
Generalization in Unsupervised Learning

Karim T. Abou-Moustafa(B) and Dale Schuurmans

Department of Computing Science, University of Alberta,
Edmonton, AB T6G 2E8, Canada
{aboumous,daes}@ualberta.ca

Abstract. We are interested in the following questions. Given a finite
data set S, with neither labels nor side information, and an unsuper-
vised learning algorithm A, can the generalization of A be assessed on
S? Similarly, given two unsupervised learning algorithms, A1 and A2,
for the same learning task, can one assess whether one will generalize
“better” on future data drawn from the same source as S? In this paper,
we develop a general approach to answering these questions in a reliable
and efficient manner using mild assumptions on A. We first propose a
concrete generalization criterion for unsupervised learning that is anal-
ogous to prediction error in supervised learning. Then, we develop a
computationally efficient procedure that realizes the generalization cri-
terion on finite data sets, and propose and extension for comparing the
generalization of two algorithms on the same data set. We validate the
overall framework on algorithms for clustering and dimensionality reduc-
tion (linear and nonlinear).

1 Introduction

The goal of unsupervised learning is to autonomously capture and model latent
relations among the variables of a data set. Such latent relations are usually
in the form of regularities and statistical dependencies known as the underly-
ing structure of the data distribution. Unlike supervised learning, there are no
desired target answers to guide and correct the learning process. However, simi-
lar to supervised learning, unsupervised learning algorithms generate estimates
that are functions of sample data drawn from an unknown distribution P. As
such, it is natural to ask questions related to the generalization capability of
these estimates, as well as questions on the choice of these estimates (model
selection) [11].

In supervised learning, questions of generalization have been scrutinized,
equally, in theory and in practice; see for instance [5,6,8,9,14,15,17,20,22,24]. In
unsupervised learning, however, few efforts have acknowledged and addressed the
problem in general. For instance, [11] approximates the expected loss of finite
parametric models such as principle component analysis (PCA) and k-Means
clustering based on asymptotic analysis and central limit results.

One possible reason for the scarcity of such efforts is the subjective nature of
unsupervised learning, the diversity of tasks covered (such as clustering, density

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 300–317, 2015.
DOI: 10.1007/978-3-319-23528-8 19

Generalization in Unsupervised Learning 301

estimation, dimensionality reduction, feature learning, etc.), and the lack of a
unified framework that incorporates a significant subset of these tasks. Another
reason is that the principles underlying supervised learning are often distinct
from those underlying unsupervised learning. In supervised learning, the final
result of a learning algorithm is a function f∗ that minimizes the expected loss
(possibly plus a regularizer) under the unknown true distribution P, which can
be applied to new points not included during training. Since P is unknown, the
learning algorithm selects f∗ that minimizes an empirical average of the loss as a
surrogate for the expected loss. Therefore, since the loss measures the difference
between the estimated and expected outputs, its average provides an indicator
of generalization error. The validity of this mechanism, however, rests on (i) the
existence of target outputs, and (ii) consistency of the empirical average of the
loss [22].

In unsupervised learning, the characterization is different. First, the target
output is not available. Second, an unsupervised learning algorithm A produces
an output that is a re-representation of the input; hence loss functions in this
setting usually assess a reconstruction error between the output and input [25].
Third, there are various unsupervised learning algorithms that do not minimize
a reconstruction error yet still produce an output that is a re-representation of
the input: see for example the recent literature on moments-based methods for
latent variable models and finite automata [1,2,12,21].

These observations motivate us to deal with unsupervised learning algorithms
in an abstract form. In particular, we consider an unsupervised learning algo-
rithm A as an abstract function – a black box – that maps an input x to an
output y. The advantage of this view is that (i) it is independent of the learn-
ing task, and (ii) it provides a simple unified view for these algorithms without
being overly dependent on internal details.

Based on this perspective, we propose a general definition for generalization
of an unsupervised learning algorithm on a data set S. The framework is based
on a general loss function � that measures the reconstruction error between the
input and output of A, which is not necessarily the loss minimized by A (if any).
To study the generalization of A under the black box assumption and an external
loss �, we will assume that A satisfies a certain notion of algorithmic stability
under some mild assumptions on �. Given this notion of stability, we derive a
finite useful upper bound on A’s expected loss, which naturally lends itself to
a generalization criterion for unsupervised learning. As a second contribution,
we develop an efficient procedure to realize this generalization criterion on finite
data sets, which can be extended to comparing the generalization of two dif-
ferent unsupervised learning algorithms on a common data source. Finally, we
apply this generalization analysis framework and evaluation procedure to two
unsupervised learning problems; clustering and dimensionality reduction.

302 K.T. Abou-Moustafa and D. Schuurmans

1.1 Preliminaries and Setup

Let X ⊆ R
d and Y ⊆ R

k be the input and output spaces, respectively.1 Let
S ∈ X n be a training set of size n drawn IID from an unknown distribution
Px defined on a measurable space (X , Σ) with domain X and σ-algebra Σ. We
denote this as S ∼ Px where S = {xi}n

i=1. For each xi ∈ S there is a corre-
sponding output yi, 1 ≤ i ≤ n, with appropriate dimension k. For convenience,
S can be represented as a matrix Xn×d, while the output can also be represented
as a matrix Yn×k.

An unsupervised learning algorithm A is a mapping from X n to the class
of functions F s.t. for f ∈ F , f : X → Y. Thus, A takes as input S, selects a
particular f∗ from F , and estimates an n × k output matrix ̂Y ≡ AS(X), or
ŷ ≡ AS(x),2 where AS denotes the output of A (i.e. f∗ ∈ F) after training on
S. The algorithm A could also have certain parameters, denoted θA, that the
user can tune to optimize its performance. We assume that A and its output
functions in F are all measurable maps.

2 A General Learning Framework

The problem of unsupervised learning is that of selecting a function f∗ ∈ F
that transforms input x into an output ŷ ≡ AS(x) in some desired way. Here we
assume that A is a black box that takes S and produces a map f∗ from x to ŷ.
Since we are ignoring A’s internal details, assessing its generalization requires us
to consider an additive external loss function � : X × Y → R

+ that measures
the reconstruction error between x and ŷ. Thus, the expected loss for AS with
respect to � is defined as:

R(AS) ≡ E [�(x,AS(x)] =
∫

�(x,AS(x))dPx. (1)

Unfortunately R(AS) cannot be computed since Px is unknown, and thus it has
to be estimated from S ∈ X n. A simple estimator for R(AS) is the empirical
estimate:

̂REMP(AS) =
1
n

n
∑

i=1

�(xi,AS(xi)). (2)

To obtain a practical assessment of the generalization of A, we need to derive
an upper bound for the quantity ̂REMP(AS) − R(AS). Given the generality of
1 Notation: Lower case letters x, m, i denote scalars and indices. Upper case letters

X, Y denote random variables. Bold lower case letters x,y denote vectors. Bold
upper case letters A,B are matrices. Distributions P,G will be written in script.
Calligraphic letters X , Y denote sets.

2 For example, in k-Means clustering, the elements of ̂Y could be the corresponding
cluster centers assigned to each xi from a set of k such centers. In nonlinear dimen-
sionality reduction, the output could be the n × n low rank matrix ̂Y. In density
estimation using a mixture model, A could output the n × 1 matrix Y with the
density value of each xi.

Generalization in Unsupervised Learning 303

this setting, one needs to resort to worst case bounds. However, this cannot be
done without introducing additional assumptions about the behaviour of A. For
example, if one assumes that A chooses its output from a class of functions F
such that the class of loss random variables Λ : X × Y → R+ induced by F , i.e.
Λ = � ◦F , is uniformly upper bounded by c < ∞ and VCdim(Λ) = h < ∞, then
with probability at least 1 − η there is a uniform concentration of ̂REMP(AS)
around R(AS):

R(AS) ≤ ̂REMP(AS) +
τc

2

⎛

⎝1 +

√

1 +
4 ̂REMP(AS)

τc

⎞

⎠ , (3)

where τ = 4n−1 [h(ln 2n/h + 1) − ln η] [22,23]. Rademacher or Gaussian com-
plexities can also be used to obtain similar concentration inequalities [3]. The
caveat is that such an analysis is worst case and the resulting bounds, such
as (3), are too loose to be useful in practice. This suggests that we need to
make stronger assumptions on A to achieve more useful bounds on the quantity
̂REMP(AS) − R(AS).

2.1 Generalization and Stability

To achieve a more practical criterion and assessment procedure, we need to
introduce some form of additional assumptions on A without sacrificing too much
generality. To this end, we investigate an assumption that A satisfies a particular
notion of algorithmic stability that allows us to derive a more useful and a tighter
upper bound on ̂REMP(AS)−R(AS). Algorithmic stability has been successfully
applied in learning theory to derive generalization bounds for supervised learning
algorithms, but has yet to be formally applied to unsupervised learning. Among
the different notions of stability, the uniform stability of [5] is considered to
be the strongest since it implies other notions of stability such as: hypothesis
stability, error stability, point–wise hypothesis stability, everywhere stability,
CVLOO stability, etc. [8,14,16,17,20].

To define uniform stability for A in the unsupervised learning context, we
require the following definitions. For any S ∈ X n, we define ∀i, 1 ≤ i ≤ n,
the modified training set S\i by removing from S the i-th element: S\i =
{x1, . . . ,xi−1,xi+1, . . . ,xn}. We assume that A is symmetric with respect to
S; i.e. it does not depend on the elements’ order in S. Further, we require that
the external loss � be “well behaved” with respect to slight changes in S; i.e.
if ε = �(x,AS(x)), ε′ = �(x,AS′(x)), and S ′ is slightly different from S such
that AS(x) ≈ AS′(x), then the difference between ε and ε′ should be small. The
notion of “well behaved” is formally imposed by requiring that � is Lipschitz
continuous, and that A is uniformly β–stable with respect to �. This uniform
β–stability is defined as follows:

Definition 1 (Uniform β–Stability). An algorithm A is uniformly β–stable
with respect to the loss function � if for any x ∈ X , the following holds:

∀ S ∈ X n, max
i=1,...,n

|�(x,AS(x)) − �(x,AS\i(x))| ≤ β.

304 K.T. Abou-Moustafa and D. Schuurmans

Note that β is a function of n and we assume that stability is non-increasing as
a function of n. Hence, in the following, β can be denoted by βn.

Definition 2 (Stable Algorithm). Algorithm A is stable if βn ∝ 1
n .

3

The analogy between our definition of uniform β–stability and the uniform
β–stability in supervised learning can be explained as follows. The uniform
β–stability in [5] is in terms of �(AS , z) and �(AS\i , z), where z = (x, y), x is
the input vector, and y is its expected output (or true label). Note that �(AS , z)
can be written as �(fS(x), y), where fS is the hypothesis learned by A using
the training set S. Similarly, �(AS\i , z) can be written as �(fS\i(x), y). Observe
that the difference between �(fS(x), y) and �(fS\i(x), y) is in the hypotheses fS
and fS\i . Note also that in supervised learning, the loss � measures the discrep-
ancy between the expected output y and the estimated output ŷ = fS(x). In
our unsupervised learning setting, the expected output is not available, and the
loss � measures the reconstruction error between x and ŷ ≡ AS(x). Hence, we
replace �(AS , z) by �(x,AS(x)), and �(AS\i , z) by �(x,AS\i(x)) to finally obtain
Definition 1.

Note that the uniform β–stability of A with respect to � is complimentary
to the continuous Lipschitz condition on �. If A is uniformly β–stable, then a
slight change in the input will result in a slight change in the output, resulting
in a change in the loss bounded by β. The following corollary upper bounds the
quantity ̂REMP(AS) − R(AS) using the uniform β–stability of A.

Corollary 1. Let A be a uniformly β–stable algorithm with respect to �, ∀ x ∈
X , and ∀ S ∈ X n. Then, for any n ≥ 1, and any δ ∈ (0, 1), the following bounds
hold (separately) with probability at least 1 − δ over any S ∼ Px:

(i) R(AS) ≤ ̂REMP(AS) + 2β + (4nβ + c)

√

log(1/δ)
2n

, (4)

(ii) R(AS) ≤ ̂RLOO(AS) + β + (4nβ + c)

√

log(1/δ)
2n

, where (5)

̂RLOO(AS) = 1
n

∑n
i=1 �(xi,AS\i(xi)), is the leave-one-out (LOO) error estimate.

Discussion. The generalization bounds in (4) and (5) directly follow from
Theorem 12 in [5] for the regression case. The reason we consider A under the
regression framework is due to our characterization of unsupervised learning
algorithms in which we consider the output ŷ ∈ R

k is a re-representation of
the input x ∈ R

d. This, in turn, defined the form of the external loss � as � :
X ×Y → R

+. This characterization is very similar to the multivariate regression
setting, and hence our reliance on Theorem 12 in [5]. Note that if β ∝ 1

n , then
the bounds in (4) and (5) will be tight.

Corollary 1 is interesting in our context for a few reasons. First, it defines
a generalization criterion for unsupervised learning algorithms in general: if A

3 βn ∝ 1
n

=⇒ βn = κ
n
, for some constant κ > 0.

Generalization in Unsupervised Learning 305

is uniformly β–stable with respect to � on S, then the bounds in (4) and (5)
hold with high probability. Note that the bound in (4) is tighter than the one
in (3). Second, the bounds for ̂REMP and ̂RLOO are very similar. Various works
have reported that ̂REMP is an optimistically biased estimate for R, while ̂RLOO

is almost an unbiased estimate [5,8,14].4 Therefore, an advantage of uniform
β–stability is that this discrepancy is mitigated. This also shows that stability
based bounds are more suitable for studying algorithms whose empirical error
remains close to the LOO error.

Second, this result also shows that to be uniformly stable, a learning algo-
rithm needs to significantly depart from the empirical risk minimization prin-
ciple that emphasizes the minimization of ̂REMP. That is, a stable algorithm A
might exhibit a larger error during training but this would be compensated by
a decrease in complexity of the learned function. This characteristic is exactly
what defines the effects of regularization. Therefore, the choice for uniform sta-
bility allows one to consider a large class of unsupervised learning algorithms,
including those formulated as regularized minimization of an internal loss.

3 Empirical Generalization Analysis

Although the previous section defines a general criterion for generalization in
unsupervised learning, in practice this criterion requires assessing the uniform
stability of A on a finite data set S. The quantity of interest in the uniform sta-
bility criterion is |�(x,AS(x)) − �(x,AS\i(x))|, which is the amount of change in
the loss with respect to the exclusion of one data point xi from S. Taking expec-
tations with respect to Px and replacing the expected loss with the empirical
estimator, we have that:

∀ S ∈ X n max
i=1,...,n

| ̂REMP(AS) − ̂REMP(AS\i)| ≤ βn. (6)

This states that for a uniformly βn–stable algorithm with respect to � on S, the
change in the empirical loss due to the exclusion of one sample from S is at most
βn. In the finite sample setting, this will be:

max
i=1,...,n

∣

∣

∣

∣

∣

∣

∣

1
n

n
∑

j=1

�(xj ,AS(xj)) − 1
n − 1

n
∑

j=1
j �=i

�(xj ,AS\i(xj))

∣

∣

∣

∣

∣

∣

∣

≤ βn. (7)

Inequality (7) contains an unknown parameter βn which cannot be upper
bounded without any further knowledge on A. In fact, given the black box
assumption on A and the absence of information on Px, we cannot obtain a
uniform upper bound on βn. This suggests that βn needs to be estimated from

4 The LOO error estimate over n samples, ̂RLOOn , is an unbiased estimate for
̂RLOOn−1 . Since in most interesting cases ̂RLOOn converges with probability one, the

difference between ̂RLOOn and ̂RLOOn−1 becomes negligible for large n [7, Ch. 24].

306 K.T. Abou-Moustafa and D. Schuurmans

Algorithm 1. Generalization Analysis for Algorithm A.

1: Require: Algorithm A and its input parameters θA, data set S, loss function �,
number of subsamples m, and the sizes of subsamples, nt s.t. n1 < n2 < n3 < · · · <
nτ .

2: for t = 1 to τ do
3: for j = 1 to m do
4: Xj ← draw nt samples uniformly from S
5: ̂Yj ← AS(Xj ; θA)
6: Φ ← hold out one random samples from Xj

7: X′
j ← Xj \ Φ

8: ̂Y′
j ← AS\i(X′

j ; θA)

9: Rj ← 1
n1

�(Xj , ̂Yj)

10: R′
j ← 1

n1−1
�(X′

j , ̂Y′
j)

11: Bj = |Rj − R′
j |

12: end for
13: ̂βnt = median{B1, . . . , Bj , . . . , Bm}
14: end for
15: Return: B = {̂βn1 , . . . , ̂βnt , . . . , ̂βnτ }

the data set S. Also, recall from Definitions 1 and 2 that if βn ∝ 1/n, then the
generalization bounds in (4) and (5) will hold with high probability. These two
requirements raise the need for two procedures; one to estimate βn at increasing
values of n, and another one to model the relation between the estimated βn’s
and the values of n. However, to consider these two procedures for assessing
A’s generalization, we need to introduce a further mild assumption on A. In
particular, we need to assume that A does not change its learning mechanism
as the sample size is increasing from n to n + 1 for any n ≥ 1. Note that if
A changes its learning mechanism based on the sample size, then A can have
inconsistent trends of βn with respect to n which makes it unfeasible to obtain
consistent confidence bounds for ̂REMP(AS)−R(AS). Therefore, we believe that
our assumption is an intuitive one, and is naturally satisfied by most learning
algorithms.

3.1 Estimating βn From a Finite Data Set

Inequality (7) might suggest a simple procedure for estimating βn: (i) Compute
̂Y = AS(X). (ii) Set X′ = X, hold out sample xi from X′, and compute ̂Y′ =
AS\i(X′), and set Bi = |n−1�(X, ̂Y)− (n− 1)−1�(X′, ̂Y′)|. (iii) Repeat step (ii)
n times to obtain {B1 . . . , Bn}, and then set set ̂βn = max{B1 . . . , Bn}. The
problem with this procedure is three–fold. First, note that in the finite sample
setting, Inequality (7) cannot be evaluated for ∀S ∈ X n as required in Inequality
(6). Note also that the sample maximum is a noisy estimate, and hence is not
reliable. Second, the LOO estimate suggested above is computationally expensive
since it requires invoking A for n times. Third, using all X to learn ̂Y will not
reflect A’s sensitivity to the randomness in the data. If A easily gets stuck in

Generalization in Unsupervised Learning 307

local minima, or A has tendency to overfit the data, learning using all X will
obscure such traits.

Our proposed procedure for estimating βn, depicted in Algorithm 1, addresses
the above issues in the following ways. First it is based on repeated random sub-
sampling (with replacement) from the original data set S, similar in spirit to
bootstrapping [10]. Second, for each subsample of size nt, the procedure obtains
an estimate for the empirical loss before and after holding out one random sam-
ple. After repeating this subsampling process m times, m � n, the procedure
obtains one estimate for βn, denoted by ̂βnt

, for sample size nt. Note that ̂βnt

is the median of Bj ’s to increase the robustness of the estimate. This process is
repeated τ times and the final output of Algorithm 1 is the set of ̂βnt

’s for the
increasing values of nt.

The proposed procedure is computationally intensive, yet it is efficient, scal-
able, and provides control over the accuracy of the estimates. First, note that the
proposed procedure is not affected by the fact that A is an unsupervised learning
algorithm. If A is a supervised learning algorithm, then assessing its generaliza-
tion through uniform β–stability results will still require 2τm calls for A, as it is
the case for the unsupervised setting discussed here. Thus, the procedure does
not impose a computational overhead given the absence of the expected output,
and the black box assumption on A. Second, considering scalability for large
data sets, the procedure can be fully parallelized on multiple core architectures
and computing clusters [13]. Note that in each iteration j the processing steps
for each subsample are independent from all other iterations, and hence all m
subsamples can be processed in an embarrassingly parallel manner. Note also
that in each iteration, AS(Xj) and AS\i(X′

j) can also be executed in parallel.
Parameters m and size of the subsamples, n1, n2, . . . ,nτ , control the tradeoff

between computational efficiency and estimation accuracy. These parameters are
user–specified and they depend on the data and problem in hand, its size n, A’s
complexity, and the available computational resources. Parameter m needs to be
sufficient to reduce the variance in {R1, . . . , Rm} and {R′

1, . . . , R
′
m}. However,

increasing m beyond a certain value will not increase the accuracy of the esti-
mated empirical loss. Reducing the variance in {R1, . . . , Rm} and {R′

1, . . . , R
′
m},

in turn, encourages reducing the variance in {B1, . . . , Bm}. Note that for any
random variable Z with mean μ, median ν, and variance σ2, then |μ − ν| ≤ σ
with probability one. Therefore, in practice, increasing m encourages reducing
the variance in Bj ’s thereby reducing the difference |̂βnt

−E(Bj)|. Observe that
the operator maxi=1,...,nt

defined ∀S ∈ X nt in (6) is now replaced with the
estimate ̂βnt

.

3.2 The Trend of ̂βn and The Stability Line

The output of Algorithm 1 is the set B of estimated ̂βnt
’s for the increasing

values of nt. In order to assess the stability of A, we need to observe whether
̂βnt

= κ
nt

, for some constant κ > 0. As an example, Figure 1 shows the trend

of ̂βn for k–Means clustering and principal component analysis (PCA) on two

308 K.T. Abou-Moustafa and D. Schuurmans

Fig. 1. Left: Two synthetic data sets, (a) two normally distributed clouds of points
with equal variance and equal priors, and (d) two moons data points with equal priors.

Middle: The estimated ̂βn (blue circles) from Algorithm 1 for k–Means clustering on
the two synthetic data sets. The fitted stability lines are shown in magenta. The slope
of the stability lines is indicated by w. Right: The estimated ̂βn and stability lines for
PCA on the two synthetic data sets. The dispersion of ̂βn’s around the stability line
is reflected in the norm of the residuals for the stability line (not displayed). Note the
difference in the dispersion of points around the stability line for k–Means and PCA.
Note also that the more structure in the two moons data set is reflected in a smaller w

(compared to w for the tow Gaussians) for both algorithms.

synthetic toy data sets. The blue circles in the middle and right figures are the
estimated ̂βn from Algorithm 1.5 Observe that ̂βn is decreasing as n is increasing.

To formally detect and quantify this decrease, a line is fitted to the estimated
̂βn (shown in magenta); i.e. β(nt) = wnt+ζ, where w is the slope of the line, and
ζ is the intercept. We call this line, the Stability Line. The slope of the stability
line indicates its steepness which is an esimtate for the decreasing rate of βn. For
stable algorithms, w < 0, and |w| indicates the stability degree of the algorithm.
Note that w = tan θ, where θ is the angle between the stability line and the
5 In these experiments, m = 100, and n1, n2, . . . , nτ were set to

0.5n, 0.51n, . . . , 0.99n, n. The loss � for k–Means is the sum of L1 distances
between each point and its nearest centre, and for PCA, � = tr(C), where C is the
data’s sample covariance matrix.

Generalization in Unsupervised Learning 309

abscissa, and −π
2 < θ < π

2 . For 0 ≤ θ < π
2 , A is not stable. For −π

2 < θ < 0, if θ
is approaching 0, then A is a less stable algorithm, while if θ is approaching −π

2 ,
then A is a more stable algorithm. Observe that in this setting, β is a function
of n and w, and hence it can be denoted by β(n,w). Plugging β(n,w) in the
inequalities of Corollary 1, we get that:

(i) R(AS) ≤ ̂REMP(AS) + 2(wn + ζ) + [4n(wn + ζ) + c]

√

log(1/δ)
2n

, (8)

(ii) R(AS) ≤ ̂RLOO(AS) + (wn + ζ) + [4n(wn + ζ) + c]

√

log(1/δ)
2n

. (9)

That is, the steeper is the stability line (w < 0), the more tight is the confidence
bound. Figure 2 shows other examples for stability lines on the synthetic data
sets (Gaussians and Moons) using Laplacian eigenmaps (LEM) [4], and Local
Linear Embedding (LLE) [19]. The generalization assessment is based on the
Laplacian matrix L for LEM, and the weighted affinity matrix W for LLE. In
particular, the loss for LEM is � = tr(LL�), while for LLE, � = tr(WW�).

3.3 Comparing Two Algorithms: A1 vs. A2

The previous generalization assessment procedure only considered one algorithm.
Here we propose an extension for the above procedure to compare the general-
ization of two unsupervised learning algorithms, A1 and A2, under the same loss
�, on a given data source. More specifically, the comparative setting addresses
the following questions: if A1 is stable with respect to � on S (according to Def-
inition 2), and if A2 is stable with respect to � on S (according to Definition 2),
which algorithm has better generalization on S? The following definition gives
a formal answer to these questions.

Definition 3 (Comparing A1 vs. A2). Let A1 be a stable algorithm with
respect to � on S with slope w1 < 0 for its stability line. Let A2 be a stable
algorithm with respect to � on S with slope w2 < 0 for its stability line. We say
that:

1. A1 is similar to A2, denoted A1 = A2, if w1 ≈ w2.6

2. A1 is better than A2, denoted by A1 � A2, if w1 < w2.
3. A1 is worse than A2, denoted A1 ≺ A2, if w1 > w2.

To develop a formal procedure for such an assessment we proceed by letting
Algorithm 1 invoke the two algorithms A1 and A2 on the same subsamples
{X1, . . . ,Xm} and {X′

1, . . . ,X
′
m}. The final output of Algorithm 1 will be two

sets B1 = {̂β1
n1

, . . . , ̂β1
nτ

}, and B2 = {̂β2
n1

, . . . , ̂β2
nτ

}. The analysis then proceeds
by fitting the stability line for each algorithm, plotting the curves shown in
Figures 1 and 2, and then comparing the slopes of both algorithms. Formal

6 This is done using hypothesis testing for the equality of slopes – See Appendix for
details.

310 K.T. Abou-Moustafa and D. Schuurmans

Fig. 2. First Column: Generalization assessment for LEM on two Gaussians (a,c) and
two moons (e,g), with different number of nearest neighbours (nn) for constructing the
data’s neighbourhood graph. Compare the slopes (w) for the stability lines and the
dispersion of points around it, and note the sensitivity of LEM to the number of nn.
The same follows for the two moons case (e,g). Note also the difference in the stability

lines (slope, and dispersion of estimated ̂βn’s) for LEM and PCA on the same data
sets. Second Column: Generalization assessment for LLE on two Gaussians (b,d)
and two moons (f,h) data sets, with different number of nn.

Generalization in Unsupervised Learning 311

Fig. 3. Generalization assessment for k–Means clustering using stability analysis on
four real data sets: (a) Faces AR, (b) Faces CMUPIE, (c) Coil20, and (d) UCI MFeat.

comparison for the slopes w1 and w2 is done using hypothesis testing for the
equality of slopes:

H0 : w1 = w2 vs. H1 : w1 �= w2.

If H0 is rejected at a significance level α (usually 0.05 or 0.01), then deciding
which algorithm has better generalization can be done using rules 2 and 3 in the
above definition. If H0 cannot be rejected at the desired significance level, then
both algorithms have a similar generalization capability. Further insight can be
gained through the norm of the residuals, and the spread of the estimated ̂βn’s
around the stability line.

4 Empirical Validation on Real Data Sets

We have conducted some initial validation tests for the proposed generaliza-
tion assessment framework. In these experiments, we considered two different
unsupervised learning problems: clustering and dimensionality reduction (lin-
ear and nonlinear). In particular, we considered the following algorithms: k–
Means for clustering, PCA for linear dimensionality reduction, and LEM and
LLE for nonlinear dimensionality reduction (NLDR). The four algorithms were

312 K.T. Abou-Moustafa and D. Schuurmans

run on four data sets from different domains: (i) two faces data sets, AR and
CMUPIE with (samples × features) 3236 × 2900, and 2509 × 2900, respectively.
(ii) two image features data sets, Coil20 and Multiple Features (MFeat) with
(samples × features) 1440 × 1024, and 2000 × 649, respectively, from the UCI
Repository for Machine Learning [18].7 In all these experiments, the number
of bootstraps m was set to 100, and the values for n1, n2, . . . , nτ were set to
0.5n, 0.51n, 0.52n, . . . , 0.99n, n, where n is the original size of the data set.

To apply the proposed generalization assessment, an external loss � needs
to be defined for each problem. k–Means minimizes the sum of L2 distances
between each point and its nearest cluster centre. Thus, a suitable loss can be
the sum of L1 distances. Note that the number of clusters k is assumed to be
known. Note also that in this setting, for each iteration j in Algorithm 1, the
initial k centres are randomly chosen and they remain unchanged after holding
out the random sample. That is, k–Means starts from the same initial centres
before and after holding out one sample.

For PCA, LEM and LLE, the loss functions are chosen as follows: � = tr(C)
for PCA, � = tr(LL�) for LEM, and � = tr(WW�) for LLE, where C is the
data’s sample covariance matrix, L is the Laplacian matrix defined by LEM,
and W is the weighted affinity matrix defined by LLE. The number of nearest
neighbours for constructing the neighbourhood graph for LEM and LLE was
fixed to 30 to ensure that the neighbourhood graph is connected. Note that we
did not perform any model selection for the number of nearest neighbours to
simplify the experiments and the demonstrations.

4.1 Generalization Assessment of k–Means Clustering

Figure 3 shows the stability lines for k–Means clustering on the four real data
sets used in our experiments. For both faces data sets, AR and CMUPIE, the
stability lines have similar slopes despite the different sample size. However,
the dispersion of points around the stability line is bigger for CMUPIE than
it is for AR. Hypothesis testing for the equality of slopes (at significance level
α = 0.05) did not reject H0 (p–value = 0.92). For Coil20 and UCI Mfeat, the
slopes of stability lines differ by one order of magnitude (despite the different
sample size). Indeed, the hypothesis test in this case rejected H0 with a very
small p–value. Note that the estimated ̂βn’s for the four data sets do not show
a clear trend as is the case for the two Gaussians and the two moons data sets
in Figure 1. This behaviour is expected from k–Means on real high dimensional
data sets, and is in agreement with what is known about its sensitivity to the
initial centres and its convergence to local minima. For a better comparison,
observe the stability lines for PCA on the same data sets in Figures 4 and 5.

7 The AR and CMUPIE face data sets were obtained from http://www.face-rec.org/
databases/.

http://www.face-rec.org/databases/
http://www.face-rec.org/databases/

Generalization in Unsupervised Learning 313

Fig. 4. Generalization assessment for PCA, LEM and LLE using stability analysis on
two faces data sets: AR (a,b,c), and CMUPIE (d,e,f).

4.2 Generalization Assessment of PCA, LEM, and LLE

Figures 4 and 5 show the stability lines for the three dimensionality reduc-
tion algorithms; PCA, LEM and LLE, on the four real data sets used in our
experiments. Note that the magnitude of w for these experiments should not
be surprising given the scale of n and ̂βnt

. It can be seen that PCA shows a
better trend of the estimated ̂βn’s than LEM and LLE (for our choice of fixed
neighbourhood size). This trend shows that PCA has better stability (and hence
better generalization) than LEM and LLE on these data sets. Note that in this
setting, the slope for PCA stability line cannot be compared to that of LEM
(nor LLE) since the loss functions are different. However, we can compare the
slopes for each algorithm stability lines (separately) on the face data sets and
on the features data sets.

Hypothesis testing (α = 0.05) for PCA stability lines on AR and CMUPIE
rejects H0 in favour of H1 with a p–value = 0.0124. For Coil20 and UCI Mfeat,
the test did not reject H0 and the p–value = 0.9. For LEM, the test did not
reject H0 for the slopes of AR and CMUPIE, while it did reject H0 in favour of
H1 for Coil20 and UCI MFeat. A similar behaviour was observed for LLE.

In these experiments and the previous ones on k–Means clustering, note that
no comparison of two algorithms were carried on the same data set. In these

314 K.T. Abou-Moustafa and D. Schuurmans

Fig. 5. Generalization assessment for PCA, LEM and LLE using stability analysis on
Coil20 (a,b,c), and UCI MFeat (d,e,f).

illustrative examples, the generalization of one algorithm was assessed on two
different data sets, following the examples on the synthetic data sets in Figures 1.
Note that this scenario is different from the one described in § 3.3. In the above
experiments, the trend of ̂βnt

, the stability line, the slope w, and the scatter
of points around the stability line, provided a quantitative and a qualitative
evaluation for the generalization capability of k–Means and PCA. However, our
experience suggests that when analyzing the generalization of one algorithm on
two different data sets, hypothesis testing can give more accurate insight if the
sample sizes nt are equal for both data sets since βn is known to decrease as
κ/n, and κ > 0.

5 Concluding Remarks

In this paper we proposed a general criterion for generalization in unsupervised
learning that is analogous to the prediction error in supervised learning. We
also proposed a computationally intensive, yet efficient procedure to realize this
criterion on finite data sets, and extended it for comparing two different algo-
rithms on a common data source. Our preliminary experiments showed that,
for algorithms from three different unsupervised learning problems, the pro-
posed framework provided a unified mechanism and a unified interface to assess

Generalization in Unsupervised Learning 315

their generalization capability. This type of analysis suggests further rigorous
assessment of these algorithms, and is encouraging to conduct similar analysis
for other unsupervised learning problems such as density estimation, subspace
clustering, feature learning, and layer wise analysis of deep architectures. Fur-
ther, our framework can be extended to answer model selection questions for
unsupervised learning, or it can be complimentary to exiting methods for model
selection.

Acknowledgments. We would like to thank our Reviewers for their helpful comments
and suggestions, the Alberta Innovates Centre for Machine Learning and NSERC for
their support, and Frank Ferrie for additional computational support at McGill’s Centre
for Intelligent Machines.

Appendix

Hypothesis testing for the equality of slopes w1 and w2 for two regression lines
Y1 = w1X1 + ζ1 and Y2 = w2X2 + ζ2, respectively, proceeds as follows. Let
S1 = {(xi

1, y
i
1)}n1

i=1 and S2 = {(xj
2, y

j
2)}n2

j=1, be the two data sets to be used for
estimating the lines defined by w1 and w2, respectively. Let {ŷ1

1 , . . . , ŷ
n1
1 } and

{ŷ1
2 , . . . , ŷ

n2
2 } be the estimated predictions from each regression line. The null

and alternative hypotheses of the test are:

H0 : w1 = w2 vs. H1 : w1 �= w2.

That is, H0 : w1 − w2 = 0. If H0 is true, then w1 − w2 ∼ G (0, sw1w2), where
sw1w2 is the pooled error variance. Using a t test, we construct the statistic t:

t =
w1 − w2

sw1w2

∼ Tr ,

where Tr is the Student’s t distribution with r degrees of freedom, and r =
n1 + n2 − 4. The pooled error variance is defined as:

sw1w2 =
√

s2w1
+ s2w2

,

where

s2wk
=

ek

σ2
k(nk − 1)

,

ek =
∑nk

i=1(y
i
k − ŷi

k)2/(nk −2), and σ2
k = Var(Xk), which can be replaced by the

sample variance. For significance level α, we compute the probability of observing
the statistic t from Tr given that H0 is true; this is the P value of the test. If
P > α, then H0 cannot be rejected. Otherwise, reject H0 in favour of H1.

316 K.T. Abou-Moustafa and D. Schuurmans

References

1. Anandkumar, A., Hsu, D., Kakade, S.: A method of moments for mixture models
and hidden Markov models. CoRR abs/1203.0683 (2012)

2. Balle, B., Quattoni, A., Carreras, X.: Local loss optimization in operator models:
a new insight into spectral learning. In: Proceedings of the 29th International
Conference on Machine Learning, pp. 1879–1886 (2012)

3. Bartlett, P., Mendelson, S.: Rademacher and Gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research 3, 463–482 (2003)

4. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for data rep-
resentation. Neural Computation 15, 1373–1396 (2003)

5. Bousquet, O., Elisseeff, A.: Stability and generalization. Journal of Machine Learn-
ing Research 2, 499–526 (2002)

6. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (2006)

7. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition.
Springer, New York (1996)

8. Devroye, L., Wagner, T.: Distribution-free inequalities for the deleted and holdout
error estimates. IEEE Transactions on Information Theory 25(2), 202–207 (1979)

9. Dietterich, T.: Approximate statistical tests for comparing supervised classification
learning algorithms. Neural Computation 10(7), 1895–1923 (1998)

10. Efron, B.: Bootstrap methods: another look at the jackknife. Annals of Statistics
7, 1–26 (1979)

11. Hansen, L., Larsen, J.: Unsupervised learning and generalization. In: Proceedings
of the IEEE International Conference on Neural Networks, pp. 25–30 (1996)

12. Hsu, D., Kakade, S., Zhang, T.: A spectral algorithm for learning hidden Markov
models. In: Proceedings of the 22nd Conference on Learning Theory (2009)

13. Jordan, M.: On statistics, computation and scalability. Bernoulli 19(4), 1378–1390
(2013)

14. Kearns, M., Ron, D.: Algorithmic stability and sanity-check bounds for leave-
one-out cross-validation. In: Proceedings of the Conference on Learning Theory,
pp. 152–162. ACM (1999)

15. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and
model selection. In: Proceedings of the 14th International Joint Conference on
Artificial Intelligence, pp. 1137–1143 (1995)

16. Kutin, S., Niyogi, P.: Almost-everywhere algorithmic stability and generalization
error. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence,
pp. 275–282 (2002)

17. Mukherjee, S., Niyogi, P., Poggio, T., Rifkin, R.: Learning theory: stability is suf-
ficient for generalization and necessary and sufficient for consistency of empirical
risk minimization. Advances in Computational Mathemathics 25, 161–193 (2006)

18. Newman, D., Hettich, S., Blake, C., Merz, C.: UCI Repository of Machine Learning
Databases (1998). http://www.ics.uci.edu/∼mlearn/MLRepository.html

19. Saul, L., Roweis, S.: Think globally, fit locally: Unsupervised learning of low dimen-
sional manifolds. Journal of Machine Learning Research 4, 119–155 (2003)

20. Shalev-Shwartz, S., Shamir, O., Srebro, N., Sridharan, K.: Learnability, stability
and uniform convergence. Journal of Machine Learning Research 11, 2635–2670
(2010)

21. Song, L., Boots, B., Siddiqi, S., Gordon, G., Smola, A.: Hilbert space embeddings
of hidden Markov models. In: Proceedings of the 27th International Conference on
Machine Learning, pp. 991–998 (2010)

http://www.ics.uci.edu/~mlearn/MLRepository.html

Generalization in Unsupervised Learning 317

22. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, Sussex (1998)
23. Vapnik, V.N.: An overview of statistical learning theory. IEEE Transactions on

Neural Networks 10(5), 988–999 (1999)
24. Xu, H., Mannor, S.: Robustness and generalization. Machine Learning 86(3),

391–423 (2012)
25. Xu, L., White, M., Schuurmans, D.: Optimal reverse prediction: a unified perspec-

tive on supervised, unsupervised and semi-supervised learning. In: Proceedings of
the International Conference on Machine Learning, vol. 382 (2009)

	Generalization in Unsupervised Learning
	1 Introduction
	1.1 Preliminaries and Setup

	2 A General Learning Framework
	2.1 Generalization and Stability

	3 Empirical Generalization Analysis
	3.1 Estimating n From a Finite Data Set
	3.2 The Trend of "0362n and The Stability Line
	3.3 Comparing Two Algorithms: A1 vs. A2

	4 Empirical Validation on Real Data Sets
	4.1 Generalization Assessment of k--Means Clustering
	4.2 Generalization Assessment of PCA, LEM, and LLE

	5 Concluding Remarks
	References

