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Abstract. Representation learning is currently a very hot topic in mod-
ern machine learning, mostly due to the great success of the deep learning
methods. In particular low-dimensional representation which discrimi-
nates classes can not only enhance the classification procedure, but also
make it faster, while contrary to the high-dimensional embeddings can
be efficiently used for visual based exploratory data analysis.

In this paper we propose Maximum Entropy Linear Manifold
(MELM), a multidimensional generalization of Multithreshold Entropy
Linear Classifier model which is able to find a low-dimensional linear
data projection maximizing discriminativeness of projected classes. As a
result we obtain a linear embedding which can be used for classification,
class aware dimensionality reduction and data visualization. MELM pro-
vides highly discriminative 2D projections of the data which can be used
as a method for constructing robust classifiers.

We provide both empirical evaluation as well as some interesting
theoretical properties of our objective function such us scale and affine
transformation invariance, connections with PCA and bounding of the
expected balanced accuracy error.

Keywords: Dense representation learning - Data visualization
Entropy + Supervised dimensionality reduction

1 Introduction

Correct representation of the data, consistent with the problem and used classi-
fication method, is crucial for the efficiency of the machine learning models. In
practice it is a very hard task to find suitable embedding of many real-life objects
in R¢ space used by most of the algorithms. In particular for natural language
processing [12], cheminformatics or even image recognition tasks it is still an
open problem. As a result there is a growing interest in methods of represen-
tation learning [8], suited for finding better embedding of our data, which may
be further used for classification, clustering or other analysis purposes. Recent
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years brought many success stories, such as dictionary learning [13] or deep learn-
ing [9]. Many of them look for a sparse [7], highly dimensional embedding which
simplify linear separation at a cost of making visual analysis nontrivial. A dual
approach is to look for low-dimensional linear embedding, which has advantage
of easy visualiation, interpretation and manipulation at a cost of much weaker
(in terms of models complexity) space of transformations.
In this work we focus on the scenario where we are given labeled dataset in
R? and we are looking for such low-dimensional linear embedding which allows
to easily distinguish each of the classes. In other words we are looking for a
highly discriminative, low-dimensional representation of the given data.
Our basic idea follows from the observa-
tion [15] that the density estimation is credi-
ble only in the low-dimensional spaces. Con- A
sequently, we first project the data onto an *
arbitrary k-dimensional affine submanifold V MELM
(where k is fixed), and search for the V for =

which the estimated densities of the projected '
classes are orthogonal to each other, where o0

the Cauchy-Schwarz Divergence is applied as -
a measure of discriminativeness of the projec-

tion, see Fig. 1 for an example of such projec-

tion preserving classes’ separation. The work -
presented in this paper is a natural exten-

sion of our earlier results [6], where we con- Fig.1. Visualizatoin of sonar
sidered the one-dimensional case. However, we  qataset using Maximum Entropy
would like to emphasize that the used app- Linear Manifold with k& = 2.
roach needed a nontrivial modification. In the

one-dimensional case we could identify sub-

spaces with elements of the unit sphere in a natural way. For higher dimensional
subspaces such an identification is no longer possible.

To the authors best knowledge the presented idea is novel, and has not been
earlier considered as a method of classification and data visualization. As one
of its benefits is the fact that it does not depend on affine rescaling of the
data, which is a rare feature of the common classification tools. What is also
interesting, we show that as its simple limiting one-class case we obtain the
classical PCA projection. Moreover, from the theoretical standpoint the Cauchy-
Schwarz Divergence factor can be decomposed into the fitting term, bounding the
expected balanced misclassification error, and regularizing term, simplifying the
resulting model. We compute its value and derivative so one can use first-order
optimization to find a solution even though the true optimization should be per-
formed on a Steifel manifold. Empirical tests show that such a method not only
in some cases improves the classification score over learning from raw data but,
more importantly, consistently finds highly discriminative representation which
can be easily visualized. In particular, we show that resulting projections’ dis-
criminativeness is much higher than many popular linear methods, even recently
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proposed GEM model [11]. For the sake of completness we also include the full
source code of proposed method in the supplementary material.

2 General Idea

In order to visualize dataset in R? we need to project it onto R¥ for very small
k (typically 2 or 3). One can use either linear transformation or some complex
embedding, however choosing the second option in general leads to hard inter-
pretability of the results. Linear projections have a tempting characteristics of
being both easy to understand (from both theoretical perspective and practical
implications of the obtained results) as well as they are highly robust in further
application of this transformation.
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Fig. 2. Visualization of the MELM idea. For given dataset X_, X, we search through
various linear projections V and analyze how divergent are their density estimations
in order to select the most discriminative.

In this work we focus on such class of projections so in practise we are
looking for some matrix V € R%**, such that for a given dataset X € R¥*N
projection VI'X preserves as much of the important information about X as
possible (sometimes additionally under additional constraints). The choice of
the definition of information measure IM together with the set of constraints ¢;
defines a particular reduction method.

maximize IM(VTX;X,Y)
VeRka
subject to  ¢;(V), i=1,...,m.

There are many transformations which can achieve such results. For example,
the well known Principal Component Analysis defines important information as
data scattering so it looks for V which preserves as much of the X variance as
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possible and requires V to be orthogonal. In information bottleneck method one
defines this measure as amount of mutual information between X and some addi-
tional Y (such as set of labels) which has to be preserved. Similar approaches
are adapted in recently proposed Generalized Eigenvectors for Discriminative
Features (GEM) where one tries to preserve the signal to noise ratio between
samples from different classes. In case of Maximum Entropy Linear Manifold
(MELM), introduced in this paper, important information is defined as the dis-
criminativness of the samples from different classes with orthonormal V. In other
words we work with labeled samples (in general, binary labeled) and wish to pre-
serve the ability to distinguish one class (X_) from another (X ). In more formal
terms, our optimization problem is to

. . D VTX_ VTX
m\?gﬂégilkze cs ([[ ]]’ [[ +]D

subject to VIV =1,

where Deg(+,-) denotes the Cauchy-Schwarz Divergence, the measure of how
divergent are given probability distributions; [-] denotes some density estimator
which, given samples, returns a probability distribution. The general idea is also
visualized on Fig. 2.

3 Theory

We first discuss the one class case which has mainly introductory character as
it shows the simplified version of our main idea.

Suppose that we have unlabeled data X € R? and that we want to reduce
the dimension of the data (for example to visualize it, reduce outliers, etc.) to
k < d. One of the possible approaches is to use information theory and search
for such k-dimensional subspace V C R? for which the orthogonal projection of
X onto V preserves as much information about X as possible.

One can clearly choose various measures of information. In our case, due
to computational simplicity, we have decided to use Renyi’s quadratic entropy,
which for the density f on R is given by

Ho(f) = ~log | f(x)dx

One can equivalently use information potential [14], which is given as the L?
norm of the density ip(f) = ka f?(x)dx. We need an easy observation that one
can compute the Renyi’s quadratic entropy for the normal density A/ (m, X) in
R¥ [4]):

Hy (N (m, X)) = £log(4m) + 3 log(det X). (1)

However, in order to compute the Renyi’s quadratic entropy of the discrete data
we first need to apply some density estimation technique. By joining all the above
mentioned steps together we are able to pose the basic optimization problem we
are interested in.
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Optimization problem 1. Suppose that we are given data X, and k which
denotes the dimension reduction. Find the orthonormal base V of the k-
dimensional subspace* V for which the value of Ha([VTX]) is mazimal, where
[[] denotes a given fized method of density estimation.

If we have data X with mean m and covariance X in R? and k orthonormal
vectors V = [Vy,..., V] then the we can ask what will be the mean and covari-
ance of the orthogonal projection of X onto the space spanned by V. It is easy
to show that it is given by VI'm and VT XV. In other words, if we consider data
in the base given by orthonormal extension of V to the whole R¢, the covariance
of the projected data corresponds to the left upper k x k block submatrix of the
original covariance.

We are going to show that if we apply the simplest density estimation of the
underlying density for projected data given by the maximal likelihood estimator
over the family of normal densities? then our optimization problem is equivalent
to taking first k£ elements of the base given by PCA.

Theorem 1. Let X C R? be a given dataset with mean m and covariance X
and let [-]nr denote the density estimation which returns the mazimum likelihood
estimator over Gaussian densities. Then

max{Hy([VIX]x) : V € R>** VTV = [}
is realized for the first k orthonormal vectors given by the PCA and
min{Hy ([VTX] ) : V€ Rk VTV = [}
is realized for the last k orthonormal vectors defined by the PCA.
Proof. By the comments before and (1) we have
Ho ([VIX]w) = & log(4m) + L log(det (VT ZV)).

In other words we search for these V for which the value of det(VIXV) is
maximized. Now by Cauchy interlacing theory [2] eigenvalues of VI’ X'V (ordered
decreasingly) are bounded above by the eigenvalues of X. Consequently, the
maximum is obtained in the case when V denotes the orthonormal eigenvectors
of X corresponding to the biggest eigenvalues of Y. However, this is exactly the
first k& elements of the orthonormal base constructed by the PCA. Proof of the
second part is fully analogous.

As a result we obtain some general intuition that maximization of the Renyi’s
quadratic entropy leads to the selection of highly spread data, while its mini-
mization selects projection where image is very condensed.

1 'We identify those vectors with a linear space spanned over them.
2 That is for A C V we put [AJx = N(ma,cova) : V — Ry
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Let us now proceed to the binary labeled data. Recall that Dqg can be equiva-
lently expressed in terms of Renyi’s quadratic entropy (Hs) and Renyi’s quadratic
cross entropy (HJ ):

Des(V) = log / [VTX, ] + log / [VTX_]? - 2log / [VTX,][VTX_]
= CH([VTX_]) — Ho([VTX,]) + 20 ([VTX.], [VTX_]).

Let us recall that our optimization aim is to find a sequence V consisting of k
orthonormal vectors for which Des(V) is maximized.

Observation 1. Assume that the density estimator [-] does not change under
the affine change of the coordinate system®. One can show, by an easy modifica-
tion of the theorem by Czarnecki and Tabor [6, Theoremj.1], that the maximum
of Des(+) 4s independent of the affine change of data. Namely, for an arbitrary
affine invertible map M we have:

max{Des(V; X4, X_) : V orthonormal}
=max{D¢s(V; Xy, X_) : V linearly independent}
=max{D¢s(V; MX,, MX_) : V orthonormal}.
The above feature, although typical in the density estimation, is rather
uncommon in modern classification tools.

Similarly to the one-dimensional case, when V € R?, we can decompose the
objective function into fitting and regularizing terms:

Des(V) = 2H; ([V X, ], [VIX_]) = (Hao([VTX_]) + Hao([VT X4 ])) .

fitting term regularizing term

Regularizing term has a slightly different meaning than in most of the machine
learning models. Here it controls number of disjoint regions which appear after
performing density based classification in the projected space. For one dimen-
sional case it is a number of thresholds in the multithreshold linear classifier,
for k = 2 it is the number of disjoint curves defining decision boundary, and so
on. Renyi’s quadratic entropy is minimized when each class is as condensed as
possible (as we show in Theorem 1), intuitively resulting in a small number of
disjoint regions.

It is worth noting that, despite similarities, it is not the common classification
objective which can be written as an additive loss function and a regularization

term
N

L(V) = (VT %, yi,%:) + V),

i=1
as the error depends on the relations between each pair of points instead of
each point independently. One can easily prove that there are no ¢, {2 for which

3 This happens in particular for the kernel density estimation we apply in the paper.
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Des(v) = L(V;£,8). Such choice of the objective function might lead to the lack
of connections with optimization of any reasonable accuracy related metric, as
those are based on the point-wise loss functions. However it appears that D
bounds the expected balanced accuracy* similarly to how hinge loss bounds 0/1
loss. This can be formalized in the following way.

Theorem 2. Negative log-likelihood of balanced misclassification in k-
dimensional linear projection of any non-separable densities fi onto V is
bounded by half of the Renyi’s quadratic cross entropy of these projections.

Proof. Likelihood of balanced misclassification over a k-dimensional hypercube
after projection through V equals

[ O £ (V7 ) ()

Using analogous reasoning to the one presented by Czarnecki [5], using
Cauchy and other basic inequalities, one can show that

—mﬁmmMWWM%WWmezwﬁWﬁNW)

O

As a result we might expect that maximizing of the D¢g leads to the selection
of the projection which on one hand maximizes the balanced accuracy over the
training set (minimizes empirical error) and on the other fights with overfitting
by minimizing the number of disjoint classification regions (minimizes model
complexity).

4 Closed form Solution for Objective and its Gradient

Let us now investigate more practical aspects of proposed approach. We show the
exact formulas of both D¢ and its gradient as functions of finite, labeled samples
(binary datasets) so one can easily plug it in to any first-order optimization
software.

Let X, X_ be fixed subsets of R?. Let V denote the k-dimensional subspace
generated by V = [Vy,..., V] € R™F (we consider only the case when the
sequence V is linearly independent). We project sets X1 orthogonally on V,
and compute the Cauchy-Schwarz Divergence of the kernel density estimations
(using Silverman’s rule) of the resulting projections:

G'W[VTX,] and G"HV)[VTX_],

where G(V) = VTV denotes the grassmanian. We search for such V for which
the Cauchy-Schwarz Divergence is maximal. Recall that the scalar product in
the space of matrices is given by (Vy, Va) = tr(V1 Vy).

* Accuracy without class priors BAC(TP, FP, TN, FN) = % (% + %)
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There are basically two possible approaches one can apply: either search for
the solution in the set of orthonormal V which generate V, or allow all V with a
penalty function. The first method is possible®, but does not allow use of most
of the existing numerical libraries as the space we work in is highly nonlinear.
This is the reason why we use the second approach which we describe below.

Since, as we have observed in the previous section, the result does not depend
on the affine transformation of data, we can restrict to the analogous formula
for the sets

VIX, and VIX_,

where V consists of linearly independent vectors. Consequently, we need to com-
pute the gradient of the function

DCS(V) = DCS([[VTX+]]7 [[VTX—H)
= log / [VTX,]? + log / [VIX_]? - 2log / VX JIVIX_],

where we consider the space consisting only of linearly independent vectors. Since
as the base of the space V we can always take orthonormal vectors, the maximum
is realized for orthonormal sequence, and therefore we can add a penalty term for
being non-orthonormal sequence, which helps avoiding numerical instabilities:

Des(V) = VIV — 1],

where as we recall the sequence V is orthonormal iff VI'V = I. We denote above
augmented D¢y by the mazimum entropy linear manifold objective function

MELM(V) = Des(V) — [IVTV — I]]%. (2)

Besides MELM(+) value we need the formula for its gradient VMELM(-). For
the second term we obviously have

VIVIV —I|? = 4VVTV — 4V,

We consider the first term. Let us first provide the formula for the computa-
tion of the product of kernel density estimations of two sets.

Assume that we are given set A C V (in our case A will be the projection of
X4 onto V), where V is k-dimensional. Then the formula for the kernel density
estimation with Gaussian kernel, is given by [15]:

1
[A] = A ZN(G, Ya),

a€A

where X4 = (hZ‘)Qcov 4 and (for v being a scaling hyperparameter [6]) h)} =
’y(%ﬁ)l/(k+4)|A|71/(’€+4).

5 And has advantage of having smaller number of parameters.
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Now we need the formula for [[A][B], which is calculated [6] with the use of
/N(a, YAON(O, X)) =N(a—5b,X4+ X5)(0).
Then we get

JUAB = o 3 . Sat )0)

weEA—B

1 1 2
= eX 1 w ,
(2m)k/2 det'/*(£ap)|Al| B weAZ_B P(=3llwlls,,)

where A—B={a—b:a€ A,be B} and Xp is defined by

Yap=(h ) cova + (h%)ZCOVB

=7 (%)2/(’”4)(|A|*2/(’“+4)cov,4 + IBI’Q/(’““)COVB).
For a sequence V = [Vq,..., V] € R4xk of linearly independent vectors we put
Ya(V) = VT8V and Syp(V) = Xap(V)~L.

Observe that X4p(V) and Sap(V) are square symmetric matrices which repre-
sent the properties of the projection of the data onto the space spanned over V.
We put

1

(27)%/2 det'/*(Za5(V))|A||B|’

dpap(V) =

thus

Voap(V) = =0ap(V) - Xap -V -Sap(V).
Consequently to compute the final formula, we need the gradient of the function
V — det(Xap(V)), which as one can easily verify, is given by the formula

Vdet(Xap(V)) = 2det(VI X 45V) - ZapV(VI ZapV) "L (3)
One can also easily check that for
Vip(V) = exp(=5 [V wl%, ,(v),
where w arbitrarily fixed, we get
VYip(V) = =¢45(V) - (ww" VSap(V) = ZapVSap(V)V ww VSap(V)).

To present the final form for the gradient of D¢s(V) we need the gradient of
the cross information potential

ipXp(V) =0as(V) Y %5

weA—B

Vip,5(V) = ¢ap(V Z VeV ( Z QZ}XB(V)) “Voap(V).

weA B weA—B
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Since

Des(V) = log i, x, (V) + log(inx_x_(V)) — 2log(ip}, x_(V)),
we finally get
VD¢s(V) —*Vipfgx+ (V) +

o il:’)>é+xJr V)

ﬁViP;@X, (V)

ipy

— Q%Vip)qu_ (V).

ip)>é+x7 (V)

Given
MELM(V) = Des(V) — [[VTV — 1],

VMELM(V) = VD (V) — (4VV'V — 4V),

one can run any first-order optimization method to find vectors V spanning k-
dimensional subspace V representing low-dimensional, discriminative manifold
of the input space.

As one can notice from the above equations, the computational complexity of
both function evaluation and its gradient are quadratic in terms of training set
size. For big datasets this can a serious bottleneck. One of the possible solutions
is to use approximation schemes for the computation of the Cauchy-Schwarz
diviergence, which are known to significantly reduce the computational time
without sacrificing the accuracy [10]. One other option is to use analogous of
stochastic gradient descent where we define function value on a random sample
of O(v/N) points (resampled in each iteration) from each class, leading to linear
complexity and given that training set is big enough, one can get theoretical
guarantees on the quality of approximation [15]. Finally, it is possible to first
build a Gaussian Mixture Model (GMM) of each class distribution [17] and per-
form optimization on such density estimator. Computational complexity would
be reduced to constant time per-iteration (due to fixing number of components
during clustering) trading speed for accuracy.

5 Experiments

We use ten binary classification datasets from UCI repository [1] and 1ibSVM
repository [3], which are briefly summarized in Table 1. These are moderate size
problems.

Code was written in Python with the use of scikit-learn, numpy and scipy.
Besides MELM we use 8 other linear dimensionality reduction techniques,
namely: Principal Component Analysis (PCA), class PCA (cPCA®), two ellip-
soid PCA (2ePCAT"), per class PCA (pPCA®), Independent Component Anal-
ysis (ICA), Factor Analysis (FA), Nonnegative Matrix Factorization (NMF?),

5 ¢cPCA uses sum of each classes covariances, weighted by classes sizes, instead of
whole data covariance.

" 2ePCA is cPCA without weights, so it is a balanced counterpart.

8 pPCA wuses as V; the first principal component of ith class.

9 In order to use NMF we first transform dataset so it does not contain negative values.
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Disriminative Learning using Generalized Eigenvectors (GEM [11]). PCA, ICA,
NMF and FA are implemented in scikit-learn, cPCA, pPCA and 2¢ePCA were
coded by authors and for GEM we use publically available code'’. Implementa-
tion of MELM as a model compatible with scikit-learn classifiers and transform-
ers is available both in supplementary materials and online'!.

Table 1. Summary of used datasets. N denote number of points, d dimensionality, |X;|
number of samples with [ label, 7n mean density (number of nonzero elements) and d;
denotes number of dimensions which we have to include during PCA to keep t of label
[ variance.

dataset N d|X_||X4| md® d2 s
australian 690 14 383 307080 1 2 1
breast-cancer 68310 444 2391.00 1 1 1
diabetes 768 8 268 5000.88 2 2 3
fourclass 862 2 555 3071.00 2 2 2
german.numer 1000 24 700 3000.75 3 3 3
heart 270 13 150 1200.75 3 3 3
ionosphere 35134 126 2250.88 24 26 7
liver-disorders 345 6 145 2001.00 3 3 3
sonar 208 60 111 971.00 28 24 24
splice 1000 60 483 517 1.00 55 52 54

In order to estimate how hard to optimize is the MELM objective function we
plot in Fig. 3 histograms of D¢ values obtained during 500 random starts for each
of the dataset. First, one can easily notice that D.g have multiple local extrema
(see for example heart or liver-disorders histograms). It also appears that in
some of the considered datasets it is not easy to obtain maximum by the use
of completely random starting point (see ionosphere and australian datasets),
which suggests that one should probably use some more advanced initialization
techniques.

To further investigate how hard it is to find a good solution when selecting
maximum of Dqg we estimate the expected value of Doy after s random starts
from matrices VW ... V()

E Des(L-BFGS(MELM/[V))].
[V:V%Effw es GS( V)]

As one can see on Fig. 4 for 8 out of 10 considered datasets one can expect to
find the maximum (with 5% error) after just 16 random starts. Obviously this

cannot be used as a general heuristics as it is heavily dependent on the dataset
size, dimensionality as well as its discriminativness. However, this experiment

19 forked at http://gist.github.com/lejlot/3ab46c7a249d4£375536
" http://github.com/gmum/melm
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Fig. 3. Histograms of D¢s values obtained for each dataset during 500 random starts
using L-BFGS.
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Fig. 4. Expected value of Cauchy-Schwarz Divergence after MELM optimization for
s random starts using L-BFGS algorithm (on the left) and its ratio to the maximum
obtainable Cauchy-Schwarz Divergence (on the right). Dotted black line shows 16 starts
threshold.

shows that for moderate size problems (hundreds to thousands samples with
dozens of dimensions) MELM can be relatively easily optimized even though it
is a rather complex function with possibly many local maxima.

It is worth noting that truly complex optimization problem is only given by
ionosphere dataset. One can refer to Table 1 to see that this is a very specific
problem where positive class is located in a very low-dimensional linear manifold
(approximately 7 dimensional) while the negative class is scattered over nearly
4 times more dimensions.

We check how well MELM behaves when used in a classification pipeline.
There are two main reasons for such approach, first if the discriminative manifold
is low-dimensional, searching for it may boost the classification accuracy. Second,
even if it decreases classification score as compared to non-linear methods applied
directly in the input space, the resulting model will be much simpler and more
robust. For comparison consider training a RBF SVM in R using 1000 data
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points. It is a common situation when SVM selects large part of the dataset as
the support vectors [16], [18], meaning that the classification of the new point
requires roughly 500 - 60 = 30000 operations. In the same time if we first embed
space in a plane and fit RBF SVM there we will build a model with much less
support vectors (as the 2D decision boundary generally is not as complex as
60-dimensional one), lets say 100 and consequently we will need 60-2+2-100 =
120 + 200 = 320 operations, two orders of magnitude faster. Whole pipeline is
composed of:

. Splitting dataset into training X_, X, and testing X_, X+.

. Finding plane embeding matrix V € R%*? using tested method.
. Training a classifier ¢/ on VI'X_,VTX,.

. Testing cl on VT)A(,?VTXJF.

=W N =

Table 2 summarizes BAC scores obtained by each method on each of the
considered datasets in 5-fold cross validation. For the classifier module we used
SVM RBF, KNN and KDE-based density classification. Each of them was fitted
using internal cross-validation to find the best parameters. GEM and MELM ~
hyperperameters were also fitted. Reported results come from the best classifier.

Table 2. Comparison of 2-dimensional reduction followed by the classifier. I stands for
Identity, meaning that we simply trained classifiers directly on the raw data, without
any dimensionality reduction. Bold values indicate the best score obtained across all
dimensionality reduction pipelines. If the classifier trained on raw data is better than
any of the reduced models than its score is also bolded.

MELM FA ICA GEM NMF 2ePCA ¢cPCA PCA pPCA I

australian 0.866 0.847 0.829 0.791 0.817 0.764 0.756 0.825 0.769 0.860
breast-cancer 0.976 0.973 0.976 0.930 0.976 0.966 0.967 0.976 0.961 0.966
diabetes 0.744 0.682 0.705 0.637 0.704 0.689 0.695 0.705 0.646 0.728
fourclass 1.00.720 1.0 1.0 0.999 1.0 1.0 1.0 1.0 1.0
german.numer 0.705 0.588 0.648 0.653 0.63 0.588 0.602 0.650 0.619 0.728
heart 0.831 0.792 0.818 0.675 0.811 0.793 0.782 0.817 0.787 0.837

ionosphere 0.892 0.794 0.757 0.763 0.799 0.783 0.780 0.757 0.826 0.944
liver-disorders 0.710 0.546 0.545 0.681 0.553 0.531 0.548 0.531 0.557 0.705
sonar 0.766 0.558 0.600 0.889 0.657 0.593 0.575 0.600 0.676 0.862
splice 0.862 0.718 0.697 0.799 0.691 0.686 0.686 0.697 0.694 0.887

In four datasets, MELM based embeding led to the construction of better
classifier than both other dimensionality reduction techniques as well as training
models on raw data. This suggests that for these datasets the discriminative
manifold is truly at most 2-dimensional. At the same time in nearly all (besides
sonar) datasets the pipeline consisting of MELM yielded significantly better
classification results than any other embeding considered.
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One of the main applications of
MELM is to visualize the dataset
through linear projection in such a
way that classes do not overlap.
One can see comparisons of heart
dataset projections using all consid-
ered approaches in Fig. 5. As one
can notice our method finds plane
projection where classes are nearly
perfectly discriminated. Interestingly,
this separation is only obtainable in
two dimensions, as neither marginal
distributions nor any other one-
dimensional projection can construct
such separation.

While visual inspection is cru-
cial for such tasks, to truly compare
competetive methods we need some
metric to measure quality of the
visualization. In order to do so,
we propose to assign a wvisual sep-
arability score as the mean BAC
score over three considered classifiers
(SVM RBF, KNN, KDE) trained and
tested in 5-fold cross validation of
the projected data. The only dif-
ference between this test and the
previous one is that we use whole
data to find a projection (so each
projection technique uses all dat-
apoints) and only further visual-
ization testing is performed using
train-test splits. This way we can cap-
ture "how easy to discriminate are
points in this projection” rather than
"how useful for data discrimination
is using the projection”. Experiments
are repeated using various random
subsets of samples and mean results
are reported.

During these experiments MELM

FA s ICA

-

GEM NMF

2ePCA cPCA

Fig. 5. Comparison of heart dataset 2D
projections by analyzed methods. Visual-
ization uses kernel density estimation.

achieved essentially better scores than any other tested method (see Table 3).
Solutions were about 10% better under our metric and this difference is consis-
tent over all considered datasets. In other words MELM finds two-dimensional
representations of our data using just linear projection where classes overlap to a
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Table 3. Comparison of 2-dimensional projections discriminativeness.

MELM FA ICA GEM NMF 2ePCA cPCA PCA pPCA

australian 0.888 0.856 0.845 0.792 0.838 0.782 0.781 0.845 0.792
breast-cancer 0.985 0.979 0.979 0.942 0.979 0.967 0.969 0.978 0.965
diabetes 0.806 0.732 0.737 0.691 0.737 0.734 0.733 0.734 0.697
fourclass 0.988 0.665 0.988 0.988 0.988 0.988 0.988 0.988 0.988
german.numer 0.819 0.640 0.687 0.686 0.672 0.665 0.657 0.686 0.692
heart 0.918 0.822 0.834 0.751 0.839 0.787 0.783 0.833 0.799

ionosphere 0.990 0.810 0.798 0.763 0.849 0.804 0.814 0.798 0.863
liver-disorders 0.763 0.682 0.659 0.707 0.698 0.691 0.676 0.688 0.715
sonar 0.996 0.714 0.717 0.892 0.729 0.702 0.709 0.717 0.735
splice 0.927 0.738 0.724 0.829 0.716 0.717 0.718 0.723 0.742

significantly smaller degree than using PCA, cPCA, 2ePCA, pPCA, ICA, NMF,
FA or GEM. It is also worth noting that Factor Analysis, as the only method
which does not require orthogonality of resulting projection vectors did a really
bad job while working with fourclass data even though these samples are just
two-dimensional.

As stated before, MELM is best suited for low-dimensional embedings and
one of its main applications is supervised data visualization. However in gen-
eral one can be interested in higher dimensional subspaces. During preliminary
studies we tested model behavor up to k = 5 and results were similar to the one
reported in this paper (when compared to the same methods, with analogous
k). It is worth noting that methods like PCA also use a density estimator - one
big Gaussian fitted through maximum likelihood estimation. Consequently even
though from theoretical point of view MELM should not be used for k > 5 (due
to the curse of dimensionality [15], it works fine as long as one uses good density
estimator (such as a well fitted GMM [17]).

6 Conclusions

In this paper we construct Maximum Entropy Linear Manifold (MELM), a
method of learning discriminative low-dimensional representation which can
be used for both classification purposes as well as a visualization preserving
classes separation. Proposed model has important theoretical properties includ-
ing affine transformations invariance, connections with PCA as well as bounding
the expected balanced misclassification error. During evaluation we show that
for moderate size problems MELM can be efficiently optimized using simple
first-order optimization techniques. Obtained results confirm that such an app-
roach leads to highly discriminative transformation, better than obtained by 8
compared solutions.
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