arg max
(xa,xb)∈Ut

H(za,b|Zt−1,X, θ) . (6)

Similar objective has been considered in prior work on distance metric learning
[27] or document clustering [14], where the authors propose different approaches
to compute/approximate the entropy objective.

The second criterion is a greedy objective adopted from active learning for
classification [6,10,13], which we call Info. The idea is to select the query (xt

a, xt
b)

that maximizes the marginal information gain about the model W :

(xt
a, xt

b) = arg max
(xa,xb)∈Ut

I(za,b,W |Zt−1,X, θ)

= arg max
(xa,xb)∈Ut

H(za,b|Zt−1,X, θ) − H(za,b|W,Zt−1,X, θ) . (7)

Note that here W is a random variable. The Info objective is equivalent to
maximizing the entropy reduction about W , as can be proved by the chain rule
of conditional entropy.

Interestingly, the first entropy term in the Info objective (7) is the same
with the Uncertain objective (6). The additional term to Info is the conditional
entropy of the pair label za,b given W , i.e., the second term in (7). Comparing
the two objectives, we see that W is marginalized in the Uncertain objective
and the selected query aims to reduce the maximum uncertainty of the pair
label. In contrast, the goal of Info is to decrease the model uncertainty. There
is subtle difference between these two types of uncertainties. The additional
conditional entropy term in Info suggests that it prefers instance pairs whose
labels are certain once W is known, yet whose overall uncertainty is high when
marginalizing over W . In such sense, Info pays more attention to the uncertainty
of the model W .

Each of the above selection objectives ranks the candidate pairs from the
highest to the lowest. To select a pair to query, we go through the ranking and
choose the one that does not create a cycle to the existing graph as described
in Sec. 3.1. Since inference on trees are not only exact but also fast, enforcing
such acyclic graph structure allows us to compute the selection objectives more
effectively and accurately, and select more informative pairs to query.
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Computing the Selection Objectives. Now we describe how to compute the
two objective values for a candidate instance pair. The two objectives require
computing the marginal entropy H(za,b|Zt,X, θ), and the conditional entropy
H(za,b|W,Zt,X, θ), for 1 ≤ t ≤ T . By definition, the marginal entropy is

H(za,b|Zt,X, θ) = −
∑

za,b

P (za,b|Zt,X, θ) log P (za,b|Zt,X, θ) , (8)

where the probability

P (za,b|Zt,X, θ) =
∫

P (Ŵ |Zt,X, θ)P (za,b|Zt, Ŵ ,X)dŴ . (9)

The conditional probability is computed as

P (za,b|Zt, Ŵ ,X) =
P (za,b ∪ Zt|Ŵ ,X)

P (Zt|Ŵ ,X)
, (10)

where calculating both the numerator and the denominator are the same infer-
ence problem as (5) and can be solved similarly using message passing. In fact,
message propagations for the two calculations are shared except for that a new
edge regarding za,b is introduced to the graph for P (za,b ∪ Zt|Ŵ ,X). So we can
calculate the two values by performing message passing algorithm only once on
the graph of P (za,b∪Zt|Ŵ ,X), and record P (Zt|Ŵ ,X) in the intermediate step.

By definition, the conditional entropy is

H(za,b|W,Zt,X, θ) =
∫

P (Ŵ |Zt,X, θ)H(za,b|Zt, Ŵ ,X)dŴ , (11)

where H(za,b|Ŵ , Zt,X) is also easy to compute once we know P (za,b|Zt, Ŵ ,X),
which has been done in (10).

Now the only obstacle in calculating the two entropies is to take the expecta-
tions over the posterior distribution P (W |Zt,X, θ) in (9) and (11). Here we
use sampling to approximate such expectations. We first sample W ’s from
P (W |Zt,X, θ) and then approximate the expectations with the sample means.
Directly sampling from the posterior at every iteration is doable but very ineffi-
cient. Below we describe a sequential MCMC sampling method (“particle filter”)
that effectively updates the samples of the posterior.

3.3 The Sequential MCMC Sampling of W

The main idea of the sequential MCMC method is to avoid sampling with ran-
dom starts at every iteration by utilizing the particles obtained from the previous
iteration.1 Specifically, to obtain particles from distribution P (W |Zt,X, θ), the
sequential MCMC method first resamples from the particles previously sampled
1 Here we follow the convention of the particle filter field and call samples of W as

“particles”.



Bayesian Active Clustering with Pairwise Constraints 241

from P (W |Zt−1,X, θ), and then performs just a few MCMC steps with these
particles to prevent degeneration [9].

Here we maintain S particles in each iteration. We denote W t
s , 1 ≤ s ≤ S,

as the s-th particle in the t-th iteration. For initialization, we sample particles
{W 0

1 , · · · ,W 0
S} from the prior distribution P (W |X, θ) defined in (3) using slice

sampling [18] 2, an MCMC method that can uniformly draw samples from an
unnormalized density function. Since slice sampling does not require the target
distribution to be normalized, the unknown constant in the prior (3) can be
neglected here.

At iteration t, 1 ≤ t ≤ T , after a new pair label zt
a,b is observed, we per-

form the following two steps to update the particles and get samples from
P (W |Zt,X, θ).

(1) Resample. The first step is to resample from the particles {W t−1
1 , · · · ,W t−1

S }
obtained from the previous iteration for P (W |Zt−1,X, θ). We observe that

P (W |Zt,X, θ) = P (W |zt
a,b, Zt−1,X, θ)

∝ P (zt
a,b|Zt−1,W,X)P (W |Zt−1,X, θ) .

So each particle W t−1
s is weighted by P (zt

a,b|Zt−1,W
t−1
s ,X), which can be cal-

culated the same as (10).

(2) Move. In the second step, we start with each resampled particles, and per-
form several slice sampling steps for the posterior

P (W |Zt,X, θ) ∝ P (Zt|W,X)P (W |X, θ) . (12)

Again P (Zt|W,X) is calculated by message passing as (5), and the unknown
normalizing constant in P (W |X, θ) can be ignored, since slice sampling does not
require the normalization constant.

The resample-move method avoids degeneration in the sequence of slice
sampling steps. After these two steps, we have updated the particles for
P (W |Zt,X, θ). Such particles are used to approximate the selection objectives
as described in Sec. 3.2, allowing us to select the next informative pair to query.

Note that the distribution P (W |Zt,X, θ) is invariant to label switching, that
is, permuting column vectors of W = [W·,1, · · · ,W·,K ] will not change the prob-
ability P (W |Zt,X, θ). This is because we can not provide any prior of W with
label order, nor does the obtained constraints provide any information about the
label order. One concern is whether the label switching problem would reduce
sampling efficiency and affect the pair selection, since P (W |Zt,X, θ) has mul-
tiple modes corresponding to different label permutations. Actually it does not
cause an issue to the approximation of integrations in (9) and (11), since the
term P (za,b|Zt,W,X, θ) is also invariant to label permutations. However, the
label switching problem does cause difficulty in getting the Bayesian prediction
of clusters labels from distribution P (Y |Zt,X, θ), so we will employ the MAP
solution Wmap and predict cluster labels with P (Y |Zt,Wmap,X, θ). We describe
this in the following section.
2 Here we use the implementation slicesample provided in the MATLAB toolbox.
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3.4 Find the MAP Solution

Given a set of constraints with pair labels Z, we first find the MAP estimation
Wmap by maximizing the posterior P (W |Z,X, θ), or equivalently maximizing
the joint distribution P (W,Z|X, θ) (in the logarithmic form):

max
W

L = log P (W,Z|X, θ) = log P (Z|W,X) + log P (W |X, θ) . (13)

The maximization can be solved by off-the-shelf gradient-based optimization
approaches. Here we use the quasi-newton method provided in the MATLAB
toolbox. The gradient of the objective L with respect to W is

∂L

∂W
=

∑

i∈α(Z)

xi(qi − pi)� − λW − τ

N

N∑

i=1

xi

K∑

k=1

pik log pik(1k − pi)� ,

where pi = [pi1, · · · , piK ]� with pik = P (yi = k|W,xi), qi = [qi1, · · · , qiK ]� with
qik = P (yi = k|Z,W, xi), and 1k is a K dimensional vector that contains 1 on
the k-th dimension and 0 elsewhere. Here α(Z) again indexes all the instances
involved in the constraints.

With the Wmap solution to (13), we then find the MAP solution of the cluster
labels Y from P (Y |Z,Wmap,X). This is done in two cases. For the instances that
are not involved in the constraints, the MAP of Y is simply the most possible
assignment of P (Y |Wmap,X). For the instances involved in the constraints, we
need to find

max
Yα(Z)

P (Yα(Z)|Z,Wmap,Xα(Z)) ∝ P (Z|Yα(Z))P (Yα(Z)|Wmap,Xα(Z)) .

The inference can be done by performing max-product algorithm on the same
graph as defined for (5), only replacing the “summation” with the “max” oper-
ator at every message propagation.

In real applications, we only need to find the MAP solution of Y after the
last iteration. In our experiments, we search for the solution at every iteration
to show the performance of our method if we stop learning at any iteration. Our
overall algorithm is summarized in Algorithm 1.

Note that an alternative of finding the clustering solution is to find the MAP
of W and Y at the same time. However, we think our MAP estimation of W
which marginalizes Y is more stable, and our calculation method is much simpler
compared with the alternative.

4 Experiments

In this section, we empirically examine the effectiveness of the proposed method.
In particular, we aim to answer the following questions:

– Is the proposed Bayesian clustering model effective at finding good clustering
solutions with a small number of pairwise constraints?

– Is the proposed active clustering method more effective than state-of-the-art
active clustering approaches?
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Algorithm 1. Bayesian Active Clustering
Input: data X, number of clusters K, access to the oracle, initial pool U1, query
budget T , prior parameter θ, number of samples S
Output: a clustering solution of the data

Initialize particles by sampling {W 0
1 , · · · , W 0

S} from prior P (W |X, θ)
for t = 1 to T do

1. Select a pair to query:
Use particles {W t−1

1 , · · · ,W t−1
S } to compute the selection objective (6) or (7)

Choose the best pair (xt
a, xt

b) from U t and acquire zt
a,b from the oracle

2. Update posterior:
Resample S particles with weight P (zt

a,b|Zt−1, W
t−1
s , X) for W t−1

s

Perform a few MCMC steps on all particles with distribution P (W |Zt, X, θ)
3. Update the pool: U t+1 ← U t\(xt

a, xt
b)

end for
Find the MAP solution Wmap = arg max

W
log P (W |ZT , X, θ)

Find the clustering solution Ymap = arg max
Y

log P (Y |ZT , Wmap, X)

Table 1. Summary of Dataset Information

Dataset #Inst #Dim #Class #Query

Fertility 100 9 2 60
Parkinsons 195 22 2 60
Crabs 200 5 2 60
Sonar 208 60 2 100
Balance 625 4 3 100
Transfusion 748 4 2 100
Letters-IJ 1502 16 2 100
Digits-389 3165 16 3 100

4.1 Dataset and Setup

We use 8 benchmark UCI datasets to evaluate our method. Table 1 provides a
summary of the dataset information. For each dataset, we normalize all features
to have zero mean and unit standard deviation.

We form the pool of unlabeled pairs using all instances in the dataset, and
set the query budget to 60 for smaller datasets and to 100 for datasets with large
feature dimension (e.g, Sonar) or larger dataset size. When a pair of instances is
queried, the label is returned based on the ground-truth instance class/cluster
labels. We evaluate the clustering results of all methods using pairwise F-Measure
[5], which evaluates the harmonic mean of the precision and recall regarding
prediction of instance pairwise relations. We repeat all experiments 30 times
and average the results.

For the proposed Bayesian clustering model, we found that its performance is
not sensitive to the values of the prior parameter τ or the ε used in the pair label
distribution (4). Here we set τ = 1 and ε = 0.05, where the nonzero value of ε
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Fig. 1. Pairwise F-Measure clustering results with increasing number of randomly
selected queries. Results are averaged over 30 runs. Error bars are shown as mean
and 95% confidence interval.
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allows for “soft constraints”. For the parameter λ, which controls the covariance
of the Gaussian prior, we experimented with λ ∈ {1, 10, 100} and found that
λ = 10 is uniformly good with all datasets, which we fix as the default value. For
each dataset, we maintain S = 2dK samples of the posterior at every iteration.

4.2 Effectiveness of the Proposed Clustering Model

To demonstrate the effectiveness of the proposed Bayesian clustering (BC)
model, we compare with two well-known methods that learn from pairwise
constraints: MPCKmeans [5], and ITML [8]3. In this set of experiment, we
use randomly selected pairwise constraints to evaluate all methods. For our
method, we incrementally select random pairs that do not introduce a cycle
to the graph formed by existing pairs. To ensure a fair comparison, we evalu-
ate ITML and MPCKmeans with randomly selected pairs with and without the
acyclic graph restriction. Thus, all methods in competition are: BC+tree, ITML,
ITML+tree, MPCKmeans, MPCKmeans+tree, where BC+tree, ITML+tree, and
MPCKmeans+tree use randomly selected constraints that form a tree graph (or
a forest), and ITML and MPCKmeans allow for cycles in the graph.

Figure 1 shows the performance of all methods with increasing number of con-
straints. We see that our method BC+tree outperforms the baselines on most
datasets regardless of whether they use constraints with or without the acyclic
graph restriction. This demonstrates the effectiveness of our Bayesian clustering
model. We also notice that on most datasets we can hardly tell the difference
between ITML and ITML+tree, or MPCKmeans and MPCKmeans+tree, sug-
gesting that enforcing the acyclic structure in the constraints do not hurt the
performance of ITML or MPCKmeans. Interestingly, such enforcement can in
some cases produce better performance (e.g, on the Sonar dataset). We sus-
pect this is because constraints forming cycles may have larger incoherence than
those does not.4 Davidson et al. [7] have shown that constraint sets with large
incoherence can potentially degrade the clustering performance.

4.3 Effectiveness of the Overall Active Clustering Model

In this section, we compare our overall active clustering model with existing
methods. Our baselines include two recent work on active learning with pair-
wise constraints: MinMax [17], and NPU [25]. Both methods provide an active
pair selection approach and require a clustering method to learn form the con-
straints. Here we supply them with MPCKmeans and ITML.5 So all methods in
competition are
3 ITML is a distance metric learning method, and we find the clustering solution by

applying Kmeans clustering with the learned metric.
4 The concept of incoherence is formally defined at [7]. Generally, a set of overlapping

constraints tends to have higher incoherence than a set of disjoint constraints.
5 Note that due to our Bayesian clustering model requires the set of constraints to form

an acyclic graph, it can not be combined with MinMax or NPU, as they generally
select constraints that form cycles due to their neighbourhood-based approach.
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Fig. 2. Pairwise F-Measure clustering results of different active clustering methods
with increasing number of queries. Results are averaged over 30 runs. Error bars are
shown as mean and 95% confidence interval.
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– Info+BC: The proposed active clustering model with the Info criterion (7).
– Uncertain+BC: The proposed active clustering model with the Uncertain

criterion (6).
– NPU+ITML: The NPU active selection strategy combined with ITML.
– NPU+MPCKmeans: The NPU method with MPCKmeans.
– MinMax+ITML: The MinMax active learning method combined with ITML.
– MinMax+MPCKmeans: The MinMax approach combined with MPCK-
means.

Figure 2 reports the performance of all active clustering methods with
increasing number of queries. We see that both Info+BC and Uncertain+BC
improve the clustering very quickly as more constraints are obtained, and they
outperform all baselines on most datasets. Moreover, Info+BC seems to be more
effective than Uncertain+BC in most cases. We hypothesize this is because Info
reduces the uncertainty of the model, which might be more appropriate for
improving the MAP solution of clustering than decreasing the maximum uncer-
tainty of the pair labels as Uncertain does.

To avoid crowding Fig. 2, we did not present the passive learning results of
our method BC+tree as a baseline in the same figure. The comparison between
active learning and passive learning for our method can be done by comparing
Uncertain+BC and Info+BC in Fig. 2 with BC+tree in Fig. 1. We see that both
our active learning approaches produce better performance than passive learning
on most datasets, demonstrating the effectiveness of our pair selection strategies.

We also notice that the performance of NPU or MinMax highly depends on
the clustering method in use. With different clustering methods, their behav-
iors are very different. In practice, it can be difficult to decide which clustering
algorithm should be used in combination with the active selection strategies to
ensure good clustering performance. In contrast, our method unifies the cluster-
ing and active pair selection model, and the constraints are selected to explicitly
reduce the clustering uncertainty and improve the clustering performance.

4.4 Analysis of the Acyclic Graph Restriction

Our method requires the graph formed by the constraints to be a tree (or a
forest). Here we show that this restriction will not prevent us from selecting
informative pairs. We examine the number of pairs that has been dropped at
every iteration in order to find the best pair that does not create a cycle. Table
2 reports the results for the two selection criteria with varied number of queries.
We see that for both criteria the number of dropped pairs is very small. For
Uncertain, there is barely any pair that has been dropped on most datasets, and
we see slightly more pairs dropped for the Info criteria. Overall, for only less
than (often significantly less than) 10% of the number of queries, we encounter
the need of dropping a pair. The only exception is the Fertility dataset, which
is very small in size, making it difficult to avoid cycles with a large number of
queries. But from the results in Sec. 4.3, we can see that the active clustering
performance was still much better than the competing methods.
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Table 2. Number of dropped pairs (Info/Uncertain) at different iterations to find the
best pair that does not a create cycle. Results are averaged over 30 runs.

Dataset
Query Iteration

10 20 30 40 50 60

Fertility 0.4/0.0 0.6/0.1 0.9/0.1 2.7/1.9 4.2/14.3 10.8/32.0
Parkinsons 0.1/0.0 0.0/0.0 0.5/0.0 0.8/0.3 0.9/0.6 1.7/1.7
Crabs 0.6/0.0 0.2/0.0 0.0/0.0 0.1/0.3 0.2/0.6 0.4/1.5
Sonar 0.7/0.0 0.2/0.0 0.4/0.1 0.5/0.2 0.5/0.2 0.6/0.2
Balance 0.0/0.0 0.3/0.0 1.7/0.0 2.6/0.0 3.3/0.1 2.9/0.0
Transfusion 0.3/0.0 1.3/0.0 2.4/0.0 2.3/0.0 4.6/0.0 4.9/0.1
Letters-IJ 0.0/0.0 0.2/0.0 0.3/0.0 0.2/0.0 0.5/0.0 0.7/0.0
Digits-389 0.0/0.0 0.0/0.0 0.1/0.0 0.1/0.0 0.0/0.0 0.3/0.0

In addition, during our experiments, we found that for both criteria the
difference between the maximum objective value and objective of the finally
selected pair is often negligible. So in the case where some high-ranking pairs
are dropped due to the acyclic graph structure restriction, the selected pair is
still very informative. Overall, this enforcement does not present any significant
negative impact on the final clustering results. It is interesting to note that, the
results in Sec. 4.2 suggest that such graph structure restriction can in some cases
improve the clustering performance.

5 Related Work

Prior work on active clustering for pairwise constraints has mostly focused on the
neighbourhood-based method, where a neighbourhood skeleton is constructed to
partially represent the underlying clusters, and constraints are queried to expand
such neighbourhoods. Basu et al. [3] first proposed a two-phase method, Explore
and Consolidate. The Explore phase incrementally builds K disjoint neighbor-
hoods by querying instance pairwise relations, and the Consolidate phase iter-
atively queries random points outside the neighborhoods against the existing
neighborhoods, until a must-link constraint is found. Mallapragada et al. [17]
proposed an improved version, which modifies the Consolidate stage to query
the most uncertain points using an MinMax objective. As mentioned by Xiong
et al. [25], these methods often select a batch of constraints before perform-
ing clustering, and they are not designed for iteratively improving clustering by
querying new constraints, as considered in this work.

Wang and Davidson [23], Huang et al. [14] and Xiong et. al. [25] studied
active clustering in an iterative manner. Wang and Davidson introduced an
active spectral clustering method that iteratively select the pair that maximized
the expected error reduction of current model. This method is however restricted
to the two-cluster problems. Huang et al. proposed an active document clustering
method that iteratively finds probabilistic clustering solution using a language
model and they selected the most uncertain pair to query. But this method is
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limited to the task of document clustering. Xiong et. al. considered a similar
iterative framework to Huang et al., and they queried the most uncertain data
point against existing neighbourhoods, as apposed to the most uncertain pair
in [14]. Xiong et al. only provide a query selection strategy and require a clus-
tering method to learn from the constraints. In contrast, our method is a unified
clustering and active pair selection model.

Finally, there are other methods that use various criteria to select pairwise
constraints. Xu et al. [26] proposed to select constraints by examining the spec-
tral eigenvectors of the similarity matrix in the two-cluster scenario. Vu et al.
[21] proposed to select constraints involving points on the sparse regions of a
k-nearest neighbours graph. The work [1,12] used ensemble approaches to select
constraints. The scenarios considered in these methods are less similar to what
has been studied in this paper.

6 Conclusion

In this work, we studied the problem of active clustering, where the goal is to
iteratively improve clustering by querying informative pairwise constraints. We
introduced a Bayesian clustering method that adopted a logistic clustering model
and a data-dependent prior which controls model complexity and encourages
large separations among clusters. Instead of directly computing the posterior of
the clustering model at every iteration, our approach maintains a set of sam-
ples from the posterior. We presented a sequential MCMC method to efficiently
update the posterior samples after obtaining a new pairwise constraint. We intro-
duced two information-theoretic criteria to select the most informative pairs to
query at every iteration. Experimental results demonstrated the effectiveness of
the proposed Bayesian active clustering method over existing approaches.
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