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Abstract. We consider online learning of Bayesian network classifiers
(BNCs) with reduced-precision parameters, i.e. the conditional-prob-
ability tables parameterizing the BNCs are represented by low bit-width
fixed-point numbers. In contrast to previous work, we analyze the learn-
ing of these parameters using reduced-precision arithmetic only which
is important for computationally constrained platforms, e.g. embedded-
and ambient-systems, as well as power-aware systems. This requires spe-
cialized algorithms since naive implementations of the projection for
ensuring the sum-to-one constraint of the parameters in gradient-based
learning are not sufficiently accurate. In particular, we present gener-
ative and discriminative learning algorithms for BNCs relying only on
reduced-precision arithmetic. For several standard benchmark datasets,
these algorithms achieve classification-rate performance close to that of
BNCs with parameters learned by conventional algorithms using double-
precision floating-point arithmetic. Our results facilitate the utilization
of BNCs in the foresaid systems.

Keywords: Bayesian network classifiers · Reduced-precision · Resource-
constrained computation · Generative/discriminative learning

1 Introduction

Most commonly Bayesian network classifiers (BNCs) are implemented on nowa-
days desktop computers, where double-precision floating-point numbers are used
for parameter representation and arithmetic operations. In these BNCs, inference
and classification is typically performed using the same precision for parameters
and operations, and the executed computations are considered as exact. However,
there is a need for BNCs working with limited computational resources. Such
resource-constrained BNCs are important in domains such as ambient comput-
ing, on-satellite computations1 or acoustic environment classification in hearing

F. Pernkopf—This work was supported by the Austrian Science Fund (FWF) under
the project number P25244-N15.

1 Computational capabilities on satellites are still severely limited due to power con-
straints and restricted availability of hardware satisfying the demanding require-
ments with respect to radiation tolerance.
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aids, machine learning for prosthetic control, e.g. a brain implant to control
hand movements, amongst others. In all these applications, a trade-off between
accuracy and required computational resources is essential.

In this paper, we investigate BNCs with limited computational demands by
considering BNCs with reduced-precision parameters, i.e. fixed-point parameters
with limited precision.2 Using reduced-precision parameters is advantageous in
many ways, e.g. power consumption compared to full-precision implementations
can be reduced [20] and reduced-precision parameters enable one to implement
many BNCs in parallel on field programmable gate arrays (FPGAs), i.e. the cir-
cuit area requirements on the FPGA correlate with the parameter precision [9].
Our investigations are similar to those performed in digital signal-processing,
where reduced-precision implementations for digital signal processors are of great
importance [10]. Note that there is also increased interest in implementing other
machine learning models, e.g. neural networks, using reduced-precision parame-
ters/computations to achieve faster training and to facilitate the implementation
of larger models [2,18].

We are especially interested in learning the reduced-precision parameters using
as little computational resources as possible. To decide on how to perform this
learning, several questions should be answered. Should reduced-precision parame-
ters be learned in a pre-computation step in which we can exploit the full computa-
tional power of nowadays computers? Or is it necessary to learn/adopt parameters
using reduced-precision arithmetic only? The answers to these questions depend
on the application of interest and identify several learning scenarios that are sum-
marized in Figure 1. In the following, we discuss these scenarios briefly:

(a) Training and testing using full-precision arithmetic. This corresponds
to what machine learners typically do, i.e. all computations are performed
using full-precision arithmetic.

(b) Training using reduced-precision and testing using full-precision
arithmetic. A rash thought rejects this option. But it might be interesting
in the vicinity of big-data where the amount of data is so huge that it can
only be processed in a compressed form, i.e. in reduced-precision.

(c) Training using full-precision and testing using reduced-precision
arithmetic. This describes an application scenario where BNCs with pre-
computed parameters can be used, e.g. hearing-aids for auditory scene clas-
sification. This scenario enables one to exploit large computational resources
for parameter learning, while limiting computational demands at test time.
Recent work considered this for BNCs [22].

(d) Training and testing using reduced-precision arithmetic. This is
the scenario considered within this paper. It opens the door to many inter-
esting applications, e.g. continuous parameter adaptation in hearing-aids
using reduced-precision computations only. Another example could be a

2 We are interested in fixed-point arithmetic and not in floating-point arithmetic,
because typically the implementation of fixed-point processing units requires less
resources than the implementation of floating-point processing units.



88 S. Tschiatschek and F. Pernkopf

full-precision
reduced-
precision

full-precision

reduced-
precision

classical scenario,
e.g. training and
testing on PCs

potentially
relevant for
big-data

applications

full-precision
pre-computation
of parameters

e.g. parameter
adaptation during

testing

T
es

ti
n
g

Training
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satellite-based system for remote sensing that tunes its parameter according
to changing atmospheric conditions.

We start our investigation of parameter learning using reduced-precision com-
putations by analyzing the effect of approximate computations on online param-
eter learning. This leads to the observation that the approximate projections
needed in the used projected gradient ascent/descent algorithms to ensure the
sum-to-one normalization constraints of the parameters can severely affect the
learning process. We circumvent the need for these projections by proposing spe-
cial purpose learning algorithms for generative maximum likelihood (ML) and
discriminative maximum margin (MM) parameters.

This paper is structured as follows: In Section 2 we consider related work,
followed by an introduction of the used notation and some background on param-
eter learning in Bayesian networks (BNs) in Section 3. We derive our proposed
algorithms in Section 4 and test them in experiments in Section 5. In Section 6
we conclude the paper.

2 Related Work

For undirected graphical models, approximate inference and learning using inte-
ger parameters has been proposed [16]. While undirected graphical models are
more amenable to integer approximations mainly due to the absence of sum-to-
one constraints, there are domains where probability distributions represented
by directed graphical models are desirable, e.g. in expert systems in the medical
domain.
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Directly related work can be summarized as follows:

– The feasibility of BNCs with reduced-precision floating-point parameters has
been empirically investigated in [14,24]. These papers analyzed (i) the effect
of precision-reduction of the parameters on the classification performance of
BNCs, and (ii) how BNCs with reduced-precision parameters can be imple-
mented using integer computations only.

– The above mentioned experimental studies where extended by a thor-
ough theoretical analysis of using fixed-point parameters in BNCs [23].
The authors used fixed-point numbers for the following two reasons: First,
because fixed-point parameters can even be used on computing platforms
without floating-point processing capabilities. Second, because summation
of fixed-point numbers is exact (neglecting the possibility of overflows), while
summation of floating-point numbers is in general not exact.
In particular, theoretical bounds on the classification performance when
using reduced-precision fixed-point parameters have been analyzed in [21,
23]. The authors derived worst-case and probabilistic bounds on the classi-
fication rate (CR) for different bit-widths. Furthermore, they compared the
classification performance and the robustness of BNCs with generatively and
discriminatively optimized parameters, i.e. parameters optimized for high
data likelihood and parameters optimized for classification, with respect to
parameter quantization.

– In [22], learning of reduced-precision parameters using full-precision compu-
tations was addressed while the work mentioned above considers only round-
ing of double-precision parameters. An algorithm for the computation of MM
reduced-precision parameters was presented and its efficiency was demon-
strated. The resulting parameters had superior classification performance
compared to parameters obtained by simple rounding of double-precision
parameters, particularly for very low numbers of bits.

3 Background and Notation

Probabilistic Classification. Probabilistic classifiers are embedded in the frame-
work of probability theory. One assumes a random variable (RV) C denoting
the class and RVs X1, . . . , XL representing the attributes/features of the clas-
sifier. Each Xi can take one value in the set val(Xi). Similarly, C can assume
values in val(C), i.e. val(C) is the set of classes. We denote the random vec-
tor consisting of X1, . . . , XL as X = (X1, . . . , XL). Instantiations of RVs are
denoted using lower case letters, i.e. x is an instantiation of X and c an instan-
tiation of C, respectively. The RVs C,X1, . . . , XL are assumed to be jointly
distributed according to the distribution P∗(C,X). In typical settings, P∗(C,X)
is unknown, but a number of samples drawn iid from P∗(C,X) is at hand,
i.e. a training set D = ((c(n),x(n)) | 1 ≤ n ≤ N), where c(n) denotes the
instantiation of the RV C and x(n) the instantiation of X in the nth train-
ing sample. The aim is to induce good classifiers provided the training set, i.e.
classifiers with low generalization error. Any probability distribution P(C,X)
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naturally induces a classifier hP(C,X) according to hP(C,X) : val(X) → val(C),
x �→ arg maxc′∈val(C) P(c′|x). In this way, each instantiation x of X is classified
by the maximum a-posteriori (MAP) estimate of C given x under P(C,X). Note
that arg maxc′∈val(C) P(c′|x) = arg maxc′∈val(C) P(c′,x).

Bayesian Networks and Bayesian Network Classifiers. We consider probability
distributions represented by BNs [7,11]. A BN B = (G,PG) consists of a directed
acyclic graph (DAG) G = (Z,E) and a collection of conditional probability dis-
tributions PG = (P(X0|Pa(X0)), . . . ,P(XL|Pa(XL))), where the terms Pa(Xi)
denote the set of parents of Xi in G. The nodes Z = (X0, . . . , XL) correspond
to RVs and the edges E encode conditional independencies among these RVs.
Throughout this paper, we often denote X0 as C, i.e. X0 represents the class.
Then, a BN defines the joint distribution

PB(C,X1, . . . , XL) = P(C|Pa(C))
L∏

i=1

P(Xi|Pa(Xi)). (1)

According to the joint distribution, a BN B induces the classifier hB = hPB(C,X).
In this paper, we assume discrete valued RVs only. Then, a general rep-

resentation of PG is a collection of conditional probability tables (CPTs), i.e.
PG = (θ0, . . . ,θL), with θi = (θi

j|h|j ∈ val(Xi),h ∈ val(Pa(Xi))), where
θi

j|h = P(Xi = j|Pa(Xi) = h). The BN distribution can then be written as

PB(C = c,X = x) =
L∏

i=0

∏

j∈val(Xi)

∏

h∈val(Pa(Xi))

θi
j|h

νi
j|h , (2)

where νi
j|h = 1([c,x](Xi)=j and [c,x](Pa(Xi))=h).3 We typically represent the BN

parameters in the logarithmic domain, i.e. wi
j|h = log θi

j|h, wi = (wi
j|h|j ∈

val(Xi),h ∈ val(Pa(Xi))), and w = (w0, . . . ,wL). In general, we will interpret
w as a vector, whose elements are addressed as wi

j|h. We define a vector-valued
function φ(c,x) of the same length as w, collecting νi

j|h, analog to the entries
wi

j|h in w. In that way, we can express the logarithm of (2) as

log PB(C = c,X = x) = φ(c,x)T w. (3)

Consequently, classification, can be performed by simply adding the log-
probabilities corresponding to an instantiation [c,x] for all c ∈ val(C).4

Fixed-Point Numbers. Fixed-point numbers are essentially integers scaled by a
constant factor, i.e. the fractional part has a fixed number of digits. We char-
acterize fixed-point numbers by the number of integer bits bi and the number
3 Note that [c,x] denotes the joint instantiation of C and X and [c,x](A) corresponds

to the subset of values of [c,x] indexed by A ⊆ {X0, . . . , XL}.
4 In general graphs, potentially with latent variables, the needed inference can be

performed using max-sum message passing [7,13].
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of fractional bits bf . The addition of two fixed-point numbers can be easily and
accurately performed, while the multiplication of two fixed-point numbers often
leads to overflows and requires truncation to achieve results in the same format.

Learning Bayesian Network Classifiers

BNs for classification can be optimized in two ways: firstly, one can select the
graph structure G (structure learning), and secondly, one can learn the condi-
tional probability distributions PG (parameter learning). In this paper, we con-
sider fixed structures of the BNCs, namely naive Bayes (NB) and tree augmented
network (TAN) structures [4], i.e. 1-tree among the attributes. The NB structure
implies conditional independence of the features, given the class. Obviously, this
conditional independence assumption is often violated in practice. TAN struc-
tures relax these strong independence assumptions, enabling better classification
performance.5

Parameter Learning. The conditional probability densities (CPDs) PG of
BNs can be optimized either generatively or discriminatively. Two standard
approaches for optimizing PG are:

– Generative Maximum Likelihood Parameters. In generative param-
eter learning one aims at identifying parameters modeling the generative
process that results in the data of the training set, i.e. generative param-
eters are based on the idea of approximating P∗(C,X) by a distribution
PB(C,X). An example of this paradigm is maximum likelihood (ML) learn-
ing. Its objective is maximization of the likelihood of the training data given
the parameters, i.e.

PML
G = arg max

PG

N∏

n=1

PB(c(n),x(n)). (4)

Note that the above optimization problem implicitly includes sum-to-one
constraints because the learned parameters in PML

G must represent normal-
ized probabilities. Maximum likelihood parameters minimize the Kullback-
Leibler (KL)-divergence between PB(C,X) and P∗(C,X) [7].

– Discriminative Maximum Margin Parameters [5,12,15]. In discrim-
inative learning one aims at identifying parameters leading to good classi-
fication performance on new samples from P∗(C,X). This type of learning
is for example advantageous in cases where the assumed model distribution
PB(C,X) cannot approximate P∗(C,X) well, for example because of a too
limited BN structure [17].
Discriminative MM parameters PMM

G are found as

PMM
G = arg max

PG

N∏

n=1

min
(
γ, dB(c(n),x(n))

)
, (5)

5 Note that the parameter learning approach can be applied to more complex struc-
tures, e.g. k-trees among the attributes.
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where dB(c(n),x(n)) is the margin of the nth sample given as

dB(c(n),x(n)) =
PB(c(n),x(n))

maxc �=c(n) PB(c,x(n))
, (6)

and where the hinge loss function is denoted as min(γ, dB(c(n),x(n))). The
parameter γ > 1 controls the margin. In this way, the margin measures the
ratio of the likelihood of the nth sample belonging to the correct class c(n)

to the likelihood of belonging to the most likely competing class. The nth

sample is correctly classified iff dB(c(n),x(n)) > 1 and vice versa.

4 Algorithms for Online Learning of Reduced-Precision
Parameters

We start by considering learning ML parameters in Section 4.1 and then move on
to learning MM parameters in Section 4.2. We claim that learning using reduced-
precision arithmetic is most useful in online settings, i.e. parameters are updated
on a per-sample basis. This online learning scenario captures the important case
in which initially pre-computed parameters are used and these parameters are
updated online as new samples become available, e.g. adaptation of a hearing-aid
to a new acoustic environment. In this setting, learning using reduced-precision
computations requires specialized algorithms, i.e. gradient-descent (or gradient-
ascent) procedures using reduced-precision arithmetic do not perform well. The
reason is that the necessary exact projections of the parameters onto the sum-
to-one constraints cannot be accurately performed. Another issue is the limited
resolution of the learning rate. However, we find this issue less important as the
inexact projections.

4.1 Learning Maximum Likelihood Parameters

We consider an online algorithm for learning ML parameters. The ML objec-
tive (4) for the offline scenario can be equivalently written as

wML = arg max
w

N∑

n=1

φ(c(n),x(n))Tw s.t.
∑

j

exp(wi
j|h) = 1,∀i, j,h, (7)

where optimisation is performed over the log-parameters w. In an online sce-
nario, not all samples are available for learning at once but are available one at
a time; the parameters wML,t at time-step t are updated according to the gradi-
ent of a single sample (c,x) (or, alternatively, a batch of samples) and projected
such that they satisfy the sum-to-one constraints, i.e.

wML,t+1 = Π
[
wML,t + η

(∇wφ(c,x)Tw
)
(wML,t)

]
(8)

= Π
[
wML,t + ηφ(c,x)

]
, (9)



Parameter Learning of Bayesian Network Classifiers 93

where η is the learning rate, ∇w(f)(a) denotes the gradient of f with respect
to w at a, and Π[w] denotes the �2-norm projection of the parameter vector
w onto the set of normalized parameter vectors. Note that the gradient has a
simple form: it consists only of zeros and ones, where the ones are indicators of
active entries in the CPTs of sample (c,x). Furthermore, assuming normalized
parameters at time-step t, the direction of the gradient is always such that the
parameters wML,t+1 are super-normalized. Consequently, after (exact) projec-
tion the parameters satisfy the sum-to-one constraints.

We continue by analyzing the effect of using reduced-precision arithmetic on
the online learning algorithm. Therefore, we performed the following experiment:
Assume that the projection can only be approximately performed. We simulate
the approximate projection by performing an exact projection and subsequently
adding quantization noise (this is similar to reduced-precision analysis in signal
processing [10]). We sample the noise from a Gaussian distribution with zero
mean and with variance σ2 = q2/12, where q = 2−bf . For the satimage dataset
from the UCI repository [1] we construct BNCs with TAN structure. As initial
parameters we use rounded ML parameters computed from one tenth of the
training data. Then, we present the classifier further samples in an online manner
and update the parameters according to (9). During learning, we set the learning
rate η to η = η0/

√
1 + t, where η0 is some constant (η0 is tuned by hand such that

the test set performance is maximized). The resulting classification performance
is shown in Figures 2a and 2b for the exact and the approximate projection,
respectively. One can observe, that the algorithm does not properly learn using
the approximate projection. Thus, it seems crucial to perform the projections
rather accurately. To circumvent the need for accurate projections, we propose
a method that avoids computing a projection at all in the following.

Consider again the offline parameter learning case. ML parameters can be
computed in closed-form by computing relative frequencies, i.e.

θi
j|h =

mi
j|h

mi
h

, (10)

where

mi
j|h =

N∑

n=1

φ(c(n),x(n))i
j|h, and mi

h =
∑

j

mi
j|h. (11)

This can be easily extended to online learning. Assume that the counts mi,t
j|h at

time t are given and that a sample (ct,xt) is presented to the learning algorithm.
Then, the counts are updated according to

mi,t+1
j|h = mi,t

j|h + φ(ct,xt)i
j|h. (12)
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Fig. 2. Classification performance of BNCs with TAN structure for satimage data in an
online learning scenario; (a) Online ML parameter learning with exact projection after
each parameter update, (b) online ML parameter learning with approximate projection
after each parameter update (see text for details), (c) proposed algorithm for online
ML parameter learning.

Exploiting these counts, the logarithm of the ML parameters θi,t
j|h at time t can

be computed as

wi,t
j|h = log

(
mi,t

j|h
mi,t

h

)
, (13)

where similarly to before mi,t
h =

∑
j mi,t

j|h. A straightforward approximation

of (13) is to (approximately) compute the counts mi,t
j|h and mi,t

h , respectively,

and to use a lookup table to determine wi,t
j|h. The lookup table can be indexed in

terms of mi,t
j|h and mi,t

h and stores values for wi,t
j|h in the desired reduced-precision

format. To limit the maximum size of the lookup table and the bit-width required
for the counters for mi,t

j|h and mi,t
h , we assume some maximum integer number

M . We pre-compute the lookup table L such that
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L(i, j) =
[
log2(i/j)

q

]

R

· q, (14)

where [·]R denotes rounding to the closest the integer, q is the quantization
interval of the desired fixed-point representation, log2(·) denotes the base-2 log-
arithm, and where i and j are in the range 0, . . . , M − 1. Given sample (ct,xt),
the counts mi,t+1

j|h and mi,t+1
h are computed according to Algorithm 1 from the

counts mi,t
j|h and mi,t

h . To guarantee that the counts stay in range, the algorithm
identifies counters that reach their maximum value, and halfs these counters as
well as all other counters corresponding to the same CPTs. This division by 2
can be implemented as a bitwise shift operation.

Algorithm 1. Reduced-precision ML online learning
Require: Old counts mi,t

j|h; sample (ct,xt)

mi,t+1
j|h ← mi,t

j|h + φ(ct,xt)ij|h ∀i, j,h � update counts
for i, j,h do

if mi,t+1
j|h = M then � maximum value of counter reached?

mi,t+1
j|h ← �mi,t+1

j|h /2� ∀j � half counters of considered CPT (round down)
end if

end for
return mi,t+1

j|h

Initially, we set all counts to zero, i.e. mi,0
j|h = 0, respectively. For the cumu-

lative counts, i.e. mi,t
h in (13), we did not limit the number of bits (for real

implementations the necessary number of bits for this counter can be computed
from the bit-width of the individual counters that are summed up and the graph
structure of the considered BNC). Logarithmic parameters wi,t

j|h are computed
using the lookup table described above and using Algorithm 2. The classifica-
tion performance during online learning is shown in Figure 2c. We can observe,
that the algorithm behaves pleasant and the limited range of the used counters
does not seem to affect classification performance (compared to the classification
performance using rounded ML parameters computed using full-precision com-
putations and all training samples). Further experimental results can be found
in Section 5.

4.2 Learning Maximum Margin Parameters

In this section, we consider a variant of the MM objective proposed in [12] that
balances the MM objective (5) against the ML objective (4), i.e. the objective
is to maximize
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Algorithm 2. Computation of logarithmic probabilities from lookup table
Require: Counts mi,t

j|h and mi,t
h ; lookup table L of size M × M

div ← 0
while mi,t

h ≥ M do � ensure that index into lookup table is in range
mi,t

h ← �mi,t
h /2� � half and round down

div ← div + 1
end while
wi,t

j|h ← L(mi,t
j,h, mi,t

h ) ∀j � get log-probability from lookup table

while div > 0 and ∀j : wi,t
j|h > (−2bi + 2bf ) + 1 do � revise index correction

wi,t
j|h ← wi,t

j|h − 1 ∀j
div ← div − 1

end while
return wi,t

j|h

log

[
N∏

n=1

PB(c(n),x(n))

]

︸ ︷︷ ︸
ML

+λ log

[
N∏

n=1

min

(
γ,

PB(c(n),x(n))
maxc �=c(n) PB(c,x(n))

)]

︸ ︷︷ ︸
MM

. (15)

In this way, generative properties, e.g. the ability to marginalize over missing
features, are combined with good discriminative performance. This variant of
the MM objective can be easily written in the form

wMM = arg max
w

[ N∑

n=1

φ(c(n),x(n))Tw+ (16)

λ

N∑

n=1

min
(

γ, min
c �=c(n)

[
(φ(c(n),x(n)) − φ(c,x(n)))Tw

])

and, for simplicity, we will refer to this modified objective as the MM objective.
Note that there are implicit sum-to-one constraints in problem (16), i.e. any
feasible solution w must satisfy

∑
j exp(wi

j|h) = 1 for all i, j,h. In the online
learning case, given sample (c,x), the parameters wMM,t+1 at time t + 1 are
computed from the parameters wMM,t at time t as

wMM,t+1 = Π
[
wMM,t + ηφ(c,x) + ηλg(c,x)

]
, (17)

where

g(c,x) =

⎧
⎨

⎩
0 min

c′ �=c

[
(φ(c,x) − φ(c′,x))Tw

] ≥ γ,

φ(c,x) − φ(c′,x) o.w., c′ = arg minc′
[
(φ(c,x) − φ(c′,x))Tw

]

(18)

and where similar as before Π[w] denotes the projection.
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For learning MM parameters, a similar observation with respect to the accu-
racy of the projection can be made as for ML parameters. But we cannot
proceed exactly as in the case of learning ML parameters because we cannot
compute MM parameters in closed-form. As in the ML parameter learning case,
the gradient for the parameter update has a rather simple form, but the projec-
tion to satisfy the sum-to-one constraints is difficult to compute. Therefore, for
online MM parameter learning, we propose Algorithm 3 that is similar to Algo-
rithm 1 in Section 4.1, i.e. we avoid to compute the projection explicitly. From
the counts computed by the algorithm, log-probabilities can be computed using
Algorithm 2. Note that the proposed algorithm does not exactly optimize (16)
but a, not explicitly defined, surrogate. The idea behind the algorithm is (1) to
optimize the likelihood term in (16) as in the algorithm for ML parameter learn-
ing, and (2) to optimize the margin term by increasing the likelihood for the
correct class and simultaneously decreasing the likelihood for the strongest com-
petitor class. Note that the idea of optimizing the margin term as explained
above is similar in spirit to that of discriminative frequency estimates [19]. How-
ever, discriminative frequency estimates do not optimize a margin term but a
term more closely related to the class-conditional likelihood.

5 Experiments

5.1 Datasets

In our experiments, we considered the following datasets.
1. UCI data [1]. This is in fact a large collection of datasets, with small

to medium number of samples. Features are discretized as needed using the
algorithm proposed in [3]. If not stated otherwise, in case of the datasets chess,
letter, mofn-3-7-10, segment, shuttle-small, waveform-21, abalone, adult, car,
mushroom, nursery, and spambase, a test set was used to estimate the accuracy
of the classifiers. For all other datasets, classification accuracy was estimated
by 5-fold cross-validation. Information on the number of samples, classes and
features for each dataset can be found in [1].

2. USPS data [6]. This data set contains 11000 handwritten digit images
from zip codes of mail envelopes. The data set is split into 8000 images for
training and 3000 for testing. Each digit is represented as a 16 × 16 greyscale
image. These greyscale values are discriminatively quantized [3] and each pixel
is considered as feature.

3. MNIST Data [8]. This dataset contains 70000 samples of handwritten
digits. In the standard setting, 60000 samples are used for training and 10000
for testing. The digits represented by grey-level images were down-sampled by a
factor of two resulting in a resolution of 16 × 16 pixels, i.e. 196 features.

5.2 Results

We performed experiments using M = 1024, i.e. we used counters with 10 bits
(bi + bf = 10). The splitting of the available bits into integer bits and frac-
tional bits was set using 10-fold cross-validation. Experimental results for BNCs
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Algorithm 3. Reduced-precision MM online learning
Require: Old counts mi,t

j|h; sample (ct,xt); hyper-parameters γ, λ ∈ N+ for MM for-
mulation
mi,t+1

j|h ← mi,t
j|h + φ(ct,xt)ij|h ∀i, j,h � update counts (likelihood term)

for i, j,h do � ensure that parameters stay in range
if mi,t+1

j|h = M then

mi,t+1
j|h ← �mi,t+1

j|h /2� ∀j
end if

end for
c′ ← strongest competitor of class c for features x

if
[
(φ(ct,x(n)) − φ(c′,x(n)))Tw < γ

]
then

mi,t+1
j|h ← mi,t

j|h ∀i, j,h
for k = 1, . . . , λ do � Add-up gradient in λ steps

mi,t+1
j|h ← mi,t+1

j|h + φ(ct,xt)ij|h ∀i, j,h � update counts (margin term)

mi,t+1
j|h ← mi,t+1

j|h − φ(c′,xt)ij|h ∀i, j,h � update counts (margin term)
for i, j,h do � ensure that parameters stay in range

if mi,t+1
j|h = 0 then

mi,t+1
j|h ← mi,t+1

j|h + 1 ∀j
end if
if mi,t+1

j|h = M then

mi,t+1
j|h ← �mi,t+1

j|h /2� ∀j
end if

end for
end for

end if
return mi,t+1

j|h

with NB and TAN structures are shown in Table 1 for the datasets described
above. All samples from the training set were presented to the proposed algo-
rithm twenty times in random order. The absolute reduction in classification
rate (CR) compared to the exact CR, i.e. using BNCs with the optimal double-
precision parameters, for the considered datasets is, with few exceptions, rela-
tively small. Thus the proposed reduced-precision computation scheme seems to
be sufficiently accurate to yield good classification performance while employ-
ing only range-limited counters and a lookup table of size M × M . Clearly, the
performance of the proposed method can be improved by using larger and more
accurate lookup tables and counters with larger bit-width.

For discriminative parameter learning, we set the hyper-parameters λ ∈
{0, 1, 2, 4, 8, 16} and γ ∈ {0.25, 0.5, 1, 2, 4, 8.} using 10-fold cross-validation. For
this setup, we observed the classification performance summarized in Table 1.
While the results are not as good as those of the exact MM solution, in terms of the
absolute reduction in CR, we can clearly observe an improvement in classification
performanceusing theproposedMMparameter learningmethodover theproposed
MLparameter learningmethod formanydatasets.Theperformance ofBNCsusing
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Table 1. Classification performance. CRs using ML/MM parameters accord-
ing to (10)/(16) in double-precision are denoted as ML exact/MM exact.
CRs using reduced-precision ML/MM parameters computed according to Algo-
rithm 1/Algorithm 3 using only reduced-precision arithmetic are denoted as ML
prop./MM prop.; ML abs./MM abs. denote the absolute reduction in CR for double-
precision ML/MM parameters to reduced-precision ML/MM parameters.

ML – CR [%] MM – CR [%]

Dataset Structure exact prop. abs. exact prop. abs.

USPS NB 86.89 86.34 0.55 93.91 93.17 0.74
TAN 91.39 90.05 1.34 93.01 93.50 −0.49

MNIST NB 82.88 80.61 2.26 93.11 93.00 0.11
TAN 90.49 87.92 2.57 93.49 93.83 −0.34

australian NB 85.92 85.48 0.44 87.24 85.63 1.61
TAN 81.97 84.46 −2.49 84.76 83.58 1.18

breast NB 97.63 97.48 0.15 97.04 97.63 −0.59
TAN 95.85 96.15 −0.30 96.00 94.52 1.48

chess NB 87.45 86.20 1.25 97.68 94.32 3.36
TAN 92.19 92.13 0.06 97.99 96.27 1.73

cleve NB 82.87 83.55 −0.68 82.53 80.84 1.69
TAN 79.09 80.47 −1.37 80.79 75.69 5.10

corral NB 89.16 89.22 −0.07 93.36 93.36 0.00
TAN 97.53 94.96 2.57 100.00 99.20 0.80

crx NB 86.84 86.22 0.62 86.06 86.68 −0.62
TAN 83.73 84.04 −0.31 84.20 83.58 0.62

diabetes NB 73.96 72.65 1.31 74.87 75.01 −0.14
TAN 73.83 73.44 0.39 74.35 71.73 2.62

flare NB 77.16 75.81 1.34 83.11 83.97 −0.86
TAN 83.59 79.46 4.13 83.30 83.20 0.10

german NB 74.50 72.90 1.60 75.30 73.80 1.50
TAN 72.60 71.80 0.80 72.60 72.10 0.50

glass NB 71.16 71.66 −0.50 70.61 71.08 −0.47
TAN 71.11 69.58 1.53 72.61 69.55 3.05

heart NB 81.85 82.96 −1.11 83.33 84.44 −1.11
TAN 81.48 81.11 0.37 81.48 81.48 0.00

hepatitis NB 89.83 89.83 0.00 92.33 88.67 3.67
TAN 84.83 87.33 −2.50 86.17 88.58 −2.42

letter NB 74.95 74.41 0.54 85.79 81.50 4.30
TAN 86.26 85.93 0.33 88.57 88.43 0.14

lymphography NB 84.23 85.71 −1.48 82.80 87.31 −4.51
TAN 82.20 82.86 −0.66 76.92 80.66 −3.74

nursery NB 89.97 89.63 0.35 93.03 93.05 −0.02
TAN 92.87 92.87 0.00 98.68 98.12 0.56

satimage NB 81.56 82.02 −0.45 88.41 86.96 1.45
TAN 85.85 86.40 −0.55 86.98 87.44 −0.47

segment NB 92.68 91.90 0.78 95.37 93.85 1.52
TAN 94.85 94.89 −0.04 95.76 95.63 0.13

shuttle NB 99.66 99.10 0.56 99.95 99.86 0.09
TAN 99.88 99.71 0.17 99.93 99.87 0.06

soybean-large NB 93.35 92.80 0.56 91.50 92.05 −0.55
TAN 91.14 89.12 2.02 91.87 92.61 −0.74

spambase NB 90.03 89.88 0.15 94.08 93.19 0.89
TAN 92.97 92.79 0.17 94.03 93.73 0.31

vehicle NB 61.57 61.93 −0.36 67.95 69.16 −1.21
TAN 71.09 68.91 2.18 69.88 69.16 0.72

vote NB 90.16 90.63 −0.47 94.61 94.61 0.00
TAN 94.61 94.60 0.01 95.31 94.60 0.71

waveform-21 NB 81.14 81.18 −0.04 85.14 84.16 0.98
TAN 82.52 82.20 0.32 83.48 83.94 −0.46
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the optimal double-precision parameters is in many cases not significantly better.
Note that the hyper-parameters used for determining double-precision parameters
are different than those used for determining reduced-precision parameters, i.e. a
larger range of values is used (details are provided in [12]). The larger range of val-
ues cannot be used in case of reduced-precision parameters because of the limited
parameter resolution.

6 Discussions

We proposed online algorithms for learning BNCs with reduced-precision fixed-
point parameters using reduced-precision computations only. This facilitates the
utilization of BNCs in computationally constrained platforms, e.g. embedded-
and ambient-systems, as well as power-aware systems. The algorithms differ
from naive implementations of conventional algorithms by avoiding error-prone
parameter projections commonly used in gradient ascent/descent algorithms. In
experiments, we demonstrated that our algorithms yield parameters that achieve
classification performances close to that of optimal double-precision parameters
for many of the investigated datasets.

Our algorithms have similarities with a very simple method for learn-
ing discriminative parameters of BNCs known as discriminative frequency
estimates [19]. According to this method, parameters are estimated using a
perceptron-like algorithm, where parameters are updated by the prediction loss,
i.e. the difference of the class posterior of the correct class (which is assumed to
be 1 for the data in the training set) and the class posterior according to the
model using the current parameters.
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