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Abstract. In this paper we introduce a novel hash learning frame-
work that has two main distinguishing features, when compared to past
approaches. First, it utilizes codewords in the Hamming space as ancil-
lary means to accomplish its hash learning task. These codewords, which
are inferred from the data, attempt to capture similarity aspects of the
data’s hash codes. Secondly and more importantly, the same frame-
work is capable of addressing supervised, unsupervised and, even, semi-
supervised hash learning tasks in a natural manner. A series of compar-
ative experiments focused on content-based image retrieval highlights its
performance advantages.

Keywords: Hash function learning · Codeword · Support vector
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1 Introduction

With the explosive growth of web data including documents, images and videos,
content-based image retrieval (CBIR) has attracted plenty of attention over the
past years [1]. Given a query sample, a typical CBIR scheme retrieves samples
stored in a database that are most similar to the query sample. The similarity
is gauged in terms of a pre-specified distance metric and the retrieved samples
are the nearest neighbors of the query point w.r.t. this metric. However, exhaus-
tively comparing the query sample with every other sample in the database may
be computationally expensive in many current practical settings. Additionally,
most CBIR approaches may be hindered by the sheer size of each sample; for
example, visual descriptors of an image or a video may number in the thousands.
Furthermore, storage of these high-dimensional data also presents a challenge.

Considerable effort has been invested in designing hash functions transform-
ing the original data into compact binary codes to reap the benefits of a poten-
tially fast similarity search; note that hash functions are typically designed to
preserve certain similarity qualities between the data. For example, approximate
nearest neighbors (ANN) search [2] using compact binary codes in Hamming
space was shown to achieve sub-liner searching time. Storage of the binary code
is, obviously, also much more efficient.
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Existing hashing methods can be divided into two categories: data-
independent and data-dependent. The former category does not use a data-driven
approach to choose the hash function. For example, Locality Sensitive Hashing
(LSH) [3] randomly projects and thresholds data into the Hamming space for
generating binary codes, where closely located (in terms of Euclidean distances
in the data’s native space) samples are likely to have similar binary codes. Fur-
thermore, in [4], the authors proposed a method for ANN search using a learned
Mahalanobis metric combined with LSH.

On the other hand, data-dependentmethods can, in turn, be grouped into super-
vised, unsupervised and semi-supervised learning paradigms. The bulk of work in
data-dependent hashing methods has been performed so far following the super-
vised learning paradigm. Recent work includes the Semantic Hashing [5], which
designs the hash function using a Restricted Boltzmann Machine (RBM). Binary
Reconstructive Embedding (BRE) in [6] tries to minimize a cost function mea-
suring the difference between the original metric distances and the reconstructed
distances in the Hamming space. Minimal Loss Hashing (MLH) [7] learns the hash
function from pair-wise side information and the problem is formulated based on
a bound inspired by the theory of structural Support Vector Machines [8]. In [9], a
scenario is addressed, where a small portion of sample pairs are manually labeled
as similar or dissimilar and proposes the Label-regularized Max-margin Partition
algorithm.Moreover, Self-TaughtHashing [10] first identifies binary codes for given
documents via unsupervised learning; next, classifiers are trained to predict codes
for query documents. Additionally, Fisher Linear Discriminant Analysis (LDA) is
employed in [11] to embed the original data to a lower dimensional space and hash
codes are obtained subsequently via thresholding. Also, Boosting based Hashing
is used in [12] and [13], in which a set of weak hash functions are learned accord-
ing to the boosting framework. In [14], the hash functions are learned from triplets
of side information; their method is designed to preserve the relative relationship
reflected by the triplets and is optimized using column generation. Finally, Kernel
Supervised Hashing (KSH) [15] introduces a kernel-based hashing method, which
seems to exhibit remarkable experimental results.

As for unsupervised learning, several approaches have been proposed: Spec-
tral Hashing (SPH) [16] designs the hash function by using spectral graph anal-
ysis with the assumption of a uniform data distribution. [17] proposed Anchor
Graph Hashing (AGH). AGH uses a small-size anchor graph to approximate
low-rank adjacency matrices that leads to computational savings. Also, in [18],
the authors introduce Iterative Quantization, which tries to learn an orthogo-
nal rotation matrix so that the quantization error of mapping the data to the
vertices of the binary hypercube is minimized.

To the best of our knowledge, the only approach to date following a semi-
supervised learning paradigm is Semi-Supervised Hashing (SSH) [19] [20]. The
SSH framework minimizes an empirical error using labeled data, but to avoid
over-fitting, its model also includes an information theoretic regularizer that
utilizes both labeled and unlabeled data.

In this paper we propose *Supervised Hash Learning (*SHL) (* stands for all
three learning paradigms), a novel hash function learning approach, which sets
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itself apart from past approaches in two major ways. First, it uses a set of Hamming
space codewords that are learned during training in order to capture the intrinsic
similarities between the data’s hash codes, so that same-class data are grouped
together. Unlabeled data also contribute to the adjustment of codewords leverag-
ing from the inter-sample dissimilarities of their generated hash codes as measured
by the Hamming metric. Due to these codeword-specific characteristics, a major
advantage offered by *SHL is that it can naturally engage supervised, unsupervised
and, even, semi-supervised hash learning tasks using a single formulation. Obvi-
ously, the latter ability readily allows *SHL to perform transductive hash learning.

In Sec. 2, we provide *SHL’s formulation, which is mainly motivated by an
attempt to minimize the within-group Hamming distances in the code space
between a group’s codeword and the hash codes of data. With regards to the
hash functions, *SHL adopts a kernel-based approach. The aforementioned for-
mulation eventually leads to a minimization problem over the codewords as
well as over the Reproducing Kernel Hilbert Space (RKHS) vectors defining
the hash functions. A quite noteworthy aspect of the resulting problem is that
the minimization over the latter parameters leads to a set of Support Vector
Machine (SVM) problems, according to which each SVM generates a single bit
of a sample’s hash code. In lieu of choosing a fixed, arbitrary kernel function, we
use a simple Multiple Kernel Learning (MKL) approach (e.g. see [21]) to infer
a good kernel from the data. We need to note here that Self-Taught Hashing
(STH) [10] also employs SVMs to generate hash codes. However, STH differs
significantly from *SHL; its unsupervised and supervised learning stages are
completely decoupled, while *SHL uses a single cost function that simultane-
ously accommodates both of these learning paradigms. Unlike STH, SVMs arise
naturally from the problem formulation in *SHL.

Next, in Sec. 3, an efficient Majorization-Minimization (MM) algorithm is
showcased that can be used to optimize *SHL’s framework via a Block Coordi-
nate Descent (BCD) approach. The first block optimization amounts to train-
ing a set of SVMs, which can be efficiently accomplished by using, for example,
LIBSVM [22]. The second block optimization step addresses the MKL parameters,
while the third one adjusts the codewords. Both of these steps are computation-
ally fast due to the existence of closed-form solutions.

Finally, in Sec. 5 we demonstrate the capabilities of *SHL on a series of
comparative experiments. The section emphasizes on supervised hash learning
problems in the context of CBIR, since the majority of hash learning approaches
address this paradigm. We also included some preliminary transductive hash
learning results for *SHL as a proof of concept. Remarkably, when compared
to other hashing methods on supervised learning hash tasks, *SHL exhibits the
best retrieval accuracy for all the datasets we considered. Some clues to *SHL’s
superior performance are provided in Sec. 4.

2 Formulation

In what follows, [·] denotes the Iverson bracket, i.e., [predicate] = 1, if the predi-
cate is true, and [predicate] = 0, if otherwise. Additionally, vectors and matrices
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are denoted in boldface. All vectors are considered column vectors and ·T denotes
transposition. Also, for any positive integer K, we define NK � {1, . . . ,K}.

Central to hash function learning is the design of functions transforming data
to compact binary codes in a Hamming space to fulfill a given machine learning
task. Consider the Hamming space H

B � {−1, 1}B , which implies B-bit hash
codes. *SHL addresses multi-class classification tasks with an arbitrary set X as
sample space. It does so by learning a hash function h : X → H

B and a set of G
labeled codewords μg, g ∈ NG (each codeword representing a class), so that the
hash code of a labeled sample is mapped close to the codeword corresponding
to the sample’s class label; proximity is measured via the Hamming distance.
Unlabeled samples are also able to contribute to learning both the hash function
and the codewords as it will demonstrated in the sequel. Finally, a test sample
is classified according to the label of the codeword closest to the sample’s hash
code.

In *SHL, the hash code for a sample x ∈ X is eventually computed as
h(x) � sgn f(x) ∈ H

B , where the signum function is applied component-wise.
Furthermore, f(x) � [f1(x) . . . fB(x)]T , where fb(x) � 〈wb, φ(x)〉Hb

+ βb with
wb ∈ Ωwb

�
{
wb ∈ Hb : ‖wb‖Hb

≤ Rb, Rb > 0
}

and βb ∈ R for all b ∈ NB . In
the previous definition, Hb is a RKHS with inner product 〈·, ·〉Hb

, induced norm

‖wb‖Hb
�

√
〈wb, wb〉Hb

for all wb ∈ Hb, associated feature mapping φb : X → Hb

and reproducing kernel kb : X × X → R, such that kb(x, x′) = 〈φb(x), φb(x′)〉Hb

for all x, x′ ∈ X . Instead of a priori selecting the kernel functions kb, MKL
[21] is employed to infer the feature mapping for each bit from the available
data. In specific, it is assumed that each RKHS Hb is formed as the direct
sum of M common, pre-specified RKHSs Hm, i.e., Hb =

⊕
m

√
θb,mHm, where

θb � [θb,1 . . . θb,M ]T ∈ Ωθ �
{

θ ∈ R
M : θ � 0, ‖θ‖p ≤ 1, p ≥ 1

}
, � denotes the

component-wise ≥ relation, ‖·‖p is the usual lp norm in R
M and m ranges over

NM . Note that, if each preselected RKHS Hm has associated kernel function km,
then it holds that kb(x, x′) =

∑
m θb,mkm(x, x′) for all x, x′ ∈ X .

Now, assume a training set of size N consisting of labeled and unlabeled
samples and let NL and NU be the index sets for these two subsets respectively.
Let also ln for n ∈ NL be the class label of the nth labeled sample. By adjusting
its parameters, which are collectively denoted as ω, *SHL attempts to reduce
the distortion measure

E(ω) �
∑

n∈NL

d
(
h(xn),μln

)
+

∑

n∈NU

min
g

d
(
h(xn),μg

)
(1)

where d is the Hamming distance defined as d(h,h′) �
∑

b [hb 
= h′
b]. However,

the distortion E is difficult to directly minimize. As it will be illustrated further
below, an upper bound Ē of E will be optimized instead.

In particular, for a hash code produced by *SHL, it holds that d (h(x),μ) =∑
b [μbfb(x) < 0]. If one defines d̄ (f ,μ) �

∑
b [1 − μbfb]+, where [u]+ �

max {0, u} is the hinge function, then d (sgn f ,μ) ≤ d̄ (f ,μ) holds for every
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f ∈ R
B and any μ ∈ H

B. Based on this latter fact, it holds that

E(ω) ≤ Ē(ω) �
∑

g

∑

n

γg,nd̄
(
f(xn),μg

)
(2)

where

γg,n �
{

[g = ln] n ∈ NL[
g = arg ming′ d̄

(
f(xn),μg′

)]
n ∈ NU

(3)

It turns out that Ē, which constitutes the model’s loss function, can be efficiently
minimized by a three-step algorithm, which delineated in the next section.

3 Learning Algorithm

The next proposition allows us to minimize Ē as defined in Eq. (2) via a MM
approach [23], [24].

Proposition 1. For any *SHL parameter values ω and ω′, it holds that

Ē(ω) ≤ Ē(ω|ω′) �
∑

g

∑

n

γ′
g,nd̄

(
f(xn),μg

)
(4)

where the primed quantities are evaluated on ω′ and

γ′
g,n �

{
[g = ln] n ∈ NL[
g = arg ming′ d̄

(
f ′(xn),μ′

g′
)]

n ∈ NU

(5)

Additionally, it holds that Ē(ω|ω) = Ē(ω) for any ω. In summa, Ē(·|·)
majorizes Ē(·).
Its proof is relative straightforward and is based on the fact that for any value
of γ′

g,n ∈ {0, 1} other than γg,n as defined in Eq. (3), the value of Ē(ω|ω′) can
never be less than Ē(ω|ω) = Ē(ω).

The last proposition gives rise to a MM approach, where ω′ are the cur-
rent estimates of the model’s parameter values and Ē(ω|ω′) is minimized with
respect to ω to yield improved estimates ω∗, such that Ē(ω∗) ≤ Ē(ω′). This
minimization can be achieved via a BCD.

Proposition 2. Minimizing Ē(·|ω′) with respect to the Hilbert space vectors,
the offsets βp and the MKL weights θb, while regarding the codeword parameters
as constant, one obtains the following B independent, equivalent problems:

inf
wb,m∈Hm,m∈NM
βb∈R,θb∈Ωθ,μg,b∈H

C
∑

g

∑

n

γ′
g,n [1 − μg,bfb(xn)]+

+
1
2

∑

m

‖wb,m‖2Hm

θb,m
b ∈ NB (6)

where fb(x) =
∑

m 〈wb,m, φm(x)〉Hm
+βb and C > 0 is a regularization constant.
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The proof of this proposition hinges on replacing the (independent) con-
straints of the Hilbert space vectors with equivalent regularization terms and,
finally, performing the substitution wb,m ← √

θb,mwb,m as typically done in
such MKL formulations (e.g. see [21]). Note that Prob. (6) is jointly convex with
respect to all variables under consideration and, under closer scrutiny, one may
recognize it as a binary MKL SVM training problem, which will become more
apparent shortly.

First block minimization: By considering wb,m and βb for each b as a
single block, instead of directly minimizing Prob. (6), one can instead maximize
the following problem:

Proposition 3. The dual form of Prob. (6) takes the form of

sup
αb∈Ωab

αT
b 1NG − 1

2
αT

b Db[(1G1T
G) ⊗ Kb]Dbαb b ∈ NB (7)

where 1K stands for the all ones vector of K elements (K ∈ N), μb �
[μ1,b . . . μG,b]

T , Db � diag (μb ⊗ 1N ), Kb �
∑

m θb,mKm, where Km is the
data’s mth kernel matrix, Ωab

�
{
α ∈ R

NG : αT
b (μb ⊗ 1N ) = 0,0 
 αb 
 Cγ′}

and γ′ �
[
γ′
1,1, . . . , γ

′
1,N , γ′

2,1, . . . , γ
′
G,N

]T .

Proof. After eliminating the hinge function in Prob. (6) with the help of slack
variables ξb

g,n, we obtain the following problem for the first block minimization:

min
wb,m,βb

ξb
g,n

C
∑

g

∑

n

γ′
g,nξb

g,n +
1
2

∑

m

‖wb,m‖2Hm

θb,m

s.t. ξb
g,n ≥ 0

ξb
g,n ≥ 1 − (

∑

m

〈wb,m, φm(x)〉Hm
+ βb)μg,b (8)

Due to the Representer Theorem (e.g., see [25]), we have that

wb,m = θb,m

∑

n

ηb,nφm(xn) (9)

where n is the training sample index. By defining ξb ∈ R
RG to be the vector con-

taining all ξb
g,n’s, ηb � [ηb,1, ηb,2, ..., ηb,N ]T ∈ R

N and μb � [μ1,b, μ2,b, ..., μG,b]T ∈
R

G, the vectorized version of Prob. (8) in light of Eq. (9) becomes

min
ηb,ξb,βb

Cγ′ξb +
1
2
ηT

b Kbηb

s.t. ξb � 0

ξb � 1NG − (μb ⊗ Kb)ηb − (μb ⊗ 1N )βb (10)
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where γ′ and Kb are defined in Prop. 3. From the previous problem’s Lagrangian
L, one obtains

∂L
∂ξb

= 0 ⇒
{

λb = Cγ′ − αb

0 
 αb 
 Cγ′ (11)

∂L
∂βb

= 0 ⇒ αT
b (μb ⊗ 1N ) = 0 (12)

∂L
∂ηb

= 0
∃K−1

b⇒ ηb = K−1
b (μb ⊗ Kb)T αb (13)

where αb and λb are the dual variables for the two constraints in Prob. (10).
Utilizing Eq. (11), Eq. (12) and Eq. (13), the quadratic term of the dual problem
becomes

(μb ⊗ Kb)K−1
b (μT

b ⊗ Kb) =

= (μb ⊗ Kb)(1 ⊗ K−1
b )(μT

b ⊗ Kb)

= (μb ⊗ IN×N )(μT
b ⊗ Kb)

= (μbμ
T
b ) ⊗ Kb (14)

Eq. (14) can be further manipulated as

(μbμ
T
b ) ⊗ Kb =

= [(diag (μb)1G)(diag (μb)1G)T ] ⊗ Kb

= [diag (μb) (1G1T
G) diag (μb)] ⊗ [INKbIN ]

= [diag (μb) ⊗ IN ][(1G1T
G) ⊗ Kb][diag (μb) ⊗ IN ]

= [diag (μb ⊗ 1N )][(1G1T
G) ⊗ Kb][diag (μb ⊗ 1N )]

= Db[(1G1T
G) ⊗ Kb]Db (15)

The first equality stems from the identity diag (v)1 = v for any vector v, while
the third one stems form the mixed-product property of the Kronecker product.
Also, the identity diag (v ⊗ 1) = diag (v) ⊗ I yields the fourth equality. Note
that Db is defined as in Prop. 3. Taking into account Eq. (14) and Eq. (15), we
reach the dual form stated in Prop. 3.

Given that γ′
g,n ∈ {0, 1}, one can easily now recognize that Prob. (7) is an

SVM training problem, which can be conveniently solved using software pack-
ages such as LIBSVM. After solving it, obviously one can compute the quantities
〈wb,m, φm(x)〉Hm

, βb and ‖wb,m‖2Hm
, which are required in the next step.

Second block minimization: Having optimized over the SVM parameters,
one can now optimize the cost function of Prob. (6) with respect to the MKL
parameters θb as a single block using the closed-form solution mentioned in Prop.
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Algorithm 1 Optimization of Prob. (6)
Input: Bit Length B, Training Samples X containing labeled or unlabled data.
Output: ω.
1. Initialize ω.
2. While Not Converged
3. For each bit
4. γ′

g,n ← Eq. (5).
5. Step 1: wb,m ← Eq. (7).
6. βb ← Eq. (7).
7. Step 2: Compute ‖wb,m‖2

Hm
.

8. θb,m ← Eq. (16).
9. Step 3: μg,b ← Eq. (17).
10. End For
11. End While
12. Output ω.

2 of [21] for p > 1 and which is given next.

θb,m =
‖wb,m‖

2
p+1
Hm

(
∑

m′ ‖wb,m′‖
2p

p+1
Hm′

) 1
p

, m ∈ NM , b ∈ NB . (16)

Third block minimization: Finally, one can now optimize the cost function
of Prob. (6) with respect to the codewords by mere substitution as shown below.

inf
μg,b∈H

∑

n

γg,n [1 − μg,bfb(xn)]+ g ∈ NG, b ∈ NB (17)

On balance, as summarized in Algorithm 1, for each bit, the combined
MM/BCD algorithm consists of one SVM optimization step, and two fast steps
to optimize the MKL coefficients and codewords respectively. Once all model
parameters ω have been computed in this fashion, their values become the cur-
rent estimate (i.e., ω′ ← ω ), the γg,n’s are accordingly updated and the algo-
rithm continues to iterate until convergence is established1. Based on LIBSVM,
which provides O(N3) complexity [26], our algorithm offers the complexity
O(BN3) per iteration , where B is the code length and N is the number of
instances.

4 Insights to Generalization Performance

The superior performance of *SHL over other state-of-the-art hash function
learning approaches featured in the next section can be explained to some extent

1 A MATLAB� implementation of our framework is available at
https://github.com/yinjiehuang/StarSHL

https://github.com/yinjiehuang/StarSHL
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by noticing that *SHL training attempts to minimize the normalized (by B)
expected Hamming distance of a labeled sample to the correct codeword, which
is demonstarted next. We constrain ourselves to the case, where the training set
consists only of labeled samples (i.e., N = NL, NU = 0) and, for reasons of con-
venience, to a single-kernel learning scenario, where each code bit is associated
to its own feature space Hb with corresponding kernel function kb. Also, due to
space limitations, we provide the next result without proof.

Lemma 1. Let X be an arbitrary set, F � {f : x �→ f(x) ∈ R
B , x ∈ X},

Ψ : RB → R be L-Lipschitz continuous w.r.t ‖·‖1, then

�̂N (Ψ ◦ F) ≤ L�̂N (‖F‖1) (18)

where ◦ stands for function composition, �̂N (G)� 1
N Eσ

{
supg∈G

∑
n σng(xn, ln)

}

is the empirical Rademacher complexity of a set G of functions, {xn, ln} are i.i.d.
samples and σn are i.i.d random variables taking values with Pr{σn = ±1} = 1

2 .

To show the main theoretical result of our paper with the help of the previous
lemma, we will consider the sets of functions

F̄ �{f : x �→ [f1(x), ..., fB(x)]T , fb ∈ Fb, b ∈ NB} (19)

Fb �{fb : x �→ 〈wb, φb(x)〉Hb
+ βb, βb ∈ R s.t. |βb| ≤ Mb,

wb ∈ Hb s.t. ‖wb‖Hb
≤ Rb, b ∈ NB} (20)

Theorem 1. Assume reproducing kernels of {Hb}B
b=1 s.t. kb(x, x′) ≤

r2, ∀x, x′ ∈ X . Then for a fixed value of ρ > 0, for any f ∈ F̄ , any
{μl}G

l=1, μl ∈ H
B and any δ > 0, with probability 1 − δ, it holds that:

er (f ,μl) ≤ êr (f ,μl) +
2r

ρB
√

N

∑

b

Rb +

√
log

(
1
δ

)

2N
(21)

where er (f ,μl) � 1
BE{d (sgn (f(x),μl))}, l ∈ NG is the true label of x ∈ X ,

êr (f ,μl) � 1
NB

∑
n,b Qρ (fb(xn)μln,b), where Qρ(u) � min

{
1,max

{
0, 1 − u

ρ

}}
.

Proof. Notice that

1
B

d (sgn (f(x),μl)) =
1
B

∑

b

[fb(x)μl,b < 0] ≤ 1
B

∑

b

Qρ (fb(x)μl,b)

⇒ E

{
1
B

d (sgn (f(x),μl))
}

≤ E

{
1
B

∑

b

Qρ (fb(x)μl,b)

}

(22)
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Consider the set of functions

Ψ � {ψ : (x, l) �→ 1
B

∑

b

Qρ (fb(x)μl,b) , f ∈ F̄ , μl,b ∈ {±1}, l ∈ NG, b ∈ NB}

Then from Theorem 3.1 of [27] and Eq. (22), ∀ψ ∈ Ψ , ∃δ > 0, with probability
at least 1 − δ, we have:

er (f ,μl) ≤ êr (f ,μl) + 2�N (Ψ) +

√
log

(
1
δ

)

2N
(23)

where �N (Ψ) is the Rademacher complexity of Ψ . From Lemma 1, the following
inequality between empirical Rademacher complexities is obtained

�̂N (Ψ) ≤ 1
Bρ

�̂N

(∥∥F̄μ

∥
∥
1

)
(24)

where F̄μ � {(x, l) �→ [f1(x)μl,1, ..., fB(x)μl,B ]T , f ∈ F̄ and μl,b ∈ {±1}}. The
right side of Eq. (24) can be upper-bounded as follows

�̂N

(∥∥F̄μ

∥
∥
1

)
=

1
N

Eσ

{

sup
f∈F̄,{μln

}∈HB

∑

n

σn

∑

b

|μln,bfb(xn)|
}

=
1
N

Eσ

{

sup
f∈F̄

∑

n

σn

∑

b

|fb(xn)|
}

=
1
N

Eσ

{

sup
ωb∈Hb,‖ωb‖Hb

≤Rb,|βb|≤Mb

∑

n

σn

∑

b

| 〈wb, φb(x)〉Hb
+ βb|

}

=
1
N

Eσ

{

sup
ωb∈Hb,‖ωb‖Hb

≤Rb,|βb|≤Mb

∑

n

σn

∑

b

| 〈wb, sgn(βb)φb(x)〉Hb
+ |βb||

}

=
1
N

Eσ

{

sup
|βb|≤Mb

∑

b

[Rb

√
σT Kbσ + |βb|

∑

n

σn]

}

=
1
N

Eσ

{
∑

b

Rb

√
σT Kbσ

}
Jensen’s Ineq.

≤ 1
N

∑

b

Rb

√
Eσ {σT Kbσ}

=
1
N

∑

b

Rb

√
trace{Kb} ≤ r√

N

∑

b

Rb (25)

From Eq. (24) and Eq. (25) we obtain �̂N (Ψ) ≤ r
ρB

√
N

∑
b Rb. Since �N (Ψ) �

Es

{
�̂N (Ψ)

}
, where Es is the expectation over the samples, we have

�N (Ψ) ≤ r

ρB
√

N

∑

b

Rb (26)

The final result is obtained by combining Eq. (23) and Eq. (26).
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It can be observed that, minimizing the loss function of Prob. (6), in essence,
also reduces the bound of Eq. (21). This tends to cluster same-class hash codes
around the correct codeword. Since samples are classified according to the label
of the codeword that is closest to the sample’s hash code, this process may lead
to good recognition rates, especially when the number of samples N is high, in
which case the bound becomes tighter.

5 Experiments

5.1 Supervised Hash Learning Results

In this section, we compare *SHL to other state-of-the-art hashing algorithms:
Kernel Supervised Learning (KSH) [15], Binary Reconstructive Embedding
(BRE) [6], single-layer Anchor Graph Hashing (1-AGH) and its two-layer ver-
sion (2-AGH) [17], Spectral Hashing (SPH) [16] and Locality-Sensitive Hashing
(LSH) [3].

Five datasets were considered: Pendigits and USPS from the UCI Repository,
as well as Mnist, PASCAL07 and CIFAR-10. For Pendigits (10, 992 samples, 256
features, 10 classes), we randomly chose 3, 000 samples for training and the rest
for testing; for USPS (9, 298 samples, 256 features, 10 classes), 3000 were used for
training and the remaining for testing; for Mnist (70, 000 samples, 784 features,
10 classes), 10, 000 for training and 60, 000 for testing; for CIFAR-10 (60, 000
samples, 1, 024 features, 10 classes), 10, 000 for training and the rest for testing;
finally, for PASCAL07 (6878 samples, 1, 024 features after down-sampling the
images, 10 classes), 3, 000 for training and the rest for testing.

For all the algorithms used, average performances over 5 runs are reported
in terms of the following two criteria: (i) retrieval precision of s-closest hash
codes of training samples; we used s = {10, 15, . . . , 50}. (ii) Precision-Recall
(PR) curve, where retrieval precision and recall are computed for hash codes
within a Hamming radius of r ∈ NB .
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Fig. 1. The top s retrieval results and Precision-Recall curve on Pendigits dataset over
*SHL and 6 other hashing algorithms. (view in color)



670 Y. Huang et al.

The following *SHL settings were used: SVM’s parameter C was set to 1000;
for MKL, 11 kernels were considered: 1 normalized linear kernel, 1 normalized
polynomial kernel and 9 Gaussian kernels. For the polynomial kernel, the bias
was set to 1.0 and its degree was chosen as 2. For the bandwidth σ of the Gaus-
sian kernels the following values were used: [2−7, 2−5, 2−3, 2−1, 1, 21, 23, 25, 27].
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Fig. 2. The top s retrieval results and Precision-Recall curve on USPS dataset over
*SHL and 6 other hashing algorithms. (view in color)
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Fig. 3. The top s retrieval results and Precision-Recall curve on Mnist dataset over
*SHL and 6 other hashing algorithms. (view in color)
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Fig. 4. The top s retrieval results and Precision-Recall curve on CIFAR-10 dataset
over *SHL and 6 other hashing algorithms. (view in color)
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Fig. 5. The top s retrieval results and Precision-Recall curve on PASCAL07 dataset
over *SHL and 6 other hashing algorithms. (view in color)

Regarding the MKL constraint set, a value of p = 2 was chosen. For the remain-
ing approaches, namely KSH, SPH, AGH, BRE, parameter values were used
according to recommendations found in their respective references. All obtained
results are reported in Fig. 1 through Fig. 5.

We clearly observe that *SHL performs best among all the algorithms consid-
ered. For all the datasets, *SHL achieves the highest top-10 retrieval precision.
Especially for the non-digit datasets (CIFAR-10, PASCAL07 ), *SHL achieves
significantly better results. As for the PR-curve, *SHL also yields the largest
areas under the curve. Although noteworthy results were reported in [15] for
KSH, in our experiments *SHL outperformed it across all datasets. Moreover,
we observe that supervised hash learning algorithms, except BRE, perform bet-
ter than unsupervised variants. BRE may need a longer bit length to achieve
better performance as implied by Fig. 1 and Fig. 3. Additionally, it is worth
pointing out that *SHL performed remarkably well for short big lengths across
all datasets.

It must be noted that AGH also yielded good results, compared with other
unsupervised hashing algorithms, perhaps due to the anchor points it utilizes as
side information to generate hash codes. With the exception of *SHL and KSH,
the remaining approaches exhibit poor performance for the non-digit datasets
we considered.

When varying the top-s number between 10 and 50, once again with the
exception of *SHL and KSH, the performance of the remaining approaches
deteriorated in terms of top-s retrieval precision. KSH performs slightly worse,
when s increases, while *SHL’s performance remains robust for CIFAR-10 and
PSACAL07. It is worth mentioning that the two-layer AGH exhibits better
robustness than its single-layer version for datasets involving images of digits.
Finally, Fig. 6 shows some qualitative results for the CIFAR-10 dataset. In con-
clusion, in our experimentation, *SHL exhibited superior performance for every
code length we considered.
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Query Image: Car

*SHL

KSH

LSH

SPH

BRE

1−AGH

2−AGH

Fig. 6. Qualitative results on CIFAR-10. Query image is “Car”. The remaining 15
images for each row were retrieved using 45-bit binary codes generated by different
hashing algorithms .

5.2 Transductive Hash Learning Results

As a proof of concept, in this section, we report a performance comparison
of our framework, when used in an inductive versus a transductive [28] mode.
Note that, to the best of our knowledge, no other hash learning approaches to
date accommodate transductive hash learning in a natural manner like *SHL.
For illustration purposes, we used the Vowel and Letter datasets. We randomly
chose 330 training and 220 test samples for the Vowel and 300 training and 200
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Fig. 7. Accuracy results between Inductive and Transductive Learning.
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test samples for the Letter. Each scenario was run 20 times and the code length
(B) varied from 4 to 15 bits. The results are shown in Fig. 7 and reveal the
potential merits of the transductive *SHL learning mode across a range of code
lengths.

6 Conclusions

In this paper we considered a novel hash learning framework with two
main advantages. First, its Majorization-Minimization (MM)/Block Coordinate
Descent (BCD) training algorithm is efficient and simple to implement. Sec-
ondly, this framework is able to address supervised, unsupervised and, even,
semi-supervised learning tasks in a unified fashion. In order to show the mer-
its of the method, we performed a series of experiments involving 5 benchmark
datasets. In these experiments, a comparison between *Supervised Hash Learn-
ing (*SHL) to 6 other state-of-the-art hashing methods shows *SHL to be highly
competitive.
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