
Learning Compact and Effective Distance
Metrics with Diversity Regularization

Pengtao Xie(B)

Machine Learning Department, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

pengtaox@cs.cmu.edu

Abstract. Learning a proper distance metric is of vital importance for
many distance based applications. Distance metric learning aims to learn
a set of latent factors based on which the distances between data points
can be effectively measured. The number of latent factors incurs a trade-
off: a small amount of factors are not powerful and expressive enough
to measure distances while a large number of factors cause high com-
putational overhead. In this paper, we aim to achieve two seemingly
conflicting goals: keeping the number of latent factors to be small for the
sake of computational efficiency, meanwhile making them as effective as
a large set of factors. The approach we take is to impose a diversity
regularizer over the latent factors to encourage them to be uncorrelated,
such that each factor can capture some unique information that is hard
to be captured by other factors. In this way, a small amount of latent
factors can be sufficient to capture a large proportion of information,
which retains computational efficiency while preserving the effectiveness
in measuring distances. Experiments on retrieval, clustering and classifi-
cation demonstrate that a small amount of factors learned with diversity
regularization can achieve comparable or even better performance com-
pared with a large factor set learned without regularization.

1 Introduction

In data mining and machine learning, learning a proper distance metric is of vital
importance for many distance based tasks and applications, such as retrieval [22],
clustering [18] and classification [16]. In retrieval, a better distance measure can
help find data entries that are more relevant with the query. In k-means based
clustering, data points can be grouped into more coherent clusters if the distance
metric is properly defined. In k-nearest neighbor (k-NN) based classification, to
find better nearest neighbors, the distances between data samples need to be
appropriately measured. All these tasks rely heavily on a good distance measure.
Distance metric learning (DML) [3,16,18] takes pairs of data points which are
labeled either as similar or dissimilar and learns a distance metric such that
similar data pairs will be placed close to each other while dissimilar pairs will
be separated apart. While formulated in various ways, most DML approaches
choose to learn a Mahalanobis distance (x − y)TM(x − y), where x, y are d-
dimensional feature vectors and M ∈ R

d×d is a positive semidefinite matrix to be
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learned. DML can be interpreted as a latent space model. By factorizing M into
M = ATA, the Mahalanobis distance can be written as ‖Ax−Ay‖2, which can be
interpreted as first projecting the data from the original feature space to a latent
space using the linear projection matrix A ∈ R

k×d, then measuring the squared
Euclidean distance in the latent space. Each row of A corresponds to one latent
factor (or one dimension of the latent space). Ax is the latent representation of
x and can be used as input of downstream tasks. These latent factors are aimed
at capturing the latent features of the observed data. The latent features usually
carry high-level semantic meanings and reflect the inherent characteristics of
data, thus measuring distance in the latent feature space could be more effective.

In choosing the number k of latent factors (or the dimension of the latent
space), there is an inherent tradeoff between the effectiveness of the distance
matrix A and computational efficiency. A larger k would bestow A more expres-
siveness and power in measuring distances. However, the resultant latent rep-
resentations would be of high dimensionality, which incurs high computational
complexity and inefficiency. This is especially true for retrieval where performing
nearest neighbor search on high-dimensional representations is largely difficult.
On the other hand, a smaller k can reduce the computational cost, but would
render the distance matrix less effective.

In this paper, we aim to investigate whether it is possible to achieve the best
of both worlds: given a sufficiently small k which facilitates computational effi-
ciency, can the effectiveness of the distance matrix be comparable to that of a
large k? In other words, the goal is to learn a compact (with small k) but effective
distance matrix. Our way to approach this goal is motivated by Principal Com-
ponent Analysis (PCA). Similar to DML, PCA also learns a linear projection
matrix, where the row vectors are called components. Unlike DML which imposes
no constraints on the row vectors (latent factors), PCA requires the components
to be orthogonal to each other. Such an orthogonality constraint renders the
components to be uncorrelated and each component captures information that
cannot be captured by other components. As a result, a small number of com-
ponents are able to capture a large proportion of information. This inspires us
to place an orthogonality constraint over the row vectors of A in DML, with the
hope that a small number of latent factors are sufficient to effectively measure
distances. However, as verified in our experiments, requiring the latent factors
to be strictly orthogonal may be too restrictive, which hurts the quality of dis-
tance measurement. Instead, we impose a diversity regularizer over the latent
factors to encourage them to approach orthogonality, but not necessarily to be
orthogonal. We perform experiments on retrieval, clustering and classification
to demonstrate that with diversity regularization, a distance matrix with small
k can achieve comparable or even better performance in comparison with an
unregularized matrix with large k.

The rest of the paper is organized as follows. In Section 2, we review related
works. In Section 3, we present how to diversity DML. Section 4 gives experi-
mental results and Section 5 concludes the paper.
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2 Related Works

Many works [3,5,8,16,18,21] have been proposed for distance metric learning.
Please see [15,19] for an extensive review. There are many problem settings
regarding the form of distance supervision, the type of distance metric to be
learned and the learning objective. Among them, the most common setting
[3,5,18] is given data pairs labeled either as similar or dissimilar, learning a
Mahalanobis distance metric, such that similar pairs will be placed close to each
other and dissimilar pairs will be separated apart. As first formulated in [18], a
Mahalanobis distance metric is learned under similarity and dissimilarity con-
straints by minimizing the distances of similar pairs while separating dissimilar
pairs with a certain margin. Guillaumin et al [5] proposed to use logistic discrim-
inant to learn a Mahalanobis metric from a set of labelled data pairs, with the
goal that positive pairs have smaller distances than negative pairs. Kostinger
et al [6] proposed to learn Mahalanobis metrics using likelihood test, which
defines the Mahalanobis matrix to be the difference of covariance matrices of
two Gaussian distributions used for modeling dissimilar pairs and similar pairs
respectively. Ying and Li [21] developed an eigenvalue optimization framework
for learning a Mahalanobis metric, which is shown to be equivalent to minimizing
the maximal eigenvalue of a symmetric matrix.

Some works take other forms of distance supervision such as class labels
[14], rankings [10], triple constraints [13], time series alignments [8] to learn
distance metrics for specific tasks, such as k-nearest neighbor classification [16],
ranking [10], time series aligning [8]. Globerson and Roweis [4] assumed the class
label for each sample is available and proposed to learn a Mahalanobis matrix
for classification by collapsing all samples in the same class to a single point
and pushing samples in other classes infinitely far away. Weinberger et al [16]
proposed to learn distance metrics for k-nearest neighbor classification with the
goal that the k-nearest neighbors always belong to the same class while samples
from different classes are separated by a large margin. This method also requires
the presence of class labels of all samples. Trivedi et al [14] formulated the
problem of metric learning for k nearest neighbor classification as a large margin
structured prediction problem, with a latent variable representing the choice
of neighbors and the task loss directly corresponding to classification error. In
this paper, we focus on the pairwise similarity/dissimilarity constraints which
are considered as the most common and natural supervision of distance metric
learning. Other forms of distance supervision, together with the corresponding
specific-purpose tasks, will be left for future study.

To avoid overfitting, various methods have been proposed to regularize dis-
tance metric learning. Davis et al [3] imposed a regularization that the Maha-
lanobis distance matrix should be close to a prior matrix and the Bregman
divergence is utilized to measure how close two matrices are. Ying and Li
[20] and Niu et al [11] utilized a mixed-norm regularization to encourage the
sparsity of the projection matrix. Qi et al [12] used �1 regularization to learn
sparse metrics for high dimensional problems with small sample size. Qian et
al [13] applied dropout to regularize distance metric learning. In this paper,
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Algorithm 1.. Algorithm for solving DDML.
Input: S,D,k,λ
repeat

Fix ˜A, optimize g using subgradient method
Fix g, optimize ˜A using projected subgradient method

until converge

Table 1. Statistics of datasets

Feature Dim. #training data #data pairs

20-News 5000 11.3K 200K

15-Scenes 1000 3.2K 200K

6-Activities 561 7.4K 200K

we investigate a different regularizer for DML: diversity regularization, which
has not been studied by previous works.

The problem of diversifying the latent factors in latent variable models has
been studied in [7,17], with the goal to reduce the redundancy of latent fac-
tors and improve the coverage of infrequent latent features/structures. Zou and
Adams [23] used a Determinantal Point Process (DPP) prior to diversify the
latent factors and Xie et al [17] defined a diversity measure based on pair-
wise angles between latent factors. In this paper, we study the diversification
of distance metric learning, aiming to learn compact distance metrics without
compromising their effectiveness.

3 Diversify Distance Metric Learning

In this section, we begin with reviewing the DML problem proposed in [18] and
reformulate it as a latent space model using ideas introduced in [16]. Then we
present how to diversify DML.

3.1 A Latent Space Modeling View of DML

Distance metric learning represents a family of models and has various formula-
tions regarding the distance metric to learn, the form of distance supervision and
how the objective function is defined. Among them, the most popular setting is:
(1) distance metric: Mahalanobis distance (x − y)TM(x − y), where x and y are
feature vectors of two data instances and M is a symmetric and positive semidef-
inite matrix to be learned; (2) the form of distance supervision: pairs of data
instances labeled either as similar or dissimilar; (3) learning objective: to learn a
distance metric to place similar points as close as possible and separate dissimi-
lar points apart. Given a set of pairs labeled as similar S = {(xi, yi)}|S|

i=1 and a
set of pairs labeled as dissimilar D = {(xi, yi)}|D|

i=1, DML learns a Mahalanobis
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Table 2. Retrieval average precision (%) on 20-News dataset

k 10 100 300 500 700 900

DML 72.4 74.0 74.9 75.4 75.8 76.2

DDML 76.7 81.0 81.1 79.2 78.3 77.8

Table 3. Retrieval average precision (%) on 15-Scenes dataset

k 10 50 100 150 200

DML 79.5 80.2 80.7 80.7 80.8

DDML 82.4 83.6 83.3 83.1 82.8

distance matrix M by optimizing the following problem

minM
1

|S|
∑

(x,y)∈S
(x − y)TM(x − y)

s.t. (x − y)TM(x − y) ≥ 1,∀(x, y) ∈ D
M � 0

(1)

where M � 0 denotes that M is required to be positive semidefinite. This opti-
mization problem aims to minimize the Mahalanobis distances between pairs
labeled as similar while separating dissimilar pairs with a margin 1. M is required
to be positive semidefinite to ensure that the Mahalanobis distance is a valid dis-
tance metric.

By re-parametrizing M with ATA [16], where A is a matrix of size k × d
(k ≤ d) and ATA guarantees the positive semi-definiteness of M , the Maha-
lanobis distance can be written as ‖Ax−Ay‖2, which can be interpreted as first
projecting the data from the original space to a latent space using the linear pro-
jection matrix A, then computing the squared Euclidean distance in the latent
space. Each row of A corresponds to a latent factor. Accordingly, the problem
defined in Eq.(1) can be written as

minA
1

|S|
∑

(x,y)∈S
‖Ax − Ay‖2

s.t. ‖Ax − Ay‖2 ≥ 1,∀(x, y) ∈ D
(2)

To this end, we see that the DML problem can be interpreted as a latent space
modeling problem. The goal is to seek a latent space where the squared Euclidean
distances of similar data pairs are small and those of dissimilar pairs are large.
The latent space is characterized by the projection matrix A.

3.2 Diversify DML

To diversify DML, we use the diversity measure proposed in [17] to regularize
the latent factors to encourage them to approach orthogonality. Given k latent
factors in A ∈ Rk×d, one can compute the non-obtuse angle θ(ai, aj) between
each pair of latent factors ai and aj , where ai is the ith row of A. θ(ai, aj)
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Table 4. Retrieval average precision (%) on 6-Activities dataset

k 10 50 100 150 200

DML 93.2 94.3 94.5 94.5 94.5

DDML 96.2 95.5 95.9 95.3 95.1

Table 5. Retrieval average precision (%) on three datasets

20-News 15-Scenes 6-Activities

EUC 62.8 65.3 85.0
DML [18] 76.2 80.8 94.5

LMNN [16] 67.0 70.3 71.5
ITML [3] 74.7 79.1 94.2

DML-eig [21] 71.2 71.3 86.7
Seraph [11] 75.8 82.0 89.2

DDML 81.1 83.6 96.2

is defined as arccos( |ai·aj |
‖ai‖‖aj‖ ). A larger θ(ai, aj) indicates that ai and aj are

more different from each other. Given the pairwise angles, the diversity measure
Ω(A) is defined as Ω(A) = Ψ(A) − Π(A), where Ψ(A) and Π(A) are the mean
and variance of all pairwise angles. The mean Ψ(A) measures how these factors
are different from each other on the whole and the variance Π(A) is intended
to encourage these factors to be evenly different from each other. The larger
Ω(A) is, the more diverse these latent factors are. And Ω(A) attains the global
maximum when the factors are orthogonal to each other.

Using this diversity measure to regularize the latent factors, we define a
Diversified DML (DDML) problem as:

minA
1

|S|
∑

(x,y)∈S
‖Ax − Ay‖2 − λΩ(A)

s.t. ‖Ax − Ay‖2 ≥ 1,∀(x, y) ∈ D
(3)

where λ > 0 is a tradeoff parameter between the distance loss and the diversity
regularizer. The term −λΩ(A)1 in the new objective function encourages the
latent factors in A to be diverse. λ plays an important role in balancing the
fitness of A to the distance loss

∑
(x,y)∈S ‖Ax − Ay‖2 and its diversity. Under

a small λ, A is learned to best minimize the distance loss and its diversity is
ignored. Under a large λ, A is learned with high diversity, but may not be well
fitted to the distance loss and hence lose the capability to properly measure
distances. A proper λ needs to be chosen to achieve the optimal balance.

3.3 Optimization

In this section, we present an algorithm to solve the problem defined in Eq.(3),
which is summarized in Algorithm 1. First, we adopt a strategy similar to [16]
1 Note that a negative sign is used here because the overall objective function is to be

minimized but Ω(A) is intended to be maximized.
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Table 6. Clustering accuracy (%) on 20-News dataset

k 10 100 300 500 700 900

DML 23.7 25.1 26.2 26.9 28.1 28.4

DDML 33.4 42.7 44.6 39.5 40.6 41.3

Table 7. Normalized mutual information (%) on 20-News dataset

k 10 100 300 500 700 900

DML 34.1 35.4 36.8 36.9 38.0 38.2

DDML 42.5 49.7 51.1 47.2 47.8 48.1

to remove the constraints. By introducing slack variables ξ to relax the hard
constraints, we get

minA
1

|S|
∑

(x,y)∈S
‖Ax − Ay‖2 − λΩ(A) + 1

|D|
∑

(x,y)∈D
ξx,y

s.t. ‖Ax − Ay‖2 ≥ 1 − ξx,y, ξx,y ≥ 0,∀(x, y) ∈ D
(4)

Using hinge loss, the constraint in Eq.(4) can be further eliminated

minA
1

|S|
∑

(x,y)∈S
‖Ax − Ay‖2 − λΩ(A)

+ 1
|D|

∑

(x,y)∈D
max(0, 1 − ‖Ax − Ay‖2) (5)

Since Ω(A) is non-smooth and non-convex, which is hard to optimize directly,
Xie et al [17] instead optimized a low bound of Ω(A), and they proved that
maximizing the lower bound can increase Ω(A). Factorizing A into diag(g)Ã,
where g is a vector and gi denotes the �2 norm of the ith row of A, then the �2
norm of each row vector in Ã is one. According to the definition of Ω(A), it is
clear that Ω(A) = Ω(Ã). The problem defined in Eq.(5) can be reformulated as

min
˜A,g

1
|S|

∑

(x,y)∈S
‖diag(g)Ã(x − y)‖2 − λΩ(Ã)

+ 1
|D|

∑

(x,y)∈D
max(0, 1 − ‖diag(g)Ã(x − y)‖2)

s.t. ‖Ãi‖ = 1,∀i = 1, · · · , k

(6)

where Ãi denotes the ith row of Ã. This problem can be optimized by alternating
between g and Ã: optimizing g with Ã fixed and optimizing Ã with g fixed. With
Ã fixed, the problem defined over g is

ming
1

|S|
∑

(x,y)∈S
‖diag(g)Ã(x − y)‖2 + 1

|D|
∑

(x,y)∈D
max(0, 1 − ‖diag(g)Ã(x − y)‖2)

(7)
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Table 8. Clustering accuracy (%) on 15-Scenes dataset

k 10 50 100 150 200

DML 33.9 36.5 40.1 37.0 37.8

DDML 46.9 51.3 46.2 46.5 49.6

Table 9. Normalized mutual information (%) on 15-Scenes dataset

k 10 50 100 150 200

DML 41.4 41.0 42.0 41.4 41.6

DDML 46.7 48.9 47.3 48.8 47.1

which can be optimized with subgradient method. Fixing g, the problem defined
over Ã is

min
˜A

1
|S|

∑

(x,y)∈S
‖diag(g)Ã(x − y)‖2 − λΩ(Ã)

+ 1
|D|

∑

(x,y)∈D
max(0, 1 − ‖diag(g)Ã(x − y)‖2)

s.t. ‖Ãi‖ = 1,∀i = 1, · · · , k

(8)

Since Ω(Ã) is non-smooth and non-convex, (sub)gradient method is not applica-
ble. Xie et al [17] derived a smooth lower bound of Ω(Ã) and instead optimized
the low bound with projected gradient descent. Please refer to [17] for details.

4 Experiments

In this section, on three tasks — retrieval, clustering and classification — we
corroborate that through diversification it is possible to learn distance metrics
that are both compact and effective.

4.1 Datasets

We used three datasets in the experiments: 20 Newsgroups2 (20-News), 15-Scenes
[9] and 6-Activities [1]. The 20-News dataset has 18846 documents from 20 cat-
egories, where 60% of the documents were for training and the rest were for
testing. Documents were represented with tfidf vectors whose dimensionality is
5000. We randomly generated 100K similar pairs and 100K dissimilar pairs from
the training set to learn distance metrics. Two documents were labeled as sim-
ilar if they belong to the same group and dissimilar otherwise. The 15-Scenes
dataset contains 4485 images belonging to 15 scene classes. 70% of the images
were used for training and 30% were for testing. Images were represented with
bag-of-words vectors whose dimensionality is 1000. Similar to 20-News, we gener-
ated 100K similar and 100K dissimilar data pairs for distance learning according
to whether two images are from the same scene class or not. The 6-Activities

2 http://qwone.com/∼jason/20Newsgroups/

http://qwone.com/~jason/20Newsgroups/
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Table 10. Clustering accuracy (%) on 6-Activities dataset

k 10 50 100 150 200

DML 75.0 75.6 76.1 75.6 75.7

DDML 94.9 96.3 96.6 95.1 95.7

Table 11. Normalized mutual information (%) on 6-Activities dataset

k 10 50 100 150 200

DML 83.6 83.5 84.0 83.5 83.5

DDML 90.3 91.9 91.3 91.4 91.1

dataset is built from recordings of 30 subjects performing six activities of daily
living while carrying a waist-mounted smart phone with embedded inertial sen-
sors. The features are 561-dimensional sensory signals. There are 7352 training
instances and 2947 testing instances. Similarly, 100K similar pairs and 100K dis-
similar pairs were generated to learn distance metrics. Table 1 summarizes the
statistics of these three datasets.

4.2 Experimental Settings

Our method DDML contains two key parameters — the number k of latent
factors and the tradeoff parameter λ — both of which were tuned using 5-fold
cross validation. We compared with 6 baseline methods, which were selected
according to their popularity and the state of the art performance. They are: (1)
Euclidean distance (EUC); (2) Distance Metric Learning (DML) [18]; (3) Large
Margin Nearest Neighbor (LMNN) metric learning [16]; (4) Information Theoret-
ical Metric Learning (ITML) [3]; (5) Distance Metric Learning with Eigenvalue
Optimization (DML-eig) [21]; (6) Information-theoretic Semi-supervised Met-
ric Learning via Entropy Regularization (Seraph) [11]. Parameters of the base-
line methods were tuned using 5-fold cross validation. Some methods, such as
ITML, achieve better performance on lower-dimensional representations which
are obtained via Principal Component Analysis. The number of leading principal
components were selected via 5-fold cross validation.

4.3 Retrieval

We first applied the learned distance metrics for retrieval. To evaluate the effec-
tiveness of the learned metrics, we randomly sampled 100K similar pairs and
100K dissimilar pairs from 20-News test set, 50K similar pairs and 50K dissim-
ilar pairs from 15-Scenes test set, 100K similar pairs and 100K dissimilar pairs
from 6-Activities test set and used the learned metrics to judge whether these
pairs were similar or dissimilar. If the distance was greater than some threshold t,
the pair was regarded as similar. Otherwise, the pair was regarded as dissimilar.
We used average precision (AP) to evaluate the retrieval performance.
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Table 12. Clustering accuracy (%) on three datasets

20-News 15-Scenes 6-Activities

EUC 36.5 29.0 61.6
DML [18] 28.4 40.1 76.1

LMNN [16] 32.9 33.6 56.9
ITML [3] 34.5 38.2 93.4

DML-eig [21] 27.3 26.6 63.3
Seraph [11] 48.1 48.2 74.8

DDML 44.6 51.3 96.6

Table 13. Normalized mutual information (%) on three datasets

20-News 15-Scenes 6-Activities

EUC 37.9 28.7 59.9
DML [18] 38.2 42.0 83.6

LMNN [16] 33.3 34.3 58.2
ITML [3] 39.2 41.5 87.0

DML-eig [21] 34.0 31.8 58.6
Seraph [11] 49.7 47.5 71.1

DDML 51.1 48.9 91.9

Table 2, 3 and 4 show the average precision under different number k of latent
factors on 20-News, 15-Scenes and 6-Activities dataset respectively. As shown in
these tables, DDML with a small k can achieve retrieval precision that is com-
parable to DML with a large k. For example, on the 20-News dataset (Table 2),
with 10 latent factors, DDML is able to achieve a precision of 76.7%, which can-
not be achieved by DML with even 900 latent factors. As another example, on
the 15-Scenes dataset (Table 3), the precision obtained by DDML with k = 10
is 82.4%, which is largely better than the 80.8% precision achieved by DML
with k = 200. Similar behavior is observed on the 6-Activities dataset (Table 4).
This demonstrates that, with diversification, DDML is able to learn a distance
metric that is as effective as (if not more effective than) DML, but is much more
compact than DML. Such a compact distance metric greatly facilitates retrieval
efficiency. Performing retrieval on 10-dimensional latent representations is much
easier than on representations with hundreds of dimensions. It is worth noting
that the retrieval efficiency gain comes without sacrificing the precision, which
allows one to perform fast and accurate retrieval. For DML, increasing k con-
sistently increases the precision, which corroborates that a larger k would make
the distance metric to be more expressive and powerful. However, k cannot be
arbitrarily large, otherwise the distance matrix would have too many parameters
that lead to overfitting. This is evidenced by how the precision of DDML varies
as k increases.

Table 5 presents the comparison with the state of the art distance metric
learning methods. As can be seen from this table, our method achieves the
best performances across all three datasets. The Euclidean distance does not
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Table 14. 3-NN accuracy (%) on 20-News dataset

k 10 100 300 500 700 900

DML 39.1 48.0 53.0 55.0 56.4 57.5

DDML 51.3 64.1 64.5 63.3 62.9 61.4

Table 15. 10-NN accuracy (%) on 20-News dataset

k 10 100 300 500 700 900

DML 39.4 49.4 54.3 56.2 57.9 58.6

DDML 54.2 66.6 66.8 66.1 65.3 64.5

Table 16. 3-NN accuracy (%) on 15-Scenes dataset

k 10 50 100 150 200

DML 47.7 47.7 50.8 51.7 51.1

DDML 57.4 57.5 57.9 58.8 57.3

Table 17. 10-NN accuracy (%) on 15-Scenes dataset

k 10 50 100 150 200

DML 51.6 51.7 54.0 54.4 54.9

DDML 59.2 60.9 60.5 60.6 59.6

incorporate distance supervision provided by human, thus its performance is
inferior. DML-eig imposes no regularization over the distance metric, which is
thus prone to overfitting. To avoid overfitting, ITML utilized a Bregman diver-
gence regularizer and Seraph used a sparsity regularizer. But the performances
of both regularizers are inferior to the diversity regularizer utilized by DDML.
LMNN is specifically designed for k-NN classification, thus the learned distance
metrics cannot guarantee to be effective in retrieval tasks.

4.4 Clustering

The second task we study is to apply the learned distance metrics for k-means
clustering, where the number of clusters was set to the number of categories in
each dataset and k-means was run 10 times with random initialization of the
centroids. Following [2], we used two metrics to measure the clustering perfor-
mance: accuracy (AC) and normalized mutual information (NMI). Please refer
to [2] for their definitions.

Table 6,8 and 10 show the clustering accuracy on 20-News, 15-Scenes and
6-Activity test set respectively under various number of latent factors k. Table 7,
9 and 11 show the normalized mutual information on 20-News, 15-Scenes and 6-
Activity test set respectively. These tables show that the clustering performance
achieved by DDML under a small k is much better than DML under a much
larger k. For instance, DDML can achieve 33.4% accuracy on the 20-News dataset
(Table 6) with 10 latent factors, which is much better than the 28.4% accuracy
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Table 18. 3-NN accuracy (%) on 6-Activities dataset

k 10 50 100 150 200

DML 94.9 94.8 94.6 95.1 95.0

DDML 94.3 96.2 96.5 95.5 95.9

Table 19. 10-NN accuracy (%) on 6-Activities dataset

10 50 100 150 200

DML 95.3 95.0 95.2 95.2 95.3

DDML 96.6 96.8 96.4 96.3 96.1

Table 20. 3-NN accuracy (%) on three datasets

20-News 15-Scenes 6-Activities

EUC 42.6 42.5 88.7
DML [18] 57.5 51.7 95.1

LMNN [16] 60.6 53.5 91.5
ITML [3] 50.9 51.9 93.5

DML-eig [21] 39.2 33.1 82.3
Seraph [11] 67.9 55.2 91.4

DDML 64.5 58.8 96.5

Table 21. 10-NN accuracy (%) on three datasets

k 20-News 15-Scenes 6-Activities

EUC 41.7 44.9 90.2
DML [18] 58.6 54.9 95.3

LMNN [16] 62.7 56.2 91.5
ITML [3] 54.8 54.3 94.0

DML-eig [21] 43.8 34.0 82.8
Seraph [11] 69.8 60.3 92.5

DDML 66.8 60.9 96.8

obtained by DML with 900 latent factors. As another example, the NMI obtained
by DDML on the 15-Scenes dataset (Table 9) with k = 10 is 46.7%, which
is largely better than the 41.6% NMI achieved by DML with k = 200. This
again corroborates that the diversity regularizer can enable DDML to learn
compact and effective distance metrics, which significantly reduce computational
complexity while preserving the clustering performance.

Table 12 and 13 present the comparison of DDML with the state of the
art methods on clustering accuracy and normalized mutual information. As can
be seen from these two tables, our method outperforms the baselines in most
cases except that the accuracy on 20-News dataset is worse than the Seraph
method. Seraph performs very well on 20-News and 15-Scenes dataset, but its
performance is bad on the 6-Activities dataset. DDML achieves consistently good
performances across all three datasets.
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Fig. 1. Sensitivity of DDML to the tradeoff parameter λ on (a) 20-News dataset (b)
15-Scenes dataset (c) 6-Activities dataset
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Fig. 2. Sensitivity of DDML to the number of latent factors k on (a) 20-News dataset
(b) 15-Scenes dataset (c) 6-Activities dataset

4.5 Classification

We also apply the learned metrics for k-nearest neighbor classification, which
is also an algorithm that largely depends on a good distance measure. For each
testing sample, we find its k-nearest neighbors in the training set and use the class
labels of the nearest neighbors to classify the test sample. Table 14, 16 and 18
show the 3-NN classification accuracy on the 20-News, 15-Scenes and 6-Activities
dataset. Table 15, 17 and 19 show the 10-NN classification accuracy on the 20-
News, 15-Scenes and 6-Activities dataset. Similar to retrieval and clustering,
DDML with a small k can achieve classification accuracy that is comparable to
or better than DML with a large k. Table 20 and 21 present the comparison
of DDML with the state of the art methods on 3-NN and 10-NN classification
accuracy. As can be seen from these two tables, our method outperforms the
baselines in most cases except that the accuracy on 20-News dataset is worse
than the Seraph method.

4.6 Sensitivity to Parameters

We study the sensitivity of DDML to the two key parameters: tradeoff parameter
λ and the number of latent factors k. Figure 1 shows how the retrieval average
precision (AP) varies as λ increases on the 20-News, 15-Scenes and 6-Activities
dataset respectively. The curves correspond to different k. As can be seen from
the figure, initially increasing λ improves AP. The reason is that a larger λ
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encourages the latent factors to be more uncorrelated, thus different aspects of
the information can be captured more comprehensively. However, continuing to
increase λ degrades the precision. This is because if λ is too large, the diver-
sify regularizer dominates the distance loss and the resultant distance metric
is not tailored to the distance supervision and loses effectiveness in measuring
distances.

Figure 2 shows how AP varies as k increases on the 20-News, 15-Scenes and
6-Activities dataset respectively. The curves correspond to different λ. When k
is small, the average precision is low. This is because a small amount of latent
factors are insufficient to capture the inherent complex pattern behind data,
hence lacking the capability to effectively measure distances. As k increases, the
model capacity increases and the AP increases accordingly. However, further
increasing k causes performance to drop. This is because a larger k incurs higher
risk of overfitting to training data.

5 Conclusions

In this paper, we study the problem of diversifying distance metric learning,
with the purpose to learn compact distance metrics without losing their effec-
tiveness in measuring distances. Diversification encourages the latent factors in
the distance metric to be different from each other, thus each latent factor is
able to capture some unique information that is hard to be captured by other
factors. Accordingly, the number of latent factors required to capture the total
information can be greatly reduced. Experiments on retrieval, clustering and
classification corroborate the effectiveness of the diversity regularizer in learning
compact and effective distance metrics.
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