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Abstract. With the advance of technology, data are often with mul-
tiple modalities or coming from multiple sources. Multi-view clustering
provides a natural way for generating clusters from such data. Although
multi-view clustering has been successfully applied in many applications,
most of the previous methods assumed the completeness of each view
(i.e., each instance appears in all views). However, in real-world appli-
cations, it is often the case that a number of views are available for
learning but none of them is complete. The incompleteness of all the
views and the number of available views make it difficult to integrate all
the incomplete views and get a better clustering solution. In this paper,
we propose MIC (Multi-Incomplete-view Clustering), an algorithm based
on weighted nonnegative matrix factorization with L2,1 regularization.
The proposed MIC works by learning the latent feature matrices for
all the views and generating a consensus matrix so that the difference
between each view and the consensus is minimized. MIC has several
advantages comparing with other existing methods. First, MIC incorpo-
rates weighted nonnegative matrix factorization, which handles the miss-
ing instances in each incomplete view. Second, MIC uses a co-regularized
approach, which pushes the learned latent feature matrices of all the
views towards a common consensus. By regularizing the disagreement
between the latent feature matrices and the consensus, MIC can be easily
extended to more than two incomplete views. Third, MIC incorporates
L2,1 regularization into the weighted nonnegative matrix factorization,
which makes it robust to noises and outliers. Forth, an iterative optimiza-
tion framework is used in MIC, which is scalable and proved to converge.
Experiments on real datasets demonstrate the advantages of MIC.

1 Introduction

With the advance of technology, real data are often with multiple modalities or
coming from multiple sources. Such data is called multi-view data. Different views
may emphasize different aspects of the data. Integrating multiple views may help
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improve the clustering performance. For example, one news story may be reported
by different news sources, user group can be formed based on users’ profiles, user’s
online social connections, users’ transaction history or users’ credit score in online
shopping recommendation system, one patient can be diagnosed with a certain dis-
ease based on different measures, including clinical, imaging, immunologic, sero-
logical and cognitive measures. Different from traditional data with a single view,
these multi-view data commonly have the following properties:

1. Each view can have its own feature sets, and each view may emphasize dif-
ferent aspects. Different views share some consistency and complementary
properties. For example, in online shopping recommendation system, user’s
credit score has numerical features while users’ online social connections
provide graph relational features. The credit score emphasizes the credit-
worthiness of the user, while the social connection emphasizes the social life
of the user.

2. Each view may suffer from incompleteness. Due to the nature of the data
or the cost of data collection, each available view may suffer from incom-
pleteness of information. For example, not all the news stories are covered
by all the news sources, i.e., each news source (view) cannot cover all the
news stories. Thus, all the views are incomplete.

3. There may be an arbitrary number of sources. In some applications, the
number of available views may be small, while in other applications, it may
be quite large.

The above properties raise two fundamental challenges for clustering multi-
view data:

1. How to combine various number of views to get better clustering solutions by
exploring the consistency and complementary properties of different views.

2. How to deal with the incompleteness of the views, i.e., how to effectively and
efficiently get better clustering solutions even all of the views are incomplete.

Multi-view clustering [1,7] provides a natural way for generating clusters from
such data. A number of approaches have been proposed for multi-view clustering.
Existing multi-view clustering algorithms can be classified into two categories
according to [28], distributed approaches and centralized approaches. Distributed
approaches, such as [4,15,28] first cluster each view independently from the oth-
ers, using an appropriate single-view algorithm, and then combine the individual
clusterings to produce a final clustering result. Centralized approaches, such as
[1,5,24,38] make use of multiple representations simultaneously to mine hid-
den patterns from the data. In this paper, we mainly focus on the centralized
approaches.

Most of the previous studies on multi-view clustering focus on the first chal-
lenge. They are all based on the assumption that all of the views are complete,
i.e., each instance appears in all views. Few of them addresses how to deal with
the second challenge. Recently, there are several methods working on the incom-
pleteness of the views [26,32,34]. They either require the completeness of at
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least one base view or cannot be easily extended to more than two incomplete
views. However, in real-world applications, it is often the case that more than
two views are available for learning and none of them is complete. For exam-
ple, in document clustering, we can have documents translated into different
languages representing multiple views. However, we may not get all the doc-
uments translated into each language. Another example is medical diagnosis.
Although multiple measurements from a series of medical examinations may be
available for a patient, it is not realistic to have each patient complete all the
potential examinations, which may result in the incompleteness of all the views.
The incompleteness of all the views and the number of available views make it
difficult to directly integrate all the incomplete views and get a better clustering
solution.

In this paper, we propose MIC (Multi-Incomplete-view Clustering) to han-
dle the situation of multiple incomplete views by integrating the joint weighted
nonnegative matrix factorization and L2,1 regularization. Weighted nonnegative
matrix factorization [20] is a weighted version of nonnegative matrix factorization
[25], and has been successfully used in document clustering [35] and recommen-
dation system [16]. L2,1 norm of a matrix was first introduced in [9] as rotational
invariant L1 norm. Because of its robustness to noise and outliers, L2,1 has been
widely used in many areas [11,13,18,21]. By integrating weighted nonnegative
matrix factorization and L2,1 norm, MIC tries to learn a latent subspace where
the features of the same instance from different views will be co-regularized to a
common consensus, while increasing the robustness of the learned latent feature
matrices. The proposed MIC method has several advantages comparing with
other state-of-art methods:

1. MIC incorporates weighted nonnegative matrix factorization, which will han-
dle the missing instances in each incomplete view. A weight matrix for each
incomplete view is introduced to give the missing instances lower weights
than the presented instances in each view.

2. By using a co-regularized approach, MIC pushes the learned latent feature
matrices to a common consensus. Because MIC only regularizes the difference
between the learned latent feature for each view and the consensus, MIC can
be easily extended to more than two incomplete views.

3. MIC incorporates L2,1 norm into the weighted nonnegative matrix factoriza-
tion. L2,1 regularization added to the objective function will keep the learned
latent feature matrices more robust to noises and outliers, which is naturally
perfect for the situation of multiple incomplete views.

4. An iterative optimization framework is used in MIC, which is scalable and
proved to converge.

The rest of this paper is organized as follows. In the next section, nota-
tions and problem formulation are given. The proposed MIC algorithm is then
presented in Section 3. Extensive experimental results and analysis are shown
in Section 4. Related work is given in Section 5 followed by conclusion in
Section 6.
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Table 1. Summary of the Notations

Notation Description

N Total number of instances.

nv Total number of views.

X(i) Data matrix for the i-th view.

di Dimension of features in the i-th view.

M The indicator matrix, where Mi,j = 1 indicates j-th instance appears in i-th view.

W(i) The diagonal instance weight matrix for the i-th view.

U(i) The latent feature matrix for the i-th view.

V(i) The basis matrix for the i-th view.

U∗ The common consensus, latent feature matrix across all the views.

αi Trade-off parameter between reconstruction error and view disagreement for view i.

βi Trade-off parameter between reconstruction error and robustness for view i.

2 Problem Formulation and Backgrounds

In this section, we will briefly describe the problem formulation. Then the back-
ground knowledge on weighted nonnegative matrix factorization will be intro-
duced.

2.1 Problem Formulation

Before we describe the formulation of the problem, we summarize some notations
used in this paper in Table 1. Assume we are given a dataset with N instances
and nv views {X(i), i = 1, 2, ..., nv}, where X(i) ∈ R

N×di represents the dataset
in view i. We define an indicator matrix M ∈ R

nv×N by,

Mi,j =

{
1 if j-th instance is in the i-th view.
0 otherwise.

where each row of M represent the instance presence for one view. Most of
the previous methods on multi-view clustering assume the completeness of all
the views. Every view contains all the instances, i.e., M is an all one matrix,∑N

j=1 Mi,j = N, i = 1, 2, ..., nv. However, in most real-world situations, one
instance may only appear in some of the views, which may result in the incom-
pleteness of all the views. For each view, the data matrix X(i) will have a number
of rows missing, i.e.,

∑N
j=1 Mi,j < N, i = 1, 2, ..., nv.

Our goal is to cluster all the N instances into K clusters by integrating all
the nv incomplete views.

2.2 Weighted Nonnegative Matrix Factorization

Let X ∈ R
N×M
+ denote the nonnegative data matrix where each row represents

an instance and each column represents one attribute. Weighted nonnegative
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matrix factorization [20] aims to factorize the data matrix X into two nonnega-
tive matrices, while giving different weights to the reconstruction errors of differ-
ent entries. We denote the two nonnegative matrices factors as U ∈ R

N×K
+ and

V ∈ R
M×K
+ . Here K is the desired reduced dimension. To facilitate discussions,

we call U the latent feature matrix and V the basis matrix. The objective func-
tion for general weighted nonnegative matrix factorization can be formulated as
below:

min
U,V

‖W ∗ (X − UVT )‖2F , s.t. U ≥ 0,V ≥ 0, (1)

where ‖.‖F is the Frobenius norm, W ∈ R
N×M is the weight matrix, ∗ is element-

wise production and U ≥ 0,V ≥ 0 represent the constraints that all the matrix
elements are nonnegative.

3 Multi-Incomplete-View Clustering

In this section, we present the Multi-Incomplete-view Clustering (MIC) frame-
work. We model the multi-incomplete-view clustering as a joint weighted non-
negative matrix factorization problem with L2,1 regularization. The proposed
MIC learns the latent feature matrices for each view and pushes them towards
a consensus matrix. Thus, the consensus matrix can be viewed as the shared
latent feature matrix across all the views. In the following, we will first describe
the construction of the objective function for the proposed method and derive
the solution to the optimization problem. Then the whole MIC framework is
presented.

3.1 Objective Function of MIC

Given nv views {X(i) ∈ R
N×di , i = 1, 2, ..., nv}, where each of the views suf-

fers from incompleteness, i.e.,
∑N

j=1 Mi,j < N . With more than two incomplete
views, we cannot directly apply the existing methods to the incomplete data.
One simple solution is to fill the missing instances with average features first, and
then apply the existing multi-view clustering methods. However, this approach
depends on the quality of the filled instances. For small missing percentages, the
quality of the information contained in the filled average features may be good.
However, when the number of missing instance increase, the quality of informa-
tion contained in the filling average features may be bad or even misleading.
Thus, simply filling the missing instance will not solve this problem.

Borrowing the similar idea from weighted NMF, we introduce a diagonal
weight matrix W(i) ∈ R

N×N for each incomplete views i by

W(i)
j,j =

{
1 if i-th view contains j-th instance, i.e., Mj,i = 1.

wi otherwise.
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Note that W(i)
j,j indicates the weight of the j-th instance from view i, and wi is

the weight of the filled average feature instances for view i. In our experiment,
wi is defined as the percentage of the available instances for view i:

wi =

∑N
j=1 Mj,i

N
.

It can be seen, W(i) gives lower weights to the missing instances than the pre-
sented instances in the i-th view. For different views with different incomplete
rates, the weights for missing instances are also different. The diagonal weight
matrices give higher weights to the missing instances from views with lower
incomplete rate.

A simple objective function to combine multiple incomplete views can be:

min
{U(i)},{V(i)}

O =

nv∑

i=1

(‖W(i)(X(i) − U(i)V(i)T )‖2
F s.t. U(i) ≥ 0, V(i) ≥ 0, i = 1, 2, ..., nv,

(2)

where U(i) and V(i) are the latent feature matrix and basis matrix for the i-th
view.

However, Eq. (2) only decomposes the different views independently without
taking advantages of the relationship between the views. In order to make use
of the relation between different views, we push the latent feature matrices for
different views towards a common consensus by adding additional term R to
Eq. (2) to minimize the disagreement between different views and the common
consensus.

min
{U(i)},{V(i)},U∗

nv∑

i=1

(
‖W(i)(X(i) − U(i)V(i)T )‖2

F + αiR(U(i),U∗)
)

s.t. U∗ ≥ 0,U(i) ≥ 0,V(i) ≥ 0, i = 1, 2, ..., nv,

(3)

where U∗ ∈ R
N∗K is the consensus latent feature matrix across all the views,

and αi is the trade-off parameter between reconstruction error and disagreement
between view i and the consensus. In this paper we define R as the square of
Frobenius norm of the weighted difference between the latent feature matrices:

R(U(i),U∗) = ‖W(i)(U(i) − U∗)‖2F .

Additionally, considering the nature of incomplete views, we added L2,1 reg-
ularization into Eq. 3, which is robust to noises and outliers and widely used in
many applications [10,17,37].

Formally, the objective function of MIC is as follows:

min
{U(i)},{V(i)},U∗

O =

nv∑

i=1

(‖W(i)(X(i) − U(i)V(i)T )‖2
F + αi‖W(i)(U(i) − U∗)‖2

F + βi‖U(i)‖2,1)

s.t. U(i) ≥ 0, V(i) ≥ 0, U∗ ≥ 0, i = 1, 2, ..., nv.

(4)
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where βi is the trade-off between robustness and accuracy of reconstruction for
the i-th view, ‖ · ‖2,1 is the L2,1 norm and defined as:

‖U‖2,1 =
N∑
i=1

(
K∑

k=1

|Ui,k|2
)1/2

3.2 Optimization

In the following, we give the solution to Eq. 4. For the sake of convenience, we will
see both αi and βi as positive in the derivation, and denote W̃(i) = W(i)TW(i).
As we see, minimizing Eq. 4 is with respect to {U(i)}, {V(i)} and U∗, and we
cannot give a closed-form solution. We propose an alternating scheme to optimize
the objective function. Specifically, the following two steps are repeated until
convergence: (1) fixing {U(i)} and {V(i)}, minimize O over U∗, (2) fixing U∗,
minimize O over {U(i)} and {V(i)}.

Fixing {U(i)} and {V(i)}, minimize O over U∗. With {U(i)} and {V(i)}
fixed, we need to minimize the following objective function:

J (U∗) =
nv∑
i=1

αi‖W(i)(U(i) − U∗)‖2F s.t. U∗ ≥ 0 (5)

We take the derivative of the objective function J in Eq. 5 over U∗ and set it
to 0:

∂J
∂U∗ =

nv∑
i=1

2αiW̃(i)U∗ − 2αiW̃(i)U(i) = 0 (6)

Since W̃(i) is a positive diagonal matrix and αi is a positive constant,∑nv

i=1 αiW̃(i) is invertible. Solving Eq. 6, we have an exact solution for U∗:

U∗ =

(
nv∑
i=1

αiW̃(i)

)−1 (
nv∑
i=1

αiW̃(i)U(i)

)
≥ 0 (7)

Fixing U∗, minimize O over {U(i)} and {V(i)}. With U∗ fixed, the com-
putation of U(i) and V(i) does not depend on U(i′) or V(i′), i′ �= i. Thus for each
view i, we need to minimize the following objective function:

min
U(i),V(i)

‖W(i)(X(i) − U(i)V(i)T )‖2
F + αi‖W(i)(U(i) − U∗)‖2

F + βi‖U(i)‖2,1

s.t. U(i) ≥ 0,V(i) ≥ 0

(8)

We will iteratively update U(i) and V(i) using the following multiplicative updat-
ing rules. We repeat the two steps iteratively until the objective function in Eq. 8
converges.
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(1) Fixing U∗ and V(i), minimize O over U(i). For each U(i), we need to
minimize the following objective function:

J (U(i)) = ‖W(i)(X(i) − U(i)V(i)T )‖2
F + αi‖W(i)(U(i) − U∗)‖2

F + βi‖U(i)‖2,1

s.t. U(i) ≥ 0
(9)

The derivative of J (U(i)) with respect to U(i) is

∂J
∂U(i)

= − 2W̃(i)X(i)V(i) + 2W̃(i)U(i)V(i)TV(i) + 2αiW̃(i)U(i) − 2αiW̃(i)U∗ + βiD(i)U(i)

(10)

Here D(i) is a diagonal matrix with the j-th diagonal element given by

D(i)
j,j =

1

‖U(i)
j,: ‖2

, (11)

where U(i)
j,: is the j-th row of matrix U(i), and ‖ · ‖2 is the L2 norm.

Using the Karush-Kuhn-Tucker (KKT) complementary condition [3] for the
nonnegativity of U(i), we get

(−2W̃(i)X(i)V(i) + 2W̃(i)U(i)V(i)TV(i) + 2αiW̃
(i)U(i) − 2αiW̃

(i)U∗ + βiD
(i)U(i))j,kU

(i)
j,k = 0

(12)

Based on this equation, we can derive the updating rule for U(i):

U
(i)
j,k ← U

(i)
j,k

√√√√√√

(
W̃(i)X(i)V(i) + αiW̃(i)U∗

)

j,k(
U(i)V(i)TV(i) + αiW̃(i)U(i) + 0.5βiD(i)U(i)

)

j,k

(13)

(2) Fixing U(i) and U∗, minimize O over V(i). For each V(i),we need to
minimize the following objective function:

J (V(i)) = ‖W(i)(X(i) − U(i)V(i)T )‖2F s.t. V(i) ≥ 0 (14)

The derivative of J (V(i)) with respect to V(i) is

∂L
∂V(i)

=2V(i)U(i)TW̃(i)U(i) − 2X(i)TW̃(i)U(i) (15)

Using the KKT complementary condition for the nonnegativity of V(i), we get

(V(i)U(i)TW̃(i)U(i) − X(i)TW̃(i)U(i))j,kV
(i)
j,k = 0 (16)

Based on this equation, we can derive the updating rule for V(i):

V(i)
j,k ← V(i)

j,k

√√√√ (X(i)TW̃(i)U(i))j,k
(V(i)U(i)TW̃(i)U(i))j,k

(17)
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Algorithm 1. Multi-Incomplete-view Clustering (MIC)

Input: Nonnegative data matrices for incomplete views {X(1),X(2), ...,X(nv)}, indi-
cator matrix M, parameters {α1, α2, ..., αnv , β1, β2, ..., βnv}, number of clusters K.

Output: Basis matrices {V(1),V(2), ...,V(nv)}, latent feature matrices
{U(1),U(2), ...,U(nv)}, consensus matrix U∗ and clustering results.

1: Fill the missing instances in each incomplete view with average feature values.
2: Normalize each view X(i) such that ‖X(i)‖1 = 1.
3: Initialize U(i) and V(i) for 1 ≤ i ≤ nv.
4: repeat
5: Fixing U(i)s and V(i)s, update U∗ by Eq. 7.
6: for i = 1 to nv do
7: repeat
8: Fixing U∗ and V(i), update U(i) by Eq. 13.
9: Fixing U(i) and U∗, update V(i) by Eq. 17.

10: Normalize V(i) and U(i) by Eq. 18.
11: until Eq. 8 converges.
12: end for
13: until Eq. 4 converges.
14: Apply k-means on U∗ to get the clustering result.

It is worth noting that to prevent V(i) from having arbitrarily large values
(which may lead to arbitrarily small values of U(i)), it is common to put a
constraint on each basis matrix V(i) [14], s.t. ‖V(i)

:,k‖1 = 1, ∀ 1 ≤ k ≤ K.
However, the updated V(i) may not satisfy the constraint. We need to normalize
V(i) and change U(i) to make the constraint satisfied and keep the accuracy of
the approximation X(i) ≈ U(i)V(i)T :

V(i) ← V(i)Q(i)−1,U(i) ← U(i)Q(i) (18)

Here, Q(i) is a diagonal matrix with the k-th diagonal element given by Q(i)
k,k =∑di

j V(i)
j,k.

The whole procedure is summarized in Algorithm 1. We will first fill the
missing instances with average feature values in each incomplete view. Then we
normalize the data and initialize the latent feature matrices and basis matrices.
We apply the iterative alternating optimization procedure until the objective
function converges. k-means is then applied to the learned consensus latent fea-
ture matrix to get the clustering solution.

4 Experiments and Results

4.1 Comparison Methods

We compare the proposed MIC method with several state-of-art methods. The
details of comparison methods are as follows:
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– MIC: MIC is the clustering framework proposed in this paper, which applies
weighted joint nonnegative matrix with L2,1 regularization. If not stated, the
co-regularization parameter set {αi} and the robust parameter set {βi} are
all set to 0.01 for all the views throughout the experiment.

– Concat: Feature concatenation is one straightforward way to integrate all
the views. We first fill the missing instances with the average features for each
view. Then we concatenate the features of all the views, and run k-means
directly on this concatenated view representation.

– MultiNMF: MultiNMF [27] is one of the most recent multi-view clustering
methods based on joint nonnegative matrix factorization. MultiNMF added
constraints to original nonnegative matrix factorization that pushes cluster-
ing solution of each view towards a common consensus.

– ConvexSub: The subspace-based multi-view clustering method developed
by [17]. In the experiments, we set β = 1 for all the views. We run the
ConvexSub method using a range of γ values as in the original paper, and
present the best results obtained.

– PVC: Partial multi-view clustering [26] is one of the state-of-art multi-
view clustering methods, which deals with incomplete views. PVC works by
establishing a latent subspace where the instances corresponding to the same
example in different views are close to each other. In our experiment, we set
the parameter λ to 0.01 as in the original paper.

– CGC: CGC [6] is the most recent work that deals with many-to-many
instance relationship, which can be used in the situation of incomplete views.
In order to run the CGC algorithm, for every pair of incomplete views, we
generate the mapping between the instances that appears in both views. In
the experiment, the parameter λ is set to 1 as in the original paper.

It is worth to note that MultiNMF and ConvexSub are two recent methods for
multi-view clustering. Both of them assumes the completeness of all the available
views. PVC is among the first works that does not assume the completeness of
any view. However, PVC can only works with two incomplete views. For the
sake of comparison, all the views are considered with equivalent importance
in the evaluation of all the multi-view algorithms. The results evaluated by two
metrics, the normalized mutual information (NMI) and the accuracy (AC). Since
we use k-means to get the clustering solution at the end of the algorithm, we
run k-means 20 times and report the average performance.

4.2 Dataset

In this paper, three different real-world datasets are used to evaluate the pro-
posed method MIC. Among the three datasets, the first one is handwritten digit
data, the second one is text data, while the last one is flower image data. The
important statistics of them are summarized in Table 2.

– Handwritten Dutch Digit Recognition (Digit): This data contains
2000 handwritten numerals (“0”-“9”) extracted from a collection of Dutch
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Table 2. Statics of the data

Data size # views # clusters

Digit 2000 5 10

3Sources 416 3 6

Flowers 1360 3 17

Table 3. Incomplete rates for 3Sources
Data V1 V2 V3 size

BBC-Reuters 13.51% 27.76% - 407

BBC-Guardian 12.87% 25.25% - 404

Reuters-Guardian 23.44% 21.35% - 384

3Sources 15.38% 29.33% 27.40% 416

utility maps [12]. The following feature spaces (views) with different vector-
based features are available for the numbers: (1) 76 Fourier coefficients of the
character shapes, (2) 216 profile correlations, (3) 64 Karhunen-Love coeffi-
cients, (4) 240 pixel averages in 2 × 3 windows, (5) 47 Zernike moments. All
these features are conventional vector-based features but in different feature
spaces.

– 3-Source Text data (3Sources)1 It is collected from three online news
sources: BBC, Reuters, and The Guardian, where each news source can be
seen as one view for the news stories. In total there are 948 news articles
covering 416 distinct news stories from the period February to April 2009.
Of these distinct stories, 169 were reported in all three sources, 194 in two
sources, and 53 appeared in a single news source. Each story was manually
annotated with one of the six topical labels: business, entertainment, health,
politics, sport, technology.

– Oxford Flowers Data (Flowers): The Oxford Flower Dataset is composed
of 17 flower categories, with 80 images for each category [30]. Each image is
described by different visual features using color, shape, and texture. In this
paper, we use the χ2 distance matrices for different flower features (color,
shape, texture) as three different views.

Both Digit and Flowers data are complete. We randomly delete instances from
each view to make the views incomplete. To simplify the situation, we delete
the same number of instances for all the views, and run the experiment under
different incomplete percentages from 0% (all the views are complete) to 50% (all
the views have 50% instances missing). It is also worth to note that 3Sources is
naturally incomplete. Also since PVC can only with with two incomplete views,
in order to compare PVC with other methods, we take any two of the three
incomplete views and run experiments on them. We also report the results on
all the three incomplete views. The statistics of 3Sources data are summarized
in Table 3.

4.3 Results

The results for Digit data and Flower data are shown in Figs. 1-4. We report
the results for various incomplete rates (from 0% to 50% with 10% as interval).
Table 4 contains the results for 3Sources data.

1 http://mlg.ucd.ie/datasets/3sources.html

http://mlg.ucd.ie/datasets/3sources.html
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Fig. 1. NMIs for Digit.
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Fig. 2. ACs for Digit.

From Figs. 1 and 2 for Digit data, we can see that the proposed MIC method
outperforms all the other methods in all the scenarios, especially for relatively
large incomplete rates (about 12% higher than other methods in NMI and about
20% higher in AC for incomplete rates 30% and 40% ). It is worth to note
that when the incomplete rate is 0, CGC is the second best method in both
NMI and AC, which is very close to MIC. However, as the incomplete rate
increases, the performance of CGC drops quickly. One of the possible reasons
is that CGC works on the similarity matrices/kernels, as the incomplete rate
increases, estimated similarity/kernel matrices are not accurate. Also, as the
incomplete rate increases, fewer instance mappings between views are available.
Combining these two factors, the performance of CGC drops for incomplete
views. We can also observe that for incomplete views (incomplete rate > 0),
multiNMF gives the second best performance (still at lease 5% lower in NMI
and at lease 8% lower in AC).

In Table 4, we can also observe that the proposed method outperforms all
the other methods in both NMI and AC. MultiNMF and ConvexSub perform
the best among the compared techniques.

From Figs. 3 and 4 for Flowers data, we can observe that in most of the
cases, MIC outperforms all the other methods. It is worth to note that when
all the views are complete, the performances of ConvexSub and MultiNMF are
almost the same as MIC. As the incomplete rate increases, MIC starts to show
the advantages over other methods. However, when the incomplete rate is too
large (e.g., 50%), the performance of MIC is almost the same as ConvexSub and
MultiNMF.

4.4 Parameter Study

There are two sets of parameters in the proposed methods: {αi}, trade-off param-
eter between reconstruction error and view disagreement and {βi}, trade-off
parameter between the reconstruction error and robustness. Here we explore the
effects of the view disagreement trade-off parameter and the robust trade-off
parameter to clustering performance. We first fix {βi} to 0.01, run MIC with
various {αi} values (from 10−7 to 100). Then fix {αi} to 0.01, run MIC with
various {βi} values (from 10−7 to 100). Due to the limit of space, we only report
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Table 4. Results on 3Sources Text Data

Methods
BBC-Reuters BBC-Guardian Reuters-Guardian Three-Source
NMI AC NMI AC NMI AC NMI AC

Concat 0.2591 0.3465 0.2526 0.3599 0.2474 0.3633 0.2757 0.3429

ConvexSub 0.3309 0.3913 0.3576 0.4584 0.3450 0.4370 0.3653 0.4504

PVC 0.2931 0.4252 0.2412 0.4334 0.2488 0.4145 – –

CGC 0.2336 0.4167 0.2470 0.3857 0.2682 0.4530 0.2875 0.4279

MultiNMF 0.3687 0.4517 0.3647 0.4693 0.3487 0.4281 0.4131 0.4756

MIC 0.3814 0.4912 0.3813 0.4988 0.3800 0.4612 0.4512 0.5631
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Fig. 3. NMIs for Flowers.

Incomplete Rate
0 0.1 0.2 0.3 0.4 0.5

A
C

0.2

0.25

0.3

0.35

0.4
MIC
Concat
ConvexSub
MultiNMF
CGC

Fig. 4. ACs for Flowers.

the results on 3Souces data with all the three views in Fig. 5. From Fig. 5, we
can find that MIC achieves stably good performance when αi is around 10−2

and βi is from 10−5 to 10−1.

4.5 Convergence Study

The three updates rules for U∗, {V(i)} and {U(i)} are iterative. In the supple-
mental material, we prove that each update will decrease the value objective
function and the whole process will converge to a local minima solution. Fig. 6
shows the convergence curve together with its performance for Digit data with
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Fig. 5. Parameter study on 3Sources.



MIC via Weighted NMF with L2,1 Regularization 331

Iteration
0 10 20 30 40 50 60

O
bj

ec
tio

n 
F

un
ct

io
n 

V
al

ue

×10-6

5

10

A
C

0.7

0.75

0.8
Objective

Performance

Digit data with 10% incomplete rate.

Iteration
0 5 10 15 20 25 30

O
bj

ec
tio

n 
F

un
ct

io
n 

V
al

ue

×10-5

6

7

8

A
C

0.45

0.5

0.55

0.6
Objective

Performance

3Sources data with all three views.

Fig. 6. Convergence and corresponding performance curve.

10% incomplete rate and 3Sources data using all the three views. The blue solid
line shows the value of the objective function and the red dashed line indicates
the accuracy of the method. As can be seen, for Digit data, the algorithm will
converge after 30 iterations. For 3Sources data, after less than 10 iterations, the
algorithm will converge.

5 Related Work

There are two areas of related works upon which the proposed model is built.
Multi-view learning [2,22,29], is proposed to learn from instances which have
multiple representations in different feature spaces. Specifically, Multi-view clus-
tering [1,28] is most related to our work. For example, [1] developed and studied
partitioning and agglomerative, hierarchical multi-view clustering algorithms for
text data. [23,24] are among the first works proposed to solve the multi-view
clustering problem via spectral projection. Linked Matrix Factorization [33] is
proposed to explore clustering of a set of entities given multiple graphs. Recently,
[34] proposed a kernel based approach which allows clustering algorithms to be
applicable when there exists at least one complete view with no missing data.
As far as we know, [26,32] are the only two works that do not require the com-
pleteness of any view. However, both of the methods can only work with two
incomplete views.

Nonnegative matrix factorization [25] is the second area that is related to our
work. NMF has been successfully used in unsupervised learning [31,36]. Different
variations were proposed in the last decade. For example, [8] posed a three factor
NMF and added orthogonal constrains for rigorous clustering interpretation. [19]
introduced sparsity constraints on the latent feature matrix, which will give more
sparse latent representations. [20] proposed a weighted version of NMF, which
gives different weights to different entries in the data. Recently, [6,27] propsed to
use NMF to clustering data from multiple views/sources. However, they cannot
deal with multiple incomplete views. The proposed MIC, which uses weighted
joint NMF to handle the incompleteness of the views and maintain the robustness
by introducing the L2,1 regularization.
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6 Conclusion

In this paper, we study the problem of clustering on data with multiple incom-
plete views, where each view suffers from incompleteness of instances. Based on
weighted NMF, the proposed MIC method learns the latent feature matrices
for all the incomplete views and pushes them towards a common consensus. To
achieve the goal, we use a joint weighted NMF algorithm to learn not only the
latent feature matrix for each view but also minimize the disagreement between
the latent feature matrices and the consensus matrix. By giving missing instances
from each view lower weights, MIC minimizes the negative influences from the
missing instances. It also maintains the robustness to noises and outliers by
introducing the L2,1 regularization. Extensive experiments conducted on three
datasets demonstrate the effectiveness of the proposed MIC method on data
with multiple incomplete views comparing with other state-of-art methods.
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