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Abstract. Many modern multiclass and multilabel problems are char-
acterized by increasingly large output spaces. For these problems, label
embeddings have been shown to be a useful primitive that can improve
computational and statistical efficiency. In this work we utilize a cor-
respondence between rank constrained estimation and low dimensional
label embeddings that uncovers a fast label embedding algorithm which
works in both the multiclass and multilabel settings. The result is a
randomized algorithm whose running time is exponentially faster than
naive algorithms. We demonstrate our techniques on two large-scale pub-
lic datasets, from the Large Scale Hierarchical Text Challenge and the
Open Directory Project, where we obtain state of the art results.

1 Introduction

Recent years have witnessed the emergence of many multiclass and multilabel
datasets with increasing number of possible labels, such as ImageNet [12] and the
Large Scale Hierarchical Text Classification (LSHTC) datasets [25]. One could
argue that all problems of vision and language in the wild have extremely large
output spaces.

When the number of possible outputs is modest, multiclass and multilabel
problems can be dealt with directly (via a max or softmax layer) or with a
reduction to binary classification. However, when the output space is large, these
strategies are too generic and do not fully exploit some of the common properties
that these problems exhibit. For example, often the alternatives in the output
space have varying degrees of similarity between them so that typical examples
from similar classes tend to be closer1 to each other than from dissimilar classes.
More concretely, classifying an image of a Labrador retriever as a golden retriever
is a more benign mistake than classifying it as a rowboat.

Shouldn’t these problems then be studied as structured prediction problems,
where an algorithm can take advantage of the structure? That would be the case
if for every problem there was an unequivocal structure (e.g. a hierarchy) that
everyone agreed on and that structure was designed with the goal of being ben-
eficial to a classifier. When this is not the case, we can instead let the algorithm
uncover a structure that matches its own capabilities.
1 Or more confusable, by machines and humans alike.
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In this paper we use label embeddings as the underlying structure that can
help us tackle problems with large output spaces, also known as extreme classifi-
cation problems. Label embeddings can offer improved computational efficiency
because the embedding dimension is much smaller than the dimension of the out-
put space. If designed carefully and applied judiciously, embeddings can also offer
statistical efficiency because the number of parameters can be greatly reduced
without increasing, or even reducing, generalization error.

1.1 Contributions

We motivate a particular label embedding defined by the low-rank approximation
of a particular matrix, based upon a correspondence between label embedding
and the optimal rank-constrained least squares estimator. Assuming realizability
and infinite data, the matrix being decomposed is the expected outer product
of the conditional label probabilities. In particular, this indicates two labels are
similar when their conditional probabilities are linearly dependent across the
dataset. This unifies prior work utilizing the confusion matrix for multiclass [5]
and the empirical label covariance for multilabel [41].

We apply techniques from randomized linear algebra [19] to develop an effi-
cient and scalable algorithm for constructing the embeddings, essentially via a
novel randomized algorithm for rank-constrained squared loss regression. Intu-
itively, this technique implicitly decomposes the prediction matrix of a model
which would be prohibitively expensive to form explicitly. The first step of our
algorithm resembles compressed sensing approaches to extreme classification
that use random matrices [21]. However our subsequent steps tune the embed-
dings to the data at hand, providing the opportunity for empirical superiority.

2 Algorithm Derivation

2.1 Notation

We denote vectors by lowercase letters x, y etc. and matrices by uppercase letters
W , Z etc. The input dimension is denoted by d, the output dimension by c and
the embedding dimension by k. For multiclass problems y is a one hot (row)
vector (i.e. a vertex of the c − 1 unit simplex) while for multilabel problems y is
a binary vector (i.e. a vertex of the unit c-cube). For an m×n matrix X ∈ R

m×n

we use ||X||F for its Frobenius norm, X† for the pseudoinverse, ΠX,L for the
projection onto the left singular subspace of X, and X1:k for the matrix resulting
by taking the first k columns of X. We use X∗ to denote a matrix obtained by
solving an optimization problem over matrix parameter X. The expectation of
a random variable v is denoted by E[v].

2.2 Background

In this section we offer an informal discussion of randomized algorithms for
approximating the principal components analysis of a data matrix X ∈ R

n×d
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Algorithm 1. Randomized PCA

1: function RPCA(k, X ∈ R
n×d)

2: (p, q) ← (20, 1) � These hyperparameters rarely need adjustment.
3: Q ← randn(d, k + p)
4: for i ∈ {1, . . . , q} do � Randomized range finder for X�X
5: Ψ ← X�XQ � Ψ can be computed in one pass over the data
6: Q ← orthogonalize(Ψ) � orth complexity O(dk2) is independent of n
7: end for � NB: total of (q + 1) data passes, including next line
8: F ← (XQ)�(XQ) � F ∈ R

(k+p)×(k+p) is “small’
9: (V̂ , Σ2) ← eig(F, k) � Exact optimization on small matrix

10: V ← QV̂ � Back out the solution
11: return (V, Σ)
12: end function

with n examples and d features. For a very thorough and more formal discussion
see [19].

Algorithm 1 shows a recipe for performing randomized PCA. In both theory
and practice, the algorithm is insensitive to the parameters p and q as long as
they are large enough (in our experiments we use p = 20 and q = 1). We start
with a set of k+p random vectors and use them to probe the range of X�X. Since
principal eigenvectors can be thought as “frequent directions” [28], the range of
Ψ will tend to be more aligned with the space spanned by the top eigenvectors
of X�X. We compute an orthogonal basis for the range of Ψ and repeat the
process q times. This can also be thought as orthogonal (aka subspace) iteration
for finding eigenvectors with the caveat that we early stop (i.e., q is small). Once
we are done and we have a good approximation for the principal subspace of
X�X, we optimize fully over that subspace and back out the solution. The last
few steps are cheap because we are only working with a (k + p) × (k + p) matrix
and the largest bottleneck is either the computation of Ψ in a single machine
setting or the orthogonalization step if parallelization is employed. An important
observation we use below is that X or X�X need not be available explicitly; to
run the algorithm we only need to be able to compute the result of multiplying
with X�X.

2.3 Rank-Constrained Estimation and Embedding

We begin with a setting superficially unrelated to label embedding. Suppose we
seek an optimal squared loss predictor of a high-cardinality target vector y ∈ R

c

which is linear in a high dimensional feature vector x ∈ R
d. Due to sample

complexity concerns, we impose a low-rank constraint on the weight matrix. In
matrix form,

W ∗ = arg min
W∈Rd×c| rank(W )≤k

‖Y − XW‖2F , (1)

where Y ∈ R
n×c and X ∈ R

n×d are the target and design matrices respectively.
This is a special case of a more general problem studied by [14]; specializing
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Algorithm 2. Rembrandt: Response EMBedding via RANDomized
Techniques

1: function Rembrandt(k, X ∈ R
n×d, Y ∈ R

n×c)
2: (p, q) ← (20, 1) � These hyperparameters rarely need adjustment.
3: Q ← randn(c, k + p)
4: for i ∈ {1, . . . , q} do � Randomized range finder for Y �ΠX,LY
5: Z ← arg min ‖Y Q − XZ‖2

F

6: Q ← orthogonalize(Y �XZ)
7: end for � NB: total of (q + 1) data passes, including next line
8: F ← (Y �XQ)�(Y �XQ) � F ∈ R

(k+p)×(k+p) is “small”
9: (V, Σ2) ← eig(F, k)

10: V ← QV � V ∈ R
c×k is the embedding

11: return (V, Σ)
12: end function

their result yields the solution W ∗ = X†(ΠX,LY )k, where ΠX,L projects onto
the left singular subspace of X, and (·)k denotes optimal Frobenius norm rank-k
approximation, which can be computed2 via SVD. The expression for W ∗ can
be written in terms of the SVD ΠX,LY = UΣV �, which, after simple algebra,
yields W ∗ =

(
X†(Y V1:k)

)
V �
1:k. This is equivalent to the following procedure:

1. Y V1:k: Project Y down to k dimensions using the top right singular vectors
of ΠX,LY .

2. X†(Y V1:k) Least squares fit the projected labels using X and predict them.
3.

(
X†(Y V1:k)

)
V �
1:k: Map predictions to the original output space, using the

transpose of the top right singular vectors of ΠX,LY .

This motivates the use of the right singular vectors of ΠX,LY as a label embed-
ding. The ΠX,LY term can be demystified: it corresponds to the predictions of
the optimal unconstrained model,

Z∗ = arg min
Z∈Rd×c

‖Y − XZ‖2F ,

ΠX,LY = XZ∗ def= Ŷ .

The right singular vectors V of ΠX,LY are therefore the eigenvectors of Ŷ �Ŷ ,
i.e., the matrix formed by the sum of outer products of the optimal unconstrained
model’s predictions on each example. Note that actually computing and materi-
alizing Z∗ ∈ R

d×c would be expensive; a key aspect of the randomized algorithm
is that we get the same result while avoiding this intermediate. In particular we
can find the product of ΠX,LY with another matrix Q ∈ R

c×k via

Z∗Q = arg min
Z∈Rd×k

‖Y Q − XZ‖2F ,

ΠX,LY Q = XZ∗Q. (2)

2 if X = UXΣXV �
X is the SVD of X, then ΠX,L = UXU�

X .
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Because squared loss is a proper scoring rule it is minimized at the conditional
mean. In the limit of infinite training data (n → ∞) and sufficient model flexi-
bility (so that ŷ = E[y|x]) we have that

1
n

Ŷ �Ŷ
a.s.−→ E[E[y|x]�E[y|x]] (3)

by the strong law of large numbers. An embedding based upon the eigendecom-
position of E[E[y|x]�E[y|x]] is not practically actionable, but does provide valu-
able insights. For example, the principal label space transformation of [41] is an
eigendecomposition of the empirical label covariance Y �Y . This is a plausible
approximation to E[E[y|x]�E[y|x]] in the multilabel case. However, for multi-
class (or multilabel where most examples have at most one nonzero component),
the low-rank constraint alone cannot produce good generalization if the input
representation is sufficiently flexible; the eigendecomposition of the prediction
covariance will merely select a basis for the k most frequent labels due to the
absence of empirical cooccurence statistics. Under these conditions we must fur-
ther regularize (i.e., tradeoff variance for bias) beyond the low-rank constraint,
so that Ŷ better approximates E[Y |X] rather than the observed Y . Our proce-
dure admits tuning the bias-variance tradeoff via choice of model (features) used
in line 5 of Algorithm 2.

2.4 Rembrandt

Our proposal is Rembrandt, described in Algorithm 2. In the previous section, we
motivated the use of the top right singular space of ΠX,LY as a label embedding,
or equivalently, the top principal components of Y �ΠX,LY (leveraging the fact
that the projection is idempotent). Using randomized techniques, we can decom-
pose this matrix without explicitly forming it, because we can compute the product
of ΠX,LY with another matrix Q via equation 2. Algorithm 2 is a specialization
of randomized PCA to this particular form of the matrix multiplication operator.
Starting from a random label embedding which satisfies the conditions for random-
ized PCA (e.g., a Gaussian random matrix), the algorithm first fits the embedding,
outer products the embedding with the labels, orthogonalizes and repeats for some
number of iterations. Then a final exact eigendecomposition is used to remove the
additional dimensions of the embedding that were added to improve convergence.
Note that the optimization of 2 is over Rd×(k+p), not Rd×c, although the result is
equivalent; this is the main computational advantage of our technique.

The connection to compressed sensing approaches to extreme classification
is now clear, as the random sensing matrix corresponds to the starting point of
the iterations in Algorithm 2. In other words, compressed sensing corresponds
to Algorithm 2 with q = 0 and p = 0, which results in a whitened random
projection of the labels as the embedding. Additional iterations (q > 0) and
oversampling (p > 0) improve the approximation of the top eigenspace, hence
the potential for improved performance. However when the model is sufficiently
flexible, an embedding matrix which ignores the training data might be superior
to one which overfits the training data.
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Equation (2) is inexpensive to compute. The matrix vector product Y Q is a
sparse matrix-vector product so complexity O(nsk) depends only on the average
(label) sparsity per example s and the embedding dimension k, and is indepen-
dent of the number of classes c. The fit is done in the embedding space and
therefore is independent of the number of classes c, and the outer product with
the predicted embedding is again a sparse product with complexity O(nsk).
The orthogonalization step is O(ck2), but this is amortized over the data set
and essentially irrelevant as long as n > c. While random projection theory sug-
gests k should grow logarithmically with c, this is only a mild dependence on
the number of classes.

3 Related Work

Low-dimensional dense embeddings of sparse high-cardinality output spaces have
been leveraged extensively in the literature, due to their beneficial impact on
multiple algorithmic desiderata. As this work emphasizes, there are potential
statistical (i.e., regularization) benefits to label embeddings, corresponding to
the rich literature of low-rank regression regularization [22]. Another common
motivation is to mitigate space or time complexity at training or inference time.
Finally, embeddings can be part of a strategy for zero-shot learning [34], i.e.,
designing a classifier which is extensible in the output space.

[21], motivated by advances in compressed sensing, utilized a random embed-
ding of the labels along with greedy sparse decoding strategy. For the multilabel
case, [41] construct a low-dimensional embedding using principal components
on the empirical label covariance, which they utilize along with a greedy sparse
decoding strategy. For multivariate regression, [7] use the principal components
of the empirical label covariance to define a shrinkage estimator which exploits
correlations between the labels to improve accuracy. In these works, the motiva-
tion for embeddings was primarily statistical benefit. Conversely, [44] motivate
their ranking-loss optimized embeddings solely by computational considerations
of inference time and space complexity.

Multiple authors leverage side information about the classes, such as a taxon-
omy or graph, in order to learn a label representation which is felicitous for clas-
sification, e.g. when composed with online learning [11]; Bayesian learning [10];
support vector machines [6]; and decision tree ensembles [38]. Our embedding
approach neither requires nor exploits such side information, and is therefore
applicable to different scenarios, but is potentially suboptimal when side infor-
mation is present. However, our embeddings can be complementary to such tech-
niques when side information is not present, as some approaches condense side
information into a similarity matrix between classes, e.g., the sub-linear inference
approach of [9] and the large margin approach of [43]. Our embeddings provide a
low-rank similarity matrix between classes in factored form, i.e., represented in
O(kc) rather than O(c2) space, which can be composed with these techniques.
Analogously, [5] utilize a surrogate classifier rather than side information to
define a similarity matrix between classes; our procedure can efficiently produce
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a similarity matrix which can ease the computational burden of this portion of
their procedure.

Another intriguing use of side information about the classes is to enable zero-
shot learning. To this end, several authors have exploited the textual nature
of classes in image annotation to learn an embedding over the classes which
generalizes to novel classes, e.g., [15] and [39]. Our embedding technique does
not address this problem.

[18] focus nearly exclusively on the statistical benefit of incorporating label
structure by overcoming the space and time complexity of large-scale one-
against-all classification via distributed training and inference. Specifically, they
utilize side information about the classes to regularize a set of one-against-all
classifiers towards each other. This leads to state-of-the-art predictive perfor-
mance, but the resulting model has high space complexity, e.g., terabytes of
parameters for the LSHTC [24] dataset we utilize in section 4.3. This neces-
sitates distributed learning and distributed inference, the latter being a more
serious objection in practice. In contrast, our embedding technique mitigates
space complexity and avoids model parallelism.

Our objective in equation (1) is highly related to that of partial least
squares [16], as Algorithm 2 corresponds to a randomized algorithm for PLS
if the features have been whitened.3 Unsurprisingly, supervised dimensionality
reduction techniques such as PLS can be much better than unsupervised dimen-
sionality reduction techniques such as PCA regression in the discriminative set-
ting if the features vary in ways irrelevant to the classification task [2].

Two other classical procedures for supervised dimensionality reduction are
Fisher Linear Discriminant [37] and Canonical Correlation Analysis [20]. For
multiclass problems these two techniques yield the same result [2,3], although for
multilabel problems they are distinct. Indeed, extension of FLD to the multilabel
case is a relatively recent development [42] whose straightforward implementa-
tion does not appear to be computationally viable for large number of classes.
CCA and PLS are highly related, as CCA maximizes latent correlation and PLS
maximizes latent covariance [2]. Furthermore, CCA produces equivalent results
to PLS if the features are whitened [40]. Therefore, there is no obvious statistical
reason to prefer CCA to our proposal in this context.

Regarding computational considerations, scalable CCA algorithms are avail-
able [30,32], but it remains open how to specialize them to this context to lever-
age the equivalent of equation (2); whereas, if CCA is desired, Algorithm 2 can
be utilized in conjunction with whitening pre-processing.

Text is one the common input domains over which large-scale multiclass and
multilabel problems are defined. There has been substantial recent work on text
embeddings, e.g., word2vec [31], which (empirically) provide analogous statistical
and computational benefits despite being unsupervised. The text embedding
technique of [27] is a particularly interesting comparison because it is a variant
of Hellinger PCA which leverages sequential information. This suggests that
unsupervised dimensionality reduction approaches can work well when additional

3 More precisely, if the feature covariance is a rotation.
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Algorithm 3. Stagewise classification algorithm utilized for experiments. Loss
is either log loss (multiclass) or independent log loss per class (multilabel).

1: function DecoderTrain(k, X ∈ R
n×d, Y ∈ R

n×c, φ)
2: (R, ∼) ← Rembrandt(k, X, Y ) � or other comparison embedding
3: W ∗ ← arg minW ‖Y R − XW‖2

F

4: Ŷ ← φ(XW ∗) � φ is an optional random feature map
5: Q∗ ← arg minQ loss(Y, Ŷ Q) � early-stopped, see text
6: return (W ∗, Q∗)
7: end function

structure of the input domain is incorporated, in this case by modeling word
burstiness with the square root nonlinearity [23] and word order via decomposing
neighborhood statistics. Nonetheless [27] note that when maximum statistical
performance is desired, the embeddings must be fine-tuned to the particular
task, i.e., supervised dimensionality reduction is required.

Another plausible regularization technique which mitigates inference space
and time complexity is L1 regularization [29]. One reason to prefer low-rank
regularization to L1 regularization is if the prediction covariance of equation (3)
is well-modeled by a low-rank matrix.

4 Experiments

The goal of these experiments is to demonstrate the computational viability and
statistical benefits of the embedding algorithm, not to advocate for a particular
classification algorithm per se. We utilize classification tasks for demonstration,
and utilize our embedding strategy as part of algorithm 3, but focus our attention
on the impact of the embedding on the result.

Table 1. Data sets used for experimentation and times to compute an embedding.

Dataset Type Modality Examples Features Classes Rembrandt
k Time (sec)

ALOI Multiclass Vision 108K 128 1000 50 4
ODP Multiclass Text ∼ 1.5M ∼ 0.5M ∼ 100K 300 6,530

LSHTC Multilabel Text ∼ 2.4M ∼ 1.6M ∼ 325K 500 8,006

In table 1 we present some statistics about the datasets we use in this section
as well as times required to compute an embedding for the dataset. Unless other-
wise indicated, all timings presented in the experiments section are for a Matlab
implementation running on a standard desktop, which has dual 3.2Ghz Xeon
E5-1650 CPU and 48Gb of RAM.
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4.1 ALOI

ALOI is a color image collection of one-thousand small objects recorded for sci-
entific purposes [17]. The number of classes in this data set does not qualify as
extreme by current standards, but we begin with it as it will facilitate compar-
ison with techniques which in our other experiments are intractable on a single
machine. For these experiments we will consider test classification accuracy uti-
lizing the same train-test split and features from [8]. Specifically there is a fixed
train-test split of 90:10 for all experiments and the representation is linear in
128 raw pixel values.

Algorithm 2 produces an embedding matrix whose transpose is a squared-
loss optimal decoder. In practice, optimizing the decode matrix for logistic loss
as described in Algorithm 3 gives much better results. This is by far the most
computationally demanding step in this experiment, e.g., it takes 4 seconds to
compute the embedding but 300 seconds to perform the logistic regression. For-
tunately the number of features (i.e., embedding dimensionality) for this logistic
regression is modest so the second order techniques of [1] are applicable (in
particular, their Algorithm 1 with a simple modification to include accelera-
tion [4,33]). We determine the number of fit iterations for the logistic regression
by extracting a hold-out set from the training set and monitoring held-out loss.
We do not use a random feature map, i.e., φ in line 4 of Algorithm 3 is the
identity function.

Table 2. ALOI results. k = 50 for all embedding strategies.

Method RE + LR PCA + LR CS + LR LR OAA LT

Test Error 9.7% 9.7% 10.8% 10.8% 11.5% 16.5%

We compare to several different strategies in table 2. OAA is the one-against-
all reduction of multiclass to binary. LR is a standard logistic regression, i.e.,
learning directly from the original features. Both of these options are intractable
on a single machine for our other data sets. We also compare against Lomtree
(LT), which has training and test time complexity logarithmic in the number of
classes [8]. Both OAA and LT are provided by the Vowpal Wabbit [26] machine
learning tool.

The remaining techniques are variants of Algorithm 3 using different embed-
ding strategies. PCA + LR refers to logistic regression after first projecting
the features onto their top principal components. CS + LR refers to logistic
regression on a label embedding which is a random Gaussian matrix suitable
for compressed sensing. Finally RE + LR is Rembrandt composed with logistic
regression. These techniques were all implemented in Matlab.

Interestingly, OAA underperforms the full logistic regression. Rembrandt
combined with logistic regression outperforms logistic regression, suggesting a
beneficial effect from low-rank regularization. Compressed sensing is able to
match the performance of the full logistic regression while being computationally
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(a) Performance of logistic regres-
sion on ALOI when combined
with either a feature embedding
(PCA) or label embedding (RE).
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(b) The empirical label covariance
spectrum for LSHTC.

more tractable, but underperforms Rembrandt. Lomtree has the worst predic-
tion performance but the lowest computational overhead when the number of
classes is large.

At k = 50, there is no difference in quality between using the Rembrandt
(label) embedding and the PCA (feature) embedding. This is not surprising
considering the effective rank of the covariance matrix of ALOI is 70. For small
embedding dimensionalities, however, PCA underperforms Rembrandt as indi-
cated in Figure 1a. For larger numbers of output classes, where the embedding
dimension will be a small fraction of the number of classes by computational
necessity, we anticipate PCA regression will not be competitive.

Note that, in addition to better statistical performance, all of the “embed-
ding + LR” approaches have lower space complexity O(k(c + d)) than direct
logistic regression O(cd). For ALOI the savings are modest (255600 bytes vs.
516000 bytes) because the input dimensionality is only d = 128, but for larger
problems the space savings are necessary for feasible implementation on a single
commodity computer. Inference time on ALOI is identical for embedding and
direct approaches in practice (both achieving ≈ 170k examples/sec).

4.2 ODP

The Open Directory Project [13] is a public human-edited directory of the web
which was processed by [6] into a multiclass data set. For these experiments we
will consider test classification error utilizing the same train-test split, features,
and labels from [8]. Specifically there is a fixed train-test split of 2:1 for all
experiments, the representation of document is a bag of words, and the unique
class assignment for each document is the most specific category associated with
the document.
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Table 3. ODP results. k = 300 for all embedding strategies.

Method RE + LR CS + LR PCA + LR LT

Test Error 83.15% 85.14% 90.37% 93.46%

The procedures are the same as in the previous experiment, except that we
do not compare to OAA or full logistic regression due to intractability on a single
machine.

The combination of Rembrandt and logistic regression result is, to the best of
our knowledge, the best published result on this dataset. PCA logistic regression
has a performance gap compared to Rembrandt and logistic regression. The poor
performance of PCA logistic regression is doubly unsurprising, both for general
reasons previously discussed, and due to the fact that covariance matrices of text
data typically have a long plateau of weak spectral decay. In other words, for
text problems projection dimensions quickly become nearly equivalent in terms
of input reconstruction error, and common words and word combinations are
not discriminative. In contrast, Rembrandt leverages the spectral properties of
the prediction covariance of equation (3), rather than the spectral properties of
the input features.

Finally, we remark the following: although inference (i.e., finding the maxi-
mum output) is linear in the number of classes, the constant factors are favorable
due to modern vectorized processors, and therefore proceeds at ≈ 1700 exam-
ples/sec for the embedding based approaches.

4.3 LSHTC

The Large Scale Hierarchical Text Classification Challenge (version 4) was a
public competition involving multilabel classification of documents into approxi-
mately 300,000 categories [24]. The training and test files are available from the
Kaggle platform. The features are bag of words representations of each document.

Table 4. Embedding quality for LSHTC. k = 100 for all embedding strategies.

Method Most fraternal CS PLST Rembrandt

Sibling Fraction 0.32% 3.08% 19.65% 23.61%

Embedding Quality Assessment. A representation of a DAG hierarchy asso-
ciated with the classes is also available. We used this to assess the quality of
various embedding strategies independent of classification performance. In par-
ticular, we computed the fraction of class embeddings whose nearest neighbor
was also a sibling in the DAG, as shown in Table 4. “Most fraternal” refers
to an embedding which arranges for every category’s nearest neighbor in the
embedding to be the node in the DAG with the most siblings, i.e., the constant
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Table 5. LSHTC results.

Method RE (k = 800) + ILR RE (k = 500) + ILR FastXML LPSR-NB

Precision-at-1 53.39% 52.84% 49.78% 27.91%

predictor baseline for this task. PLST [41] has performance close to Rembrandt
according to this metric, so the 3.2 average nonzero classes per example is appar-
ently enough for the approximation underlying PLST to be reasonable.

Empirical Label Covariance Spectrum. Our embedding approach is based
upon a low-rank assumption for the (unobservable) prediction covariance of
equation (3). Because LSHTC is a multi-label dataset, we can use the empirical
label covariance as a proxy to investigate the spectral properties of the predic-
tion covariance and test our assumption. We used Algorithm 1 (i.e., two pass
randomized PCA) to estimate the spectrum of the empirical label covariance,
shown in Figure 1b. The spectrum decays modestly and suggests that an embed-
ding dimension of k ≈ 1000 or more might be necessary for good classification
performance.

Classification Performance. We built an end-to-end classifier using an
approximate kernelized variant of Algorithm 3, where we processed the embed-
dings with Random Fourier Features [36], i.e., in line 4 of Algorithm 3 we use a
random cosine feature map for φ. We found Cauchy distributed random vectors,
corresponding to the Laplacian kernel, gave good results. We used 4,000 random
features and tuned the kernel bandwidth via cross-validation on the training set.

The LSHTC competition metric is macro-averaged F1, which emphasizes
performance on rare classes. However, we are using a multilabel classification
algorithm which maximizes accuracy of predictions without regard to the impor-
tance of rare classes. Therefore we compare with published results of [35], who
report example-averaged precision-at-k on the label ordering induced for each
example. To facilitate comparison we do a 75:25 train-test split of the public
training set, which is the same proportions as in their experiments (albeit a
different split).

Based upon the previous spectral analysis, we anticipate a large embedding
dimension is required for best results. With our current implementation, up
to the limit of available memory in our desktop machine (k = 800) we found
increasing embedding dimensionality improved performance.

“RE (k = . . .) + ILR” corresponds for Rembrandt coupled with independent
(kernel) logistic regression, i.e., Algorithm 3. LPSR-NB is the Label Partitioning
by Sub-linear Ranking algorithm of [45] composed with a Naive Bayes base
learner, as reported in [35], where they also introduce and report precision for
the multilabel tree learning algorithm FastXML. Inference for our best model
proceeds at ≈ 60 examples/sec, substantially slower than for ODP, due to the
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larger output space, larger embedding dimensionality, and the use of random
Fourier features.

5 Discussion

In this paper we identify a correspondence between rank constrained regression
and label embedding, and we exploit that correspondence along with randomized
matrix decomposition techniques to develop a fast label embedding algorithm.

To facilitate analysis and implementation, we focused on linear prediction,
which is equivalent to a simple neural network architecture with a single linear
hidden layer bottleneck. Because linear predictors perform well for text classi-
fication, we obtained excellent experimental results, but more sophistication is
required for tasks where deep architectures are state-of-the-art. Although the
analysis presented herein would not strictly be applicable, it is plausible that
replacing line 5 in Algorithm 2 with an optimization over a deep architecture
could yield good embeddings. This would be computationally beneficial as reduc-
ing the number of outputs (i.e., predicting embeddings rather than labels) would
mitigate space constraints for GPU training.

Our technique leverages the (putative) low-rank structure of the prediction
covariance of equation (3). For some problems a low-rank plus sparse assumption
might be more appropriate. In such cases combining our technique with L1
regularization, e.g., on a classification residual or on separately regularized direct
connections from the original inputs, might yield superior results.

Acknowledgments. We thank John Langford for providing the ALOI and ODP data
sets.
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