Arithmetical Congruence Preservation: from Finite to Infinite

Patrick CÉGIELSKI ${ }^{1}$
LACL, EA 4219, Université Paris-Est Créteil, France
cegielski@u-pec.fr
Serge GRIGORIEFF ${ }^{1}$
LIAFA, CNRS and Université Paris-Diderot, France
seg@liafa.univ-paris-diderot.fr
Irène GUESSARIAN ${ }^{1}{ }^{2}$
LIAFA, CNRS and Université Paris-Diderot, France
ig@liafa.univ-paris-diderot.fr

Abstract

Various problems on integers lead to the class of congruence preserving functions on rings, i.e. functions verifying $a-b$ divides $f(a)-f(b)$ for all a, b. We characterized these classes of functions in terms of sums of rational polynomials (taking only integral values) and the function giving the least common multiple of $1,2, \ldots, k$. The tool used to obtain these characterizations is "lifting": if $\pi: X \rightarrow Y$ is a surjective morphism, and f a function on Y a lifting of f is a function F on X such that $\pi \circ F=f \circ \pi$. In this paper we relate the finite and infinite notions by proving that the finite case can be lifted to the infinite one. For p-adic and profinite integers we get similar characterizations via lifting. We also prove that lattices of recognizable subsets of \mathbb{Z} are stable under inverse image by congruence preserving functions.

1 Introduction

A function f (on \mathbb{N} or \mathbb{Z}) is said to be congruence preserving if $a-b$ divides $f(a)-f(b)$. Polynomial functions are obvious examples of congruence preserving functions. In [3, 4] we characterized this notion (which we named "functions having the integral difference ratio property") for functions $\mathbb{N} \rightarrow \mathbb{Z}$ and $\mathbb{Z} \rightarrow \mathbb{Z}$. In [5] we extended the characterization to functions $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ (for a suitable extension of the notion of congruence preservation).

In the present paper, we prove in $\$ 2$ that every congruence preserving function $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ can be lifted to a congruence preserving function $\mathbb{N} \rightarrow \mathbb{N}$ (i.e. it is the projection of such a function). As a corollary (i) we show that such a lift also works replacing \mathbb{N} with $\mathbb{Z} / q n \mathbb{Z}$ and (ii) and we give an alternative

[^0]proof of a representation (obtained in [5]) of congruence preserving functions $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ as linear sums of "rational" polynomials.

In $\$ 3$ we consider the rings of p-adic integers (resp. profinite integers) and prove that congruence preserving functions are inverse limits of congruence preserving functions on the $\mathbb{Z} / p^{k} \mathbb{Z}$ (resp. on the $\mathbb{Z} / n \mathbb{Z}$). Considering the Mahler representation of continuous functions by Newton series, we prove that congruence preserving functions correspond to those series for which the linear coefficient with rank k is divisible by the least common multiple of $1, \ldots, k$.

We proved in [2] that lattices of regular subsets of \mathbb{N} are closed under inverse image by congruence preserving functions: in we extend this result to functions $\mathbb{Z} \rightarrow \mathbb{Z}$.

2 Congruence preservation: exchanging finite and infinite

We characterize congruence preserving functions on $\mathbb{Z} / n \mathbb{Z}$ by first lifting each such function into a congruence preserving function $\mathbb{N} \rightarrow \mathbb{N}$. In a second step, we use our characterization of congruence preserving functions $\mathbb{N} \rightarrow \mathbb{Z}$ to characterize the congruence preserving functions $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$.

Definition 1. Let X be a subset of a commutative (semi-)ring ($R,+, \times$). A function $f: X \rightarrow R$ is said to be congruence preserving if
$\forall x, y \in X \quad \exists d \in R \quad f(x)-f(y)=d(x-y), \quad$ i.e. $x-y$ divides $f(x)-f(y)$.
Definition 2 (Lifting). Let $\sigma: X \rightarrow N$ and $\rho: Y \rightarrow M$ be surjective maps. A function $F: X \rightarrow Y$ is said to be a (σ, ρ)-lifting of a function $f: N \rightarrow M$ (or simply lifting if σ, ρ are clear from the context) if the following diagram commutes:

We will consider elements of $\mathbb{Z} / k \mathbb{Z}$ as integers and vice versa via the following maps.

Notation 3. 1. Let $\pi_{k}: \mathbb{Z} \rightarrow \mathbb{Z} / k \mathbb{Z}$ be the canonical surjective homomorphism associating to an integer its class in $\mathbb{Z} / k \mathbb{Z}$.
2. Let $\iota_{k}: \mathbb{Z} / k \mathbb{Z} \rightarrow \mathbb{N}$ be the injective map associating to an element $x \in \mathbb{Z} / k Z$ its representative in $\{0, \ldots, k-1\}$.
3. Let $\pi_{n, m}: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ be the map $\pi_{n, m}=\pi_{m} \circ \iota_{n}$. In case m divides n, $\pi_{n, m}$ is a surjective homomorphism.

If $m \leq n$ let $\iota_{m, n}: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ be the injective map $\iota_{m, n}=\pi_{n} \circ \iota_{m}$.
Lemma 4. If m divides $n, \pi_{m}=\pi_{n, m} \circ \pi_{n}$.

The next theorem insures that congruence preserving functions $\mathbb{Z} / n \mathbb{Z} \rightarrow$ $\mathbb{Z} / n \mathbb{Z}$ can be lifted to congruence preserving functions $\mathbb{N} \rightarrow \mathbb{Z}$.

Theorem 5 (Lifting functions $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ to $\mathbb{N} \rightarrow \mathbb{N}$). Let $f: \mathbb{Z} / n \mathbb{Z} \rightarrow$ $\mathbb{Z} / n \mathbb{Z}$ with $m \geq 2$. The following conditions are equivalent:
(1) f is congruence preserving.
(2) f can be $\left(\pi_{n}, \pi_{n}\right)$-lifted to a congruence preserving function $F: \mathbb{N} \rightarrow \mathbb{N}$.

In view of applications in the context of p-adic and profinite integers, we state and prove a slightly more general version with an extended notion of congruence preservation defined below.

Definition 6. A function $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ is congruence preserving if

$$
\begin{equation*}
\text { for all } x, y \in \mathbb{Z} / n \mathbb{Z}, \quad \pi_{n, m}(x-y) \text { divides } f(x)-f(y) \text { in } \mathbb{Z} / m \mathbb{Z} \tag{1}
\end{equation*}
$$

Theorem 7 (Lifting functions $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ to $\mathbb{N} \rightarrow \mathbb{N}$). Let $f: \mathbb{Z} / n \mathbb{Z} \rightarrow$ $\mathbb{Z} / m \mathbb{Z}$ with m divides n and $m \geq 2$. The following conditions are equivalent:
(1) f is congruence preserving.
(2) f can be $\left(\pi_{n}, \pi_{m}\right)$-lifted to a congruence preserving function $F: \mathbb{N} \rightarrow \mathbb{N}$.
(3) f can be $\left(\pi_{n}, \pi_{m}\right)$-lifted to a congruence preserving function $F: \mathbb{N} \rightarrow \mathbb{Z}$.

Proof. (2) $\Rightarrow(3)$ is trivial.
$(3) \Rightarrow(1)$. Assume f lifts to the congruence preserving function $F: \mathbb{N} \rightarrow \mathbb{Z}$.
The following diagram commutes

$$
\begin{aligned}
& \quad \mathbb{N} \xrightarrow{F} \mathbb{Z} \\
& \pi_{n} \downarrow \\
& \\
& \mathbb{Z} / n \mathbb{Z} \xrightarrow{f} \mathbb{d} \pi_{m} \text { and thus }\left\{\begin{aligned}
\pi_{m} \circ F & =f \circ \pi_{n} \\
f & =\pi_{m} \circ F \circ \iota_{n}
\end{aligned}\right.
\end{aligned}
$$

Let $x, y \in \mathbb{Z} / n \mathbb{Z}$. As F is congruence preserving, $\iota_{n}(x)-\iota_{n}(y)$ divides $F\left(\iota_{n}(x)\right)-$ $F\left(\iota_{n}(y)\right)$, hence $F\left(\iota_{n}(x)\right)-F\left(\iota_{n}(y)\right)=\left(\iota_{n}(x)-\iota_{n}(y)\right) \delta$. Since π_{m} is a morphism and $\pi_{m} \circ \iota_{n}=\pi_{n, m}$, we get $\pi_{m}\left(F\left(\iota_{n}(x)\right)\right)-\pi_{m}\left(F\left(\iota_{n}(x)\right)\right)=\pi_{n, m}(x-y) \pi_{n, m}(\delta)$. As F lifts f we have $\pi_{m}\left(F\left(\iota_{n}(x)\right)\right)-\pi_{m}\left(F\left(\iota_{n}(y)\right)\right)=f(x)-f(y)$ whence (1). $(1) \Rightarrow(2)$. By induction on $t \in \mathbb{N}$ we define a sequence of functions $\varphi_{t}:\{0, \ldots, t\} \rightarrow$ \mathbb{N} for $t \in \mathbb{N}$ such that φ_{t+1} extends φ_{t} and $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ below hold.

$$
\left\{\begin{array}{cl}
\left({ }^{*}\right) & \varphi_{t} \text { is congruence preserving, } \\
\left({ }^{*}\right) & \pi_{m}\left(\varphi_{t}(u)\right)=f\left(\pi_{n}(u)\right) \text { for all } u \in\{0, \ldots, t\} .
\end{array}\right.
$$

Basis. We choose $\varphi_{0}(0) \in \mathbb{N}$ such that $\pi_{m}\left(\varphi_{0}(0)\right)=f\left(\pi_{n}(0)\right)$. Properties $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ clearly hold for φ_{0}.
Induction: from φ_{t} to φ_{t+1}. Since the wanted φ_{t+1} has to extend φ_{t} to the
domain $\{0, \ldots, t, t+1\}$, we only have to find a convenient value for $\varphi_{t+1}(t+1)$. By the induction hypothesis, $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ hold for φ_{t}; in order for φ_{t+1} to satisfy $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$, we have to find $\varphi_{t+1}(t+1)$ such that $t+1-i$ divides $\varphi_{t+1}(t+1)-\varphi_{t}(i)$, for $i=0, \ldots, t$, and $\pi_{m}\left(\varphi_{t+1}(t+1)\right)=f\left(\pi_{n}(t+1)\right)$. Rewritten in terms of congruences, these conditions amount to say that $\varphi_{t+1}(t+1)$ is a solution of the following system of congruence equations:
$\left.\begin{array}{c|lll}\star(0) & \varphi_{t+1}(t+1) & \equiv \varphi_{t}(0) & (\bmod t+1) \\ & \vdots & (\bmod t+1-i) \\ \star(\mathrm{i}) & \varphi_{t+1}(t+1) & \equiv \varphi_{t}(i) & \\ & \vdots & (\bmod 2) \\ \star(\mathrm{t}-1) & \varphi_{t+1}(t+1) & \equiv \varphi_{t}(t-1) & (\bmod m) \\ \star \star & \varphi_{t+1}(t+1) & \equiv \iota_{m}\left(f\left(\pi_{n}(t+1)\right)\right)\end{array}\right\}$

Recall the Generalized Chinese Remainder Theorem (cf. §3.3, exercice 9 p. 114, in Rosen's textbook [12]): a system of congruence equations

$$
\bigwedge_{i=0, \ldots, t} x \equiv a_{i} \quad\left(\bmod n_{i}\right)
$$

has a solution if and only if $a_{i} \equiv a_{j} \bmod \operatorname{gcd}\left(n_{i}, n_{j}\right)$ for all $0 \leq i<j \leq t$.
Let us show that the conditions of application of the Generalized Chinese Remainder Theorem are satisfied for system (2).

- Lines \star (i) and $\star(\mathrm{j})$ of system (2) (with $0 \leq i<j \leq t-1$).

Every common divisor to $t+1-i$ and $t+1-j$ divides their difference $j-i$ hence $\operatorname{gcd}(t+1-i, t+1-j)$ divides $j-i$. Since φ_{t} satisfies $\left(^{*}\right)$, $j-i$ divides $\varphi_{t}(j)-\varphi_{t}(i)$ and a fortiori $\operatorname{gcd}(t+1-i, t+1-j)$ divides $\varphi_{t}(j)-\varphi_{t}(i)$.

- Lines \star (i) and $\star \star$ of system (2) (with $0 \leq i \leq t-1$).

Let $d=\operatorname{gcd}(t+1-i, m)$. We have to show that d divides $\iota_{m}\left(f\left(\pi_{n}(t+1)\right)\right)-$ $\varphi_{t}(i)$. Since f is congruence preserving, $\pi_{n, m}\left(\pi_{n}(t+1)-\pi_{n}(i)\right)$ divides $f\left(\pi_{n}(t+1)\right)-f\left(\pi_{n}(i)\right)$. As m divides n, by Lemma 4 $\pi_{n, m}\left(\pi_{n}(t+1)-\right.$ $\left.\pi_{n}(i)\right)=\pi_{m}(t+1)-\pi_{m}(i)=\pi_{m}(t+1-i)$ and $f\left(\pi_{n}(t+1)\right)-f\left(\pi_{n}(i)\right)=$ $k \pi_{m}(t+1-i)$ for some $k \in \mathbb{Z} / m \mathbb{Z}$. Applying ι_{m}, there exists $\lambda \in \mathbb{Z}$ such that

$$
\iota_{m}\left(f\left(\pi_{n}(t+1)\right)\right)-\iota_{m}\left(f\left(\pi_{n}(i)\right)\right)=\iota_{m}(k) \iota_{m}\left(\pi_{m}(t+1-i)\right)+\lambda m
$$

as $\iota_{m}\left(\pi_{m}(u)\right) \equiv u(\bmod m)$ for every $u \in \mathbb{Z}$, there exists $\mu \in \mathbb{Z}$ such that

$$
\begin{equation*}
\iota_{m}\left(f\left(\pi_{n}(t+1)\right)\right)-\iota_{m}\left(f\left(\pi_{n}(i)\right)\right)=\iota_{m}(k)(t+1-i)+\mu m+\lambda m \tag{3}
\end{equation*}
$$

Since φ_{t} satisfies $\left({ }^{* *}\right)$, we have $\pi_{m}\left(\varphi_{t}(i)\right)=f\left(\pi_{n}(i)\right)$ hence
$\varphi_{t}(i) \equiv \iota_{m}\left(f\left(\pi_{n}(i)\right)\right)(\bmod m)$. Thus equation (3) can be rewritten

$$
\begin{equation*}
\iota_{m}\left(f\left(\pi_{n}(t+1)\right)\right)-\varphi_{t}(i)=(t+1-i) \iota_{m}(k)+\nu m \quad \text { for some } \nu \tag{4}
\end{equation*}
$$

As d divides m and $t+1-i$, (4) shows that d divides $\iota_{n}\left(f\left(\pi_{n}(t+1)\right)\right)-\varphi_{t}(i)$ as wanted.

Thus, we can apply the Generalized Chinese Theorem and get the wanted value of $\varphi_{t+1}(t+1)$, concluding the induction step.
Finally, taking the union of the φ_{t} 's, $t \in \mathbb{N}$, we get a function $F: \mathbb{N} \rightarrow \mathbb{N}$ which is congruence preserving and lifts f.

Example 8 (counterexample to Theorem (7). Lemma 4 and Theorem 7 do not hold if m does not divide n. Consider $f: \mathbb{Z} / 6 \mathbb{Z} \rightarrow \mathbb{Z} / 8 \mathbb{Z}$ defined by $f(0)=0$, $f(1)=3, f(2)=4, f(3)=1, f(4)=4, f(5)=7$. Note first that, in $\mathbb{Z} / 8 \mathbb{Z}$, 1,3 and 5 are invertible, hence f is congruence preserving iff for $k \in\{2,4\}$, for all $x \in \mathbb{Z} / 6 \mathbb{Z}, k$ divides $f(x+k)-f(x)$ and this holds; nevertheless, f has no congruence preserving lift $F: \mathbb{Z} \rightarrow \mathbb{Z}$. If such a lift F existed, we should have
(1) because F lifts $f, \pi_{8}(F(0))=f\left(\pi_{6}(0)\right)=0$ and $\pi_{8}(F(8))=f\left(\pi_{6}(8)\right)=f(2)=$ 4;
(2) as F is congruence preserving, 8 must divide $F(8)-F(0)$; we already noted that 8 divides $F(0)$, hence 8 divides $F(8)$ and $\pi_{8}(F(8))=0$, contradicting $\pi_{8}(F(8))=4$.

Note that $\pi_{6,8}$ is neither a homomorphism nor surjective and $0=\pi_{8}(8) \neq$ $\pi_{6,8} \circ \pi_{6}(8)=2$.

As a first corollary of Theorem 7 we get a new proof of the representations of congruence preserving functions $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ as finite linear sums of polynomials with rational coefficients (cf. [5). Let us recall the so-called binomial polynomials.

Definition 9. For $k \in \mathbb{N}$, let $P_{k}(x)=\binom{x}{k}=\frac{1}{k!} \prod_{\ell=0}^{\ell=k-1}(x-\ell)$.
Though P_{k} has rational coefficients, it maps \mathbb{N} into \mathbb{Z}. Also, observe that $P_{k}(x)$ takes value 0 for all $k>x$. This implies that for any sequence of integers $\left(a_{k}\right)_{k \in \mathbb{N}}$, the infinite sum $\sum_{k \in \mathbb{N}} a_{k} P_{k}(x)$ reduces to a finite sum for any $x \in \mathbb{N}$ hence defines a function $\mathbb{N} \rightarrow \mathbb{Z}$.

Definition 10. We denote by lcm (k) the least common multiple of integers $1, \ldots, k$ (with the convention $\operatorname{lcm}(0)=1$).

Definition 11. To each binomial polynomial $P_{k}, k \in \mathbb{N}$, we associate a function $P_{k}^{n, m}: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ which sends an element $x \in \mathbb{Z} / n \mathbb{Z}$ to $\left(\pi_{m} \circ P_{k} \circ \iota_{n}\right)(x) \in$ $\mathbb{Z} / m \mathbb{Z}$.

In other words, consider the representative t of x lying in $\{0, \ldots, n-1\}$, evaluate $P_{k}(t)$ in \mathbb{N} and then take the class of the results in $\mathbb{Z} / m \mathbb{Z}$.

Lemma 12. If lcm (k) divides a_{k} in \mathbb{Z}, then the function $\pi_{m}\left(a_{k}\right) P_{k}^{n, m}: \mathbb{Z} / n \mathbb{Z} \rightarrow$ $\mathbb{Z} / m \mathbb{Z}$ (represented by $a_{k} P_{k}$) is congruence preserving.

Proof. In [3] we proved that if $\operatorname{lcm}(k)$ divides a_{k} then $a_{k} P_{k}$ is a congruence preserving function on \mathbb{N}. Let us now show that $\pi_{m}\left(a_{k}\right) P_{k}^{n, m}: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ is also congruence preserving. Let $x, y \in \mathbb{Z} / n \mathbb{Z}$: as $a_{k} P_{k}$ is congruence preserving, $\iota_{n}(x)-\iota_{n}(y)$ divides $a_{k} P_{k}\left(\iota_{n}(x)\right)-a_{k} P_{k}\left(\iota_{n}(y)\right)$. As π_{m} is a morphism, $\pi_{m}\left(\iota_{n}(x)\right)-\pi_{m}\left(\iota_{n}(y)\right)$ divides $\pi_{m}\left(a_{k}\right) \pi_{m}\left(P_{k}\left(\iota_{n}(x)\right)\right)-\pi_{m}\left(a_{k}\right) \pi_{m}\left(P_{k}\left(\iota_{n}(y)\right)\right)=$ $\pi_{m}\left(a_{k}\right) P_{k}^{n, m}(x)-\pi_{m}\left(a_{k}\right) P_{k}^{n, m}(x)$; as $\pi_{m} \circ \iota_{n}=\pi_{n, m}$ (Notation 3), we conclude that $\pi_{m}\left(a_{k}\right) P_{k}^{n, m}$ is congruence preserving.

Corollary 13 ([5]). Let $1 \leq m=p_{1}^{\alpha_{1}} \cdots p_{\ell}^{\alpha_{\ell}}$, p_{i} prime. Suppose m divides n and let $\nu(m)=\max _{i=1, \ldots, \ell} p_{i}^{\alpha_{i}}$. A function $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ is congruence preserving if and only if it is represented by a finite \mathbb{Z}-linear sum such that $\operatorname{lcm}(k)$ divides $a_{k}($ in $\mathbb{Z})$ for all $k<\nu(m)$, i.e. $f=\sum_{k=0}^{\nu(m)-1} \pi_{m}\left(a_{k}\right) P_{k}^{n, m}$.

Proof. Assume $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ is congruence preserving. Applying Theorem 7, lift f to $F: \mathbb{N} \rightarrow \mathbb{N}$ which is congruence preserving.

We proved in 5 that every congruence preserving function $F: \mathbb{N} \rightarrow \mathbb{N}$ is of the form $F=\sum_{k=0}^{\infty} a_{k} P_{k}$ where $\operatorname{lcm}(k)$ divides a_{k} for all k. Since F lifts f, for $u \in \mathbb{Z}$, we have

$$
\begin{align*}
f\left(\pi_{n}(u)\right)= & \pi_{m}(F(u))=\pi_{m}\left(\sum_{k=0}^{\infty} a_{k} P_{k}(u)\right) \\
& =\sum_{k=0}^{\infty} \pi_{m}\left(a_{k}\right) \pi_{m}\left(P_{k}(u)\right)=\sum_{k=0}^{k=\nu(m)-1} \pi_{m}\left(a_{k}\right) \pi_{m}\left(P_{k}(u)\right) \tag{5}
\end{align*}
$$

The last equality is obtained by noting that for $k \geq \nu(m)$, m divides $l c m(k)$ hence as a_{k} is a multiple of $\operatorname{lcm}(k), \pi_{m}\left(a_{k}\right)=0$. From (5) we get $f\left(\pi_{n}(u)\right)=$ $\sum_{k=0}^{k=\nu(m)-1} \pi_{m}\left(a_{k}\right) \pi_{m}\left(P_{k}(u)\right)=\pi_{m}\left(\sum_{k=0}^{k=\nu(m)-1} a_{k} P_{k}(u)\right)$. This proves that f is lifted to the rational polynomial function $\sum_{k=0}^{k=\nu(m)-1} a_{k} P_{k}$.

The converse follows from Lemma 12 and the fact that any finite sum of congruence preserving functions is congruence preserving.

As a second corollary of Theorem 7 we can lift congruence preserving functions $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ to congruence preserving functions $\mathbb{Z} / q n \mathbb{Z} \rightarrow \mathbb{Z} / q n \mathbb{Z}$.

We state a slightly more general result.
Corollary 14. Assume $m, n, q, r \geq 1, m$ divides both n and s, and n, s both divide r. If $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ is congruence preserving then it can be $\left(\pi_{r, n}, \pi_{s, m}\right)$ lifted to $g: \mathbb{Z} / r \mathbb{Z} \rightarrow \mathbb{Z} / s \mathbb{Z}$ which is also congruence preserving.

Proof. Using Theorem [7, lift f to a congruence preserving $F: \mathbb{N} \rightarrow \mathbb{N}$ and set $g=\pi_{s} \circ F \circ \iota_{r}$. We show that the following diagram commutes:

$$
\pi_{s, m} \circ g=\pi_{s, m} \circ\left(\pi_{s} \circ F \circ \iota_{r}\right)
$$

$$
=\left(\pi_{m} \circ F\right) \circ \iota_{r} \quad \text { by Lemma 4 since } \pi_{m}=\pi_{s, m} \circ \pi_{s}
$$

$$
=\left(f \circ \pi_{n}\right) \circ \iota_{r} \quad \text { since } F \operatorname{lifts} f
$$

$$
=f \circ \pi_{r, n} \quad \text { since } \pi_{n} \circ \iota_{r}=\pi_{r, n}
$$

Thus, $\pi_{s, m} \circ g=f \circ \pi_{r, n}$, i.e. g lifts f.
Finally, if $x, y \in \mathbb{Z} / r \mathbb{Z}$ then $\iota_{r}(x)-\iota_{r}(y)$ divides $F\left(\iota_{r}(x)\right)-F\left(\iota_{r}(y)\right)$ (by congruence preservation of $F)$. Since π_{s} is a morphism and $\pi_{s}=\pi_{r, s} \circ \pi_{r}$, we deduce that $\pi_{s}\left(\iota_{r}(x)\right)-\pi_{s}\left(\iota_{r}(y)\right)=\left(\pi_{r, s} \circ \pi_{r} \circ \iota_{r}\right)(x)-\left(\pi_{r, s} \circ \pi_{r} \circ \iota_{r}\right)(y)=\pi_{r, s}(x-$ $y)\left(\right.$ recall $\pi_{r} \circ \iota_{r}$ is the identity on $\left.\mathbb{Z} / r \mathbb{Z}\right)$ divides $\pi_{s}\left(F\left(\iota_{r}(x)\right)\right)-\pi_{s}\left(F\left(\iota_{r}(y)\right)=\right.$ $g(x)-g(y)$ (by definition of g). Thus, g is congruence preserving.

Remark 15. The previous diagram is completely commutative: F lifts both f and g, and g lifts $f:$ as r divides $x-\iota_{r} \circ \pi_{r}(x)$ for all x, and F is congruence preserving, r divides $F(x)-F \circ \iota_{r} \circ \pi_{r}(x)$, and because s divides $r, \pi_{s} \circ F(x)=$ $\pi_{s} \circ F \circ \iota_{r} \circ \pi_{r}(x)$ hence $\pi_{s} \circ F=g \circ \pi_{r}=\pi_{s} \circ F \circ \iota_{r} \circ \pi_{r}$.

3 Congruence preservation on p-adic/profinite integers

All along this section, p is a prime number; we study congruence preserving functions on the rings \mathbb{Z}_{p} of p-adic integers and $\widehat{\mathbb{Z}}$ of profinite integers. \mathbb{Z}_{p} is the projective limit $\lim _{幺} \mathbb{Z} / p^{n} \mathbb{Z}$ relative to the projections $\pi_{p^{n}, p^{m}}$. Usually, $\widehat{\mathbb{Z}}$ is defined as the projective limit $\lim \mathbb{Z} / n \mathbb{Z}$ of the finite rings $\mathbb{Z} / n \mathbb{Z}$ relative to the projections $\pi_{n, m}$, for m dividing n. We here use the following equivalent definition which allows to get completely similar proofs for \mathbb{Z}_{p} and $\widehat{\mathbb{Z}}$.
$\widehat{\mathbb{Z}}=\lim _{\rightleftarrows} \mathbb{Z} / n!\mathbb{Z}=\left\{\hat{x}=\left(x_{n}\right)_{n=1}^{\infty} \in \prod_{n=1}^{\infty} \mathbb{Z} / n!\mathbb{Z} \mid \forall m<n, x_{m} \equiv x_{n}(\bmod m!)\right\}$
Recall that $\mathbb{Z}_{p}($ resp. $\widehat{\mathbb{Z}})$ contains the ring \mathbb{Z} and is a compact topological ring for the topology given by the ultrametric d such that $d(x, y)=2^{-n}$ where n is largest such that p^{n} (resp. $n!$) divides $x-y$, i.e. x and y have the same first n digits in their base p (resp. base factorial) representation. We refer to
the Appendix for some basic definitions, representations and facts that we use about the compact topological rings \mathbb{Z}_{p} and $\widehat{\mathbb{Z}}$.
We first prove that on \mathbb{Z}_{p} and $\widehat{\mathbb{Z}}$ every congruence preserving function is continuous (Proposition 17).

Definition 16. 1. Let $\mu: \mathbb{N} \rightarrow \mathbb{N}$ be increasing. A function $\Psi: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ admits μ as modulus of uniform continuity if and only if $d(x, y) \leq 2^{-\mu(n)}$ implies $d(\Psi(x), \Psi(y)) \leq 2^{-n}$.
2. Φ is 1-Lipschitz if it admits the identity as modulus of uniform continuity.

Since the rings \mathbb{Z}_{p} and $\widehat{\mathbb{Z}}$ are compact, every continuous function admits a modulus of uniform continuity.

Proposition 17. Every congruence preserving function $\Psi: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is 1Lipschitz. Idem with $\widehat{\mathbb{Z}}$ in place of \mathbb{Z}_{p}.

Proof. If $d(x, y) \leq 2^{-n}$ then p^{n} divides $x-y$ hence (by congruence preservation) p^{n} also divides $\Psi(x)-\Psi(y)$ which yields $d(\Psi(x), \Psi(y)) \leq 2^{-n}$.

The converse of Proposition 17 is false: a continuous function is not necessarily congruence preserving as will be seen in Example 28. Note the following
Corollary 18. There are functions $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ (resp. $\widehat{\mathbb{Z}} \rightarrow \widehat{\mathbb{Z}}$) which are not continuous hence not congruence preserving.

Proof. As \mathbb{Z}_{p} has cardinality $2^{\aleph_{0}}$ there are $2^{2^{\aleph_{0}}}$ functions $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$. Since \mathbb{N} is dense in $\mathbb{Z}_{p}, \mathbb{Z}_{p}$ is a separable space, hence there are at most $2^{\aleph_{0}}$ continuous functions.

In general an arbitrary continuous function on \mathbb{Z}_{p} is not the inverse limit of a sequence of functions $\mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$'s. However, this is true for congruence preserving functions. We first recall how any continuous function $\Psi: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is the inverse limit of a sequence of an inverse system of continuous functions $\psi_{n}: \mathbb{Z} / p^{\mu(n)} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}, n \in \mathbb{N}$, i.e. the diagrams of Figure 1 commute for any $m \leq n$. For legibility, we use notations adapted to \mathbb{Z}_{p} : we write π_{n}^{p} for $\pi_{p^{n}}: \mathbb{Z}_{p} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}, \pi_{n, m}^{p}$ (resp. $\iota_{n, m}^{p}$) for $\pi_{p^{n}, p^{m}}\left(\right.$ resp. $\left.\iota_{p^{n}, p^{m}}\right)$, and ι_{n}^{p} for $\iota_{p^{n}}: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z}_{p}$.
Proposition 19. Consider $\Psi: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ and a strictly increasing $\mu: \mathbb{N} \rightarrow \mathbb{N}$. Define $\psi_{n}: \mathbb{Z} / p^{\mu(n)} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$ as $\psi_{n}=\pi_{n}^{p} \circ \Psi \circ \iota_{\mu(n)}^{p}$ for all $n \in \mathbb{N}$.
Then the following conditions are equivalent:
(1) Ψ is uniformly continuous and admits μ as a modulus of uniform continuity.
(2) For all $1 \leq m \leq n$, the diagrams of Figure 1 commute hence Ψ is the inverse limit of the ψ_{n} 's, $n \in \mathbb{N}$.
Idem with $\widehat{\mathbb{Z}}$ in place of \mathbb{Z}_{p}.

Figure 1: Ψ as the inverse limit of the $\psi_{n}{ }^{\prime} s, n \in \mathbb{N}$.

Proof. (1) and (2) are also equivalent to (3) below.
(3) For all $1 \leq m \leq n$, the lower half of the diagram of Figure 1 commutes. $(1) \Rightarrow(2)$. \bullet We first show $\pi_{n}^{p} \circ \Psi=\psi_{n} \circ \pi_{\mu(n)}^{p}$. Let $u \in \mathbb{Z}_{p}$. Since $\pi_{\mu(n)}^{p} \circ \iota_{\mu(n)}^{p}$ is the identity on $\mathbb{Z} / p^{\mu(n)} \mathbb{Z}$, we have $\pi_{\mu(n)}^{p}(u)=\pi_{\mu(n)}^{p}\left(\iota_{\mu(n)}^{p}\left(\pi_{\mu(n)}^{p}(u)\right)\right)$ hence $p^{\mu(n)}$ (considered as an element of \mathbb{Z}_{p}) divides the difference $u-\iota_{\mu(n)}^{p}\left(\pi_{\mu(n)}^{p}(u)\right)$, i.e. the distance between these two elements is at most $2^{-\mu(n)}$. As μ is a modulus of uniform continuity for Ψ, the distance between their images under Ψ is at most 2^{-n}, i.e. p^{n} divides their difference, hence $\pi_{n}^{p}(\Psi(u))=\pi_{n}^{p}\left(\Psi\left(\iota_{\mu(n)}^{p}\left(\pi_{\mu(n)}^{p}(u)\right)\right)\right)$. By definition, $\psi_{n}=\pi_{n}^{p} \circ \Psi \circ \iota_{\mu(n)}^{p}$. Thus, $\pi_{n}^{p}(\Psi(u))=\psi_{n}\left(\pi_{\mu(n)}^{p}(u)\right)$, i.e. Ψ lifts ψ_{n}.

- We now show $\pi_{n, m}^{p} \circ \psi_{n}=\psi_{m} \circ \pi_{\mu(n), \mu(m)}^{p}$. Since Ψ lifts ψ_{m}, we have

$$
\begin{aligned}
\pi_{m}^{p} \circ \Psi & =\psi_{m} \circ \pi_{\mu(m)}^{p} \\
\text { hence } \pi_{m}^{p} \circ \Psi \circ \iota_{\mu(n)}^{p} & =\psi_{m} \circ \pi_{\mu(m)}^{p} \circ \iota_{\mu(n)}^{p} \\
\pi_{n, m}^{p} \circ \pi_{n}^{p} \circ \Psi \circ \iota_{\mu(n)}^{p} & =\psi_{m} \circ \pi_{\mu(n), \mu(m)}^{p} \circ \pi_{\mu(n)}^{p} \circ \iota_{\mu(n)}^{p} \\
\pi_{n, m}^{p} \circ \psi_{n} & =\psi_{m} \circ \pi_{\mu(n), \mu(m)}^{p} \quad \text { since } \pi_{\mu(n)}^{p} \circ \iota_{\mu(n)}^{p} \text { is the identity. }
\end{aligned}
$$

This last equality means that ψ_{n} lifts ψ_{m}.
$(2) \Rightarrow(3)$. Trivial
$(3) \Rightarrow(1)$. The fact that Ψ lifts ψ_{n} shows that two elements of \mathbb{Z}_{p} with the same first $\mu(n)$ digits (in the p-adic representation) have images with the same first n digits. This proves that μ is a modulus of uniform continuity for Ψ.

For congruence preserving functions $\Phi: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$, the representation of Proposition 19 as an inverse limit gets smoother since then $\mu(n)=n$.

Theorem 20. For a function $\Phi: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$, letting $\varphi_{n}: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$ be defined as $\varphi_{n}=\pi_{n}^{p} \circ \Phi \circ \iota_{n}^{p}$, the following conditions are equivalent.
(1) Φ is congruence preserving.

Figure 2: Φ as the inverse limit of the φ_{n} 's, $n \in \mathbb{N}$.
(2) Φ is 1-Lipschitz, all φ_{n} 's are congruence preserving and Φ is the inverse limit of the φ_{n} 's, $n \in \mathbb{N}$.
A similar equivalence also holds for functions $\Phi: \widehat{\mathbb{Z}} \rightarrow \widehat{\mathbb{Z}}$.

Proof. (1) and (2) are also equivalent to (3) and (4) below.
(3) All φ_{n} 's are congruence preserving and, for all $1 \leq m \leq n$, the diagrams of Figure 2 commute.
(4) All φ_{n} 's are congruence preserving and, for all $1 \leq m \leq n$, the lower half (dealing with φ_{n} and φ_{m}) of the diagrams of Figure 2 commute.

- (2) $\Leftrightarrow(3) \Leftrightarrow(4)$. Instantiate Proposition 19 with μ the identity on \mathbb{N}.
- (1) $\Rightarrow(2)$. Proposition 17 insures that Φ is 1 -Lipschitz. We show that φ_{n} is congruence preserving. Since Φ is congruence preserving, if $x, y \in \mathbb{Z} / p^{n} \mathbb{Z}$ then $\iota_{n}^{p}(x)-\iota_{n}^{p}(y)$ divides $\Phi\left(\iota_{n}^{p}(x)\right)-\Phi\left(\iota_{n}^{p}(y)\right)$. Now, the canonical projection π_{n}^{p} is a morphism hence $\pi_{n}^{p}\left(\iota_{n}^{p}(x)\right)-\pi_{n}^{p}\left(\iota_{n}^{p}(y)\right)$ divides $\pi_{n}^{p}\left(\Phi\left(\iota_{n}^{p}(x)\right)\right)-\pi_{n}^{p}\left(\Phi\left(\iota_{n}^{p}(y)\right)\right)$. Recall that $\pi_{n}^{p} \circ \iota_{n}^{p}$ is the identity on $\mathbb{Z} / p^{n} \mathbb{Z}$. Thus, $x-y$ divides $\pi_{n}^{p}\left(\Phi\left(\iota_{n}^{p}(x)\right)\right)-$ $\pi_{n}^{p}\left(\Phi\left(\iota_{n}^{p}(y)\right)\right)=\varphi_{n}(x)-\varphi_{n}(y)$ as wanted.
- $(4) \Rightarrow(1)$. The fact that Φ lifts φ_{n} shows that two elements of \mathbb{Z}_{p} with the same first n digits (in the p-adic representation) have images with the same first n digits. This proves that Φ is 1-Lipschitz.
It remains to prove that Φ is congruence preserving. Let $x, y \in \mathbb{Z}_{p}$. Since φ_{n} is congruence preserving $\pi_{n}^{p}(x)-\pi_{n}^{p}(y)$ divides $\varphi_{n}\left(\pi_{n}^{p}(x)\right)-\varphi_{n}\left(\pi_{n}^{p}(y)\right)$. Let

$$
U_{n}^{x, y}=\left\{u \in \mathbb{Z} / p^{n} \mathbb{Z} \mid \varphi_{n}\left(\pi_{n}^{p}(x)\right)-\varphi_{n}\left(\pi_{n}^{p}(y)\right)=\left(\pi_{n}^{p}(x)-\pi_{n}^{p}(y)\right) u\right\}
$$

If $m \leq n$ and $u \in U_{n}^{x, y}$ then, applying $\pi_{n, m}^{p}$ to the equality defining $U_{n}^{x, y}$, and using the commutative diagrams of Figure 2, we get

$$
\begin{aligned}
\varphi_{n}\left(\pi_{n}^{p}(x)\right)-\varphi_{n}\left(\pi_{n}^{p}(y)\right) & =\left(\pi_{n}^{p}(x)-\pi_{n}^{p}(y)\right) u \\
\pi_{n, m}^{p}\left(\varphi_{n}\left(\pi_{n}^{p}(x)\right)\right)-\pi_{n, m}^{p}\left(\varphi_{n}\left(\pi_{n}^{p}(y)\right)\right) & =\left(\pi_{n, m}^{p}\left(\pi_{n}^{p}(x)\right)-\pi_{n, m}^{p}\left(\pi_{n}^{p}(y)\right)\right) \pi_{n, m}^{p}(u) \\
\varphi_{m}\left(\pi_{n, m}^{p}\left(\pi_{n}^{p}(x)\right)\right)-\varphi_{m}\left(\pi_{n, m}^{p}\left(\pi_{n}^{p}(y)\right)\right) & =\left(\pi_{n, m}^{p}\left(\pi_{n}^{p}(x)\right)-\pi_{n, m}^{p}\left(\pi_{n}^{p}(y)\right)\right) \pi_{n, m}^{p}(u) \\
\varphi_{m}\left(\pi_{m}^{p}(x)\right)-\varphi_{m}\left(\pi_{m}^{p}(y)\right) & =\left(\pi_{m}^{p}(x)-\pi_{m}^{p}(y)\right) \pi_{n, m}^{p}(u)
\end{aligned}
$$

Thus, if $u \in U_{n}^{x, y}$ then $\pi_{n, m}^{p}(u) \in U_{m}^{x, y}$.
Consider the tree \mathcal{T} of finite sequences $\left(u_{0}, \ldots, u_{n}\right)$ such that $u_{i} \in U_{i}^{x, y}$ and $u_{i}=\pi_{n, i}^{p}\left(u_{n}\right)$ for all $i=0, \ldots, n$. Since each $U_{n}^{x, y}$ is nonempty, the tree \mathcal{T} is infinite. Since it is at most p-branching, using König's Lemma, we can pick an infinite branch $\left(u_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{T}. This branch defines an element $z \in \mathbb{Z}_{p}$. The commutative diagrams of Figure 2 show that the sequences $\left(\pi_{n}^{p}(x)-\pi_{n}^{p}(y)\right)_{n \in \mathbb{N}}$ and $\varphi_{n}\left(\pi_{n}^{p}(x)\right)-\varphi_{n}\left(\pi_{n}^{p}(y)\right)$ represent $x-y$ and $\Phi(x)-\Phi(y)$ in Z_{p}. Equalities $\varphi_{m}\left(\pi_{m}^{p}(x)\right)-\varphi_{m}\left(\pi_{m}^{p}(y)\right)=\left(\pi_{m}^{p}(x)-\pi_{m}^{p}(y)\right) \pi_{n, m}(u)$ show that (going to the projective limits) $\Phi(x)-\Phi(y)=(x-y) z$. This proves that Φ is congruence preserving.

Congruence preserving functions $\widehat{\mathbb{Z}} \rightarrow \widehat{\mathbb{Z}}$ are determined by their restrictions to \mathbb{N} since \mathbb{N} is dense in \mathbb{Z}. Let us state a (partial) converse result.

Theorem 21. Every congruence preserving function $F: \mathbb{N} \rightarrow \mathbb{Z}$ has a unique extension to a congruence preserving function $\Phi: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ (resp. $\widehat{\mathbb{Z}} \rightarrow \widehat{\mathbb{Z}}$).

Proof. Observe that \mathbb{N} is dense in \mathbb{Z}_{p} (resp. $\widehat{\mathbb{Z}}$) and congruence preservation implies uniform continuity. Thus, F has a unique uniformly continuous extension Φ to \mathbb{Z}_{p} (resp. $\widehat{\mathbb{Z}}$). To show that this extension Φ is congruence preserving, observe that Φ is the inverse limit of the $\varphi_{n}=\rho_{n} \circ \Phi \circ \iota_{n}$'s. Now, since ι_{n} has range \mathbb{N}, we see that $\varphi_{n}=\rho_{n} \circ F \circ \iota_{n}$ hence is congruence preserving as is F. Finally, Theorem 20 insures that Φ is also congruence preserving.

Polynomials in $\mathbb{Z}_{p}[X]$ obviously define congruence preserving functions $\mathbb{Z}_{p} \rightarrow$ \mathbb{Z}_{p}. But non polynomial functions can also be congruence preserving.

Consequence 22. The extensions to \mathbb{Z}_{p} and $\widehat{\mathbb{Z}}$ of the $\mathbb{N} \rightarrow \mathbb{Z}$ functions [3, 4] $x \mapsto\left\lfloor e^{1 / a} a^{x} x!\right\rfloor \quad($ for $a \in \mathbb{Z} \backslash\{0,1\}) \quad, \quad x \mapsto$ if $x=0$ then 1 else $\lfloor e x!\rfloor$
and the Bessel like function $f(n)=\sqrt{\frac{e}{\pi}} \times \frac{\Gamma(1 / 2)}{2 \times 4^{n} \times n!} \int_{1}^{\infty} e^{-t / 2}\left(t^{2}-1\right)^{n} d t$ are congruence preserving.

We now characterize congruence preserving functions via their representation as infinite linear sums of the $P_{k} \mathrm{~s}$; this representation is similar to Mahler's characterization for continuous functions (Theorem 25). First recall the notion of valuation.

Definition 23. The p-valuation (resp. the factorial valuation) $\operatorname{Val}(x)$ of $x \in \mathbb{Z}_{p}$, or $x \in \mathbb{Z} / p^{n} \mathbb{Z}$ (resp. $x \in \widehat{\mathbb{Z}}$) is the largest s such that p^{s} (resp. s!) divides x or is $+\infty$ in case $x=0$. It is also the length of the initial block of zeros in the p-adic (resp. factorial) representation of x.

Note that for any polynomial P_{k} (or more generally any polynomial), the below diagram commutes for any $m \leq n$ (recall that $P_{k}^{p^{n}, p^{n}}=\pi_{p^{n}} \circ P_{k} \circ \iota_{p^{n}}$):

$$
\begin{aligned}
\mathbb{Z} / p^{n} \mathbb{Z} \xrightarrow{P_{k}^{p^{n}, p^{n}}} \mathbb{Z} / p^{n} \mathbb{Z} \\
\pi_{p^{n}, p^{m}} \downarrow \quad \downarrow \pi_{p^{n}, p^{m}} \quad \text { i.e. } \quad \pi_{p^{n}, p^{m}} \circ P_{k}^{p^{n}, p^{n}}=P_{k}^{p^{m}, p^{m}} \circ \pi_{p^{n}, p^{m}} \\
\mathbb{Z} / p^{m} \mathbb{Z} \xrightarrow{P_{k}^{p^{m}, p^{m}}} \mathbb{Z} / p^{m} \mathbb{Z}
\end{aligned}
$$

We now can define the interpretation $\widehat{P_{k}}(x)$ of $P_{k}(x)$ in \mathbb{Z}_{p} (similar for $\widehat{\mathbb{Z}}$).
Definition 24. Define $\widehat{P_{k}}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ as $\widehat{P_{k}}=\lim _{n \in \mathbb{N}} P_{k}^{p^{n}, p^{n}}$. For $x \in \mathbb{Z}_{p}$, $x=\left(\lim _{n \in \mathbb{N}} x_{n}\right)$, we have $\widehat{P_{k}}(x)=\lim _{n \in \mathbb{N}} \pi_{p^{n}}\left(P_{k}\left(\iota_{p^{n}}\left(x_{n}\right)\right)\right)$.

Moreover, the below diagrams commute for all n

Theorem 25 (Mahler, 1956 [9]). 1. A series $\sum_{k \in \mathbb{N}} a_{k} \widehat{P_{k}}(x)$, $a_{k} \in \mathbb{Z}_{p}$, is convergent in \mathbb{Z}_{p} if and only if $\lim _{k \rightarrow \infty} a_{k}=0$, i.e. the corresponding sequence of valuations $\left(\operatorname{Val}\left(a_{k}\right)\right)_{k \in \mathbb{N}}$ tends to $+\infty$.
2. The above series represent all uniformly continuous functions $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$.

Idem with $\widehat{\mathbb{Z}}$.
We can also characterize of congruence preserving functions via their representation as infinite linear sums of the $P_{k} \mathrm{~s}$.

Theorem 26. A function $\Phi: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ represented by a series $\Phi=\sum_{k \in \mathbb{N}} a_{k} \widehat{P_{k}}$ is congruence preserving if and only if lcm (k) divides a_{k} for all k, i.e. $a_{k}=p^{i} b_{k}$ for $k \geq p^{i}$.

Proof. Suppose Φ is congruence preserving. By Theorem 20, Φ is uniformly continuous and by Theorem 25, $\Phi=\sum_{k \in \mathbb{N}} a_{k} \widehat{P_{k}}$ with $a_{k} \in \mathbb{Z}_{p}$. Substituting in $\varphi_{n}=\pi_{n}^{p} \circ \Phi \circ \iota_{n}^{p}$, we get $\varphi_{n}=\pi_{n}^{p} \circ\left(\sum_{k \in \mathbb{N}} a_{k} \widehat{P_{k}}\right) \circ \iota_{n}^{p}=\sum_{k \in \mathbb{N}} \pi_{n}^{p}\left(a_{k}\right) \pi_{n}^{p} \circ$ $\widehat{P_{k}} \circ \iota_{n}^{p}=\sum_{k \in \mathbb{N}} \pi_{n}^{p}\left(a_{k}\right) P_{k}^{p^{n}, p^{n}}$. Theorem 20 insures that $\Phi=\lim _{n \in \mathbb{N}} \varphi_{n}$ and the φ_{n} are congruence preserving on $\mathbb{Z} / p^{n} \mathbb{Z}$; thus by Corollary 13: $\varphi_{n}=$ $\sum_{k=0}^{\nu(n)-1} b_{k}^{n} P_{k}^{p^{n}, p^{n}}$, with $l c m(k)$ divides b_{k}^{n} for all $k \leq \nu(n)-1$. We proved in [5]
that the $P_{k}^{p^{n}, p^{n}}$ form a basis of the functions on $\mathbb{Z} / p^{n} \mathbb{Z}$, hence $\pi_{n}^{p}\left(a_{k}\right)=b_{k}^{n}$ and $\operatorname{lcm}(k)$ divides $\pi_{n}^{p}\left(a_{k}\right)$. Noting that $\operatorname{Val}\left(a_{k}\right)=\operatorname{Val}\left(\pi_{n}^{p}\left(a_{k}\right)\right)$ and applying Lemma 27, we deduce that $\operatorname{lcm}(k)$ divides a_{k}, i.e. $\nu_{p}(k) \leq \operatorname{Val}\left(a_{k}\right)$, and $a_{k}=p^{\nu_{p}(k)} b_{k}$. In particular, this implies that $d\left(a_{k}, 0\right) \leq 2^{-\nu_{p}(k)}$ and thus $\lim _{k \rightarrow \infty} a_{k}=0$.

Conversely, if $\Phi=\sum_{k \in \mathbb{N}} a_{k} \widehat{P_{k}}$ and $\operatorname{lcm}(k)$ divides a_{k} for all k, then $\operatorname{lcm}(k)$ divides $\pi_{n}^{p}\left(a_{k}\right)$ for all n, k; hence the associated φ_{n} are congruence preserving which implies that so is Φ.

Lemma 27. Let $\nu_{p}(k)$ be the largest i such that $p^{i} \leq k<p^{i+1}$. In $\mathbb{Z} / p^{n} \mathbb{Z}$, $\operatorname{lcm}(k)$ divides a number x iff $\nu_{p}(k) \leq \operatorname{Val}(x)$.

Proof. In $\mathbb{Z} / p^{n} \mathbb{Z}$ all numbers are invertible except multiples of p. Hence lcm (k) divides x iff $p^{\nu_{p}(k)}$ divides x.

Example 28. Let $\Phi=\sum_{k \in \mathbb{N}} a_{k} P_{k}$ with $a_{k}=p^{\nu_{p}(k)-1}$, with $\nu_{p}(k)$ as in Lemma 27. Φ is uniformly continuous by Theorem 25. By Lemma 27 lcm (k) does not divide a_{k} hence by Theorem 26 is not congruence preserving.

4 Congruence preserving functions and lattices

A lattice of subsets of a set X is a family of subsets of X such that $L \cap M$ and $L \cup M$ are in \mathcal{L} whenever $L, M \in \mathcal{L}$. Let $f: X \rightarrow X$. A lattice \mathcal{L} of subsets of X is closed under f^{-1} if $f^{-1}(L) \in \mathcal{L}$ whenever $L \in \mathcal{L}$. Closure under decrement means closure under $S u c^{-1}$, where $S u c$ is the successor function. For $L \subseteq \mathbb{Z}$ and $t \in \mathbb{Z}$, let $L-t=\{x-t \mid x \in L\}$.

Proposition 29. Let X be \mathbb{N} or \mathbb{Z} or $\mathbb{N}_{\alpha}=\{x \in \mathbb{Z} \mid x \geq \alpha\}$ with $\alpha \in \mathbb{Z}$. For L a subset of X let $\mathcal{L}_{X}(L)$ be the family of sets of the form $\bigcup_{j \in J} \bigcap_{i \in I_{j}} X \cap(L-i)$ where J and the I_{j} 's are finite non empty subsets of \mathbb{N}. Then $\mathcal{L}_{X}(L)$ is the smallest sublattice of $\mathcal{P}(X)$, the class of subsets of X, containing L and closed under decrement.

Let $f: \mathbb{N} \longrightarrow \mathbb{N}$ be a non decreasing function, the following conditions are equivalent [2]:
$(1)_{\mathbb{N}} \quad$ For every finite subset L of \mathbb{N}, the lattice $\mathcal{L}_{\mathbb{N}}(L)$ is closed under f^{-1}.
$(2)_{\mathbb{N}}$ The function f is congruence preserving and $f(a) \geq a$ for all $a \in \mathbb{N}$.
$(3)_{\mathbb{N}}$ For every regular subset L of \mathbb{N} the lattice $\mathcal{L}_{\mathbb{N}}(L)$ is closed under f^{-1}. We now extend this result to functions $\mathbb{Z} \rightarrow \mathbb{Z}$. First recall the notions of recognizable and rational subsets: a subset L of a monoid X is rational if it can be generated from finite sets by unions, products and stars; L is recognizable if there exists a morphism $\varphi: X \longrightarrow M$, with M a finite monoid, and F a subset of M such that $L=\varphi^{-1}(F)$. For \mathbb{N}, recognizable and rational subsets coincide and are are called regular subsets of \mathbb{N}. For \mathbb{Z}, recognizable subsets are finite unions of arithmetic sequences, while rational subsets are unions of the form $F \cup P \cup-N$, with F finite, and P, N two regular subsets of \mathbb{N}; i.e. a recognizable subset of \mathbb{Z} is also rational, but the converse is false. It is known that

1. A subset $L \subseteq \mathbb{N}$ is regular if it is the union of a finite set with finitely many arithmetic progressions, i.e. $L=F \cup(R+d \mathbb{N})$ with $d \geq 1, F, R \subseteq\{x \mid$ $0 \leq x<d\}$ (possibly empty).
2. A subset $L \subseteq \mathbb{Z}$ is rational if it is of the form $L=L^{+} \cup\left(-L^{-}\right)$where L^{+}, L^{-}are regular subsets of \mathbb{N}, i.e. $L=-(d+S+d \mathbb{N}) \cup F \cup(d+R+d \mathbb{N})$ with $d \geq 1, R, S \subseteq\{x \mid 0 \leq x<d\}, F \subseteq\{x \mid-d<x<d\}$ (possibly empty). See [1].
3. A subset $L \subseteq \mathbb{Z}$ is recognizable if it is of the form $L=(F+d \mathbb{Z})$ with $d \geq 1, F \subseteq\{x \mid 0 \leq x<d\}$
Theorem 30. Let $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ be a non decreasing function. The following conditions are equivalent:
$(1)_{\mathbb{Z}} \quad$ For every finite subset L of \mathbb{Z}, the lattice $\mathcal{L}_{\mathbb{Z}}(L)$ is closed under f^{-1}.
$(2)_{\mathbb{Z}} \quad$ The function f is congruence preserving and $f(a) \geq$ a for all $a \in \mathbb{Z}$.
$(3)_{\mathbb{Z}} \quad$ For every recognizable subset L of \mathbb{Z} the lattice $\mathcal{L}_{\mathbb{Z}}(L)$ is closed under f^{-1}.
Proof. For this proof, we need the \mathbb{Z}-version of Lemma 3.1 in [2].
Lemma 31. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a nondecreasing congruence preserving function. Then, for any set $L \subseteq \mathbb{Z}$, we have $f^{-1}(L)=\bigcup_{a \in f^{-1}(L)} \bigcap_{t \in L-a}(L-t)$.

Proof. Let $a \in f^{-1}(L)$. As $t \in L-a \Leftrightarrow a \in L-t$, we have $a \in \bigcap_{t \in L-a} L-t$, proving inclusion \subseteq.

For the other inclusion, let $b \in \bigcap_{t \in L-a} L-t$ with $a \in f^{-1}(L)$. To prove that $f(b) \in L$, we argue by way of contradiction. Suppose $f(b) \notin L$. Since $f(a) \in L$ we have $a \neq b$. The condition on f insures the existence of $k \in \mathbb{Z}$ such that $f(b)-f(a)=k(b-a)$. In fact, $k \in \mathbb{N}$ since f is nondecreasing.

Suppose first that $a<b$. Since $k \in \mathbb{N}$ and $f(a)+k(b-a)=f(b) \notin L$ there exists a least $r \in \mathbb{N}$ such that $f(a)+r(b-a) \notin L$. Moreover, $r \geq 1$ since $f(a) \in L$. Let $t=f(a)-a+(r-1)(b-a)$. By minimality of r, we get $t+a=$ $f(a)+(r-1)(a-b) \in L$. Now $t+a \in L$ implies $t \in L-a ;$ as $b \in \bigcap_{t \in L-a} L-t$ this implies $b \in L-t$ hence $t+b \in L$. But $t+b=f(a)+r(b-a) \notin L$, this contradicts the definition of r.

Suppose next that $a>b$. Since $k \in \mathbb{N}$ and $f(b)+k(a-b)=f(a) \in L$ there exists a least $r \in \mathbb{N}$ such that $f(b)+r(a-b) \in L$. Moreover, $r \geq 1$ since $f(b) \notin L$. Let $t=f(b)-b+(r-1)(a-b)$. By minimality of r, we get $t+b=f(b)+(r-1)(a-b) \notin L$. Now $t+a \in L$ implies $t+b \in L$, contradiction.

- $(1)_{\mathbb{Z}} \Rightarrow(2)_{\mathbb{Z}}$. Assume $(1)_{\mathbb{Z}}$ holds. We first prove inequality $f(x) \geq x$ for all $x \in \mathbb{Z}$. Observe that (by Proposition (29) $\mathcal{L}_{\mathbb{Z}}(\{z\})=\left\{X \in \mathcal{P}_{<\omega}(\mathbb{Z}) \mid\right.$ $X=\emptyset$ or $\max X \leq z\}$. In particular, letting $z=f(x)$ and applying $(1)_{\mathbb{Z}}$ with $\mathcal{L}(\{f(x)\})$, we get $f^{-1}\left(\{f(x\}) \in \mathcal{L}_{\mathbb{Z}}(\{f(x)\})\right.$ hence $x \leq \max \left(f^{-1}(\{f(x\})) \leq\right.$ $f(x)$.

To show that f is congruence preserving, we reduce to the \mathbb{N} case.
For $\alpha \in \mathbb{Z}$, let Suc $: \mathbb{N}_{\alpha} \rightarrow \mathbb{N}_{\alpha}$ be the successor function on $\mathbb{N}_{\alpha}=\{z \in \mathbb{Z} \mid$ $z \geq \alpha\}$. The structures $\langle\mathbb{N}, S u c\rangle$ and $\left\langle\mathbb{N}_{\alpha}, S u c_{\alpha}\right\rangle$ are isomorphic. Since $f(x) \geq x$ for all $x \in \mathbb{Z}$, the restriction $f \upharpoonright \mathbb{N}_{\alpha}$ maps \mathbb{N}_{α} into \mathbb{N}_{α}. In particular, using our result in \mathbb{N}, conditions $(1)_{\mathbb{N}_{\alpha}}$ and $(2)_{\mathbb{N}_{\alpha}}$ (relative to $\left.f \upharpoonright \mathbb{N}_{\alpha}\right)$ are equivalent.

We show that condition $(2)_{\mathbb{N}_{\alpha}}$ holds. Let $L \subseteq \mathbb{N}_{\alpha}$ be finite. Condition $(1)_{\mathbb{Z}}$ insures that $\mathcal{L}_{\mathbb{Z}}(L)$ is closed under f^{-1}. In particular, $f^{-1}(L) \in \mathcal{L}_{\mathbb{Z}}(L)$. Using Proposition 29, we get $f^{-1}(L)=\bigcup_{j \in J} \bigcap_{i \in I_{j}}(L-i)$ for finite J, I_{j} 's included in \mathbb{N} hence $\left(f \upharpoonright \mathbb{N}_{\alpha}\right)^{-1}(L)=f^{-1}(L) \cap \mathbb{N}_{\alpha}=\bigcup_{j \in J} \bigcap_{i \in I_{j}}\left(\mathbb{N}_{\alpha} \cap(L-i)\right) \in$ $\mathcal{L}_{\mathbb{N}_{\alpha}}(L)$. This proves condition $(1)_{\mathbb{N}_{\alpha}}$. Since $(1)_{\mathbb{N}_{\alpha}} \Rightarrow(2)_{\mathbb{N}_{\alpha}}$ we see that $f \upharpoonright \mathbb{N}_{\alpha}$ is congruence preserving Now, α is arbitrary in \mathbb{Z} and the fact that $f \upharpoonright \mathbb{N}_{\alpha}$ is congruence preserving for all $\alpha \in \mathbb{Z}$ implies that f is congruence preserving. Thus, condition (2) $\mathbb{Z}_{\mathbb{Z}}$ holds.

- $(2)_{\mathbb{Z}} \Rightarrow(3)_{\mathbb{Z}}$. Assume $(2)_{\mathbb{Z}}$. It is enough to prove that $f^{-1}(L) \in \mathcal{L}_{\mathbb{Z}}(L)$ whenever L is recognizable. Let $L=(F+d \mathbb{Z})$ with $d \geq 1, F=\left\{f_{1}, \cdots, f_{n}\right\} \subseteq$ $\{x \mid 0 \leq x<d\}$. Then f is not constant since $f(x) \geq x$ for all $x \in \mathbb{Z}$. Also, $f^{-1}(\alpha)$ is finite for all α : let b be such that $f(b)=\beta \neq \alpha$, by congruence preservation the nonzero integer $\alpha-\beta$ is divided by $a-b$ for all $a \in f^{-1}(\alpha)$ hence $f^{-1}(\alpha)$ is finite. $f^{-1}(F)$ is thus finite too. Moreover, $L-t=F-t+d \mathbb{Z}=$ $L-t-d+d \mathbb{Z}=L-t-d=L-t+d+d \mathbb{Z}=L-t+d$, hence there are only finitely many $L-t$'s. By Lemma 31 we have $f^{-1}(L)=\bigcup_{a \in f^{-1}(F)} \bigcap_{t \in L-a}(L-t)$; as there are only a finite number of $L-t$'s, all union and intersections reduce to finite unions and intersections and $f^{-1}(L) \in \mathcal{L}_{\mathbb{Z}}(L)$.
- $(3)_{\mathbb{Z}} \Rightarrow(2)_{\mathbb{Z}}$. Similar to $(1)_{\mathbb{Z}} \Rightarrow(2)_{\mathbb{Z}}$.
- $(2)_{\mathbb{Z}} \Rightarrow(1)_{\mathbb{Z}}$. Similar to $(2)_{\mathbb{Z}} \Rightarrow(3)_{\mathbb{Z}}$.

Example 32. Theorem 30 does not hold if we substitute rational for recognizable in $(3)_{\mathbb{Z}}$. Consider $L=(6+10 \mathbb{N})$ and $f(x)=x^{2} ; L$ is rational and f is congruence preserving. However $f^{-1}(L)=(\{4,6\}+10 \mathbb{N}) \cup-(\{4,6\}+10 \mathbb{N})$ does not belong to $\mathcal{L}_{\mathbb{Z}}(L): f^{-1}(L)$ contains infinitely many negative numbers, while each $L-t$ for $t \in f^{-1}(L)$ contains only finitely many negative numbers; hence any finite union of finite intersections of $L-t$'s can contain only a finite number of negative numbers and cannot be equal to $f^{-1}(L)$.

Theorem 30 does not hold for $\mathbb{Z}_{p}: f^{-1}(L)$ no longer belongs to $\mathcal{L}_{\mathbb{Z}_{p}}(L)$, the lattice of subsets of \mathbb{Z}_{p} containing L and closed under decrement. Consider the congruence preserving function $f(x)=\left(\sum_{i \geq 2} p^{i}\right) x$, and let $L=\left\{\sum_{i \geq 2} p^{i}\right\}=$ $\{f(1)\}$. Then $f^{-1}(L)=\{1\} \notin \mathcal{L}_{\mathbb{Z}_{p}}(L)$ because all elements of the $(L-i) \mathrm{s}$ end with an infinity of 1 s .

Thus integer decrements are not sufficient; but even if we substitute translations for decrements, Theorem 30 can't be generalized.

A recognizable subset of \mathbb{Z}_{p} is of the form $F+p^{n} \mathbb{Z}_{p}$ with F finite, $F \subseteq \mathbb{Z} / p^{n} \mathbb{Z}$. For L a subset of \mathbb{Z}_{p} let $\mathcal{L}_{\mathbb{Z}_{p}}^{c}(L)$ (resp. $\left.\mathcal{L}_{\mathbb{Z}_{p}}(L)\right)$ be the family of sets of the form $\bigcup_{j \in J} \bigcap_{i \in I_{j}}\left(L+a_{i}\right), a_{i} \in \mathbb{Z}_{p}$, where J and the I_{j} 's are (resp. finite) non empty subsets of \mathbb{N}. Then $\mathcal{L}_{\mathbb{Z}_{p}}^{c}(L)$ (resp. $\left.\mathcal{L}_{\mathbb{Z}_{p}}(L)\right)$ is the smallest complete sublattice (resp. sublattice) of $\mathcal{P}\left(\mathbb{Z}_{p}\right)$, the class of subsets of \mathbb{Z}_{p}, containing L and closed under translation. It is easy to see that, for $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$. and $L \subseteq \mathbb{Z} / p^{k} \mathbb{Z}$, we have $f^{-1}(L)=\bigcup_{a \in f^{-1}(L)} \bigcap_{t \in L}(L+(a-t))$. Hence for any $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$
$(1)_{\mathbb{Z}_{p}}$ If $f^{-1}(a)$ is finite for every a, then for every finite subset L of \mathbb{Z}_{p}, the lattice $\mathcal{L}_{\mathbb{Z}_{p}}(L)$ is closed under f^{-1}.
$(3)_{\mathbb{Z}_{p}}$ For every recognizable subset L of \mathbb{Z}_{p} the lattice $\mathcal{L}_{\mathbb{Z}_{p}}^{c}(L)$ is closed under f^{-1}.

However conditions $(1)_{\mathbb{Z}_{p}}$ and $(3)_{\mathbb{Z}_{p}}$ do not imply that f is congruence preserving: let f be inductively defined on \mathbb{Z} by: for $0 \leq x<p, f(x)=x$, and for $x \geq p, f(x)=f(x-p)+1$. For $n p \leq k<(n+1) p, f(k)=n+(k-n p)$; hence f is uniformly continuous and has a unique uniformly continuous extension \hat{f} to \mathbb{Z}_{p}; then \hat{f} satisfies $(1)_{\mathbb{Z}_{p}}$ and $(3)_{\mathbb{Z}_{p}}$ but is not congruence preserving as p does not divide 1 .

5 Conclusion

We here studied functions having congruence preserving properties; these functions appeared in two ways at least: (i) as the functions such that lattices of regular subsets of \mathbb{N} are closed under f^{-1} (see [2]), and (ii) as the functions uniformly continuous in a variety of finite groups (see [10]).

The contribution of the present paper is to characterize congruence preserving functions on various sets derived from \mathbb{Z} such as $\mathbb{Z} / n \mathbb{Z}$, (resp. $\mathbb{Z}_{p}, \widehat{\mathbb{Z}}$) via polynomials (resp. series) with rational coefficients which share the following common property: $\operatorname{lcm}(k)$ divides the k-th coefficient. Examples of non polynomial (Bessel like) congruence preserving functions can be found in 4 .

Acknowledgments

We thanks the anonymous referee for careful reading and valuable comments.

References

[1] M. Benois, Parties Rationnelles du Groupe Libre, C. R. Acad. Sci. Paris Série A, 269, pp 1188-1190, 1969.
[2] P. Cégielski and S. Grigorieff and I. Guessarian, On Lattices of Regular Sets of Natural Integers Closed under Decrementation, Information Processing Letters 114(4):197-202, 2014.
[3] P. Cegielski, S. Grigorieff, I. Guessarian, Newton representation of functions over natural integers having integral difference ratios. To be published in Int. J. Number Theory. Preliminary version on arXiv, 2013.
[4] P. Cégielski and S. Grigorieff and I. Guessarian, Integral Difference Ratio functions on Integers, LNCS 8808, Computing with new resources, Festschrift for Jozef Gruska, C, Calude, R. Freivalds, I. Kazuo (Eds.), Springer, (2014), p. 277-291.
[5] P. Cégielski, S. Grigorieff, I. Guessarian, Characterizing congruence preserving functions $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ via rational polynomials, Submitted, 2015.
[6] S. Lang, Algebra 3rd ed., Springer, 2002.
[7] H.W. Lenstra, Profinite Fibonacci numbers. Nieuw Arch. Wiskd., (5) 6, n.4:297300, 2005.
[8] H.W. Lenstra, Profinite groups. Lecture notes available on the web.
[9] K. Mahler, An Interpolation Series for Continuous Functions of a p-adic Variable. Journal für die reine und angewandte Mathematik, 199:23-34, 1956.
[10] J.-É. Pin and P.V. Silva, On profinite uniform structures defined by varieties of finite monoids, International Journal of Algebra and Computation, 21:295-314, 2011.
[11] A. Robert, A course in p-adic analysis, Springer, 2000.
[12] K. Rosen, Elementary number theory and its applications, Addison,-Wesley, 1984.

6 Appendix

Recall some classical equivalent approaches to the topological rings of p-adic integers and profinite integers, cf. Lenstra [7, [], Lang [6] and Robert [11.

Proposition 33. Let p be prime. The three following approaches lead to isomorphic structures, called the topological ring \mathbb{Z}_{p} of p-adic integers.

- The ring \mathbb{Z}_{p} is the inverse limit of the following inverse system:
- the family of rings $\mathbb{Z} / p^{n} \mathbb{Z}$ for $n \in \mathbb{N}$, endowed with the discrete topology,
- the family of surjective morphisms $\pi_{p^{n}, p^{m}}: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z} / p^{m} \mathbb{Z}$ for $0 \leq n \geq m$.
- The ring \mathbb{Z}_{p} is the set of infinite sequences $\{0, \ldots, p-1\}^{\mathbb{N}}$ endowed with the Cantor topology and addition and multiplication which extend the usual way to perform addition and multiplication on base p representations of natural integers.
- The ring \mathbb{Z}_{p} is the Cauchy completion of the metric topological ring $(\mathbb{N},+, \times)$ relative to the following ultrametric: $d(x, x)=0$ and for $x \neq y, d(x, y)=$ 2^{-n} where n is the p-valuation of $|x-y|$, i.e. the maximum k such that p^{k} divides $x-y$.

Recall the factorial representation of integers.
Lemma 34. Every positive integer n has a unique representation as

$$
n=c_{k} k!+c_{k-1}(k-1)!+\ldots+c_{2} 2!+c_{1} 1!
$$

where $c_{k} \neq 0$ and $0 \leq c_{i} \leq i$ for all $i=1, \ldots, k$.
Proposition 35. The four following approaches lead to isomorphic structures, called the topological ring $\widehat{\mathbb{Z}}$ of profinite integers.

- The ring $\widehat{\mathbb{Z}}$ is the inverse limit of the following inverse system:
- the family of rings $\mathbb{Z} / k \mathbb{Z}$ for $k \geq 1$, endowed with the discrete topology,
- the family of surjective morphisms $\pi_{n, m}: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ for $m \mid n$.
- The ring $\widehat{\mathbb{Z}}$ is the inverse limit of the following inverse system:
- the family of rings $\mathbb{Z} / k!\mathbb{Z}$ for $k \geq 1$, endowed with the discrete topology,
- the family of surjective morphisms $\pi_{(n+1)!, n!}: \mathbb{Z} / n!\mathbb{Z} \rightarrow \mathbb{Z} / m!\mathbb{Z}$ for $n \geq m$.
- The ring $\widehat{\mathbb{Z}}$ is the set of infinite sequences $\prod_{n \geq 1}\{0, \ldots, n\}$ endowed with the product topology and addition and multiplication which extend the obvious way to perform addition and multiplication on factorial representations of natural integers.
- The ring $\widehat{\mathbb{Z}}$ is the Cauchy completion of the metric topological ring $(\mathbb{N},+, \times)$ relative to the following ultrametric: for $x \neq y \in \mathbb{N}, d(x, x)=0$ and $d(x, y)=2^{-n}$ where n is the maximum k such that k ! divides $x-y$.
- The ring $\widehat{\mathbb{Z}}$ is the product ring $\prod_{p \text { prime }} \mathbb{Z}_{p}$ endowed with the product topology.

Proposition 36. The topological rings \mathbb{Z}_{p} and $\widehat{\mathbb{Z}}$ are compact and zero dimensional (i.e. they have a basis of closed open sets).

Proposition 37. Let $\lambda: \mathbb{N} \rightarrow \mathbb{Z}_{p}$ (resp. $\lambda: \mathbb{N} \rightarrow \widehat{\mathbb{Z}}$) be the function which maps $n \in \mathbb{N}$ to the element of \mathbb{Z}_{p} (resp. $\widehat{\mathbb{Z}}$) with base p (resp. factorial) representation obtained by suffixing an infinite tail of zeros to the base p (resp. factorial) representation of n.
The function λ is an embedding of the semiring \mathbb{N} onto a topologically dense semiring in the ring \mathbb{Z}_{p} (resp. $\widehat{\mathbb{Z}}$).

Remark 38. In the base p representation, the opposite of an element $f \in \mathbb{Z}_{p}$ is the element $-f$ such that, for all $m \in \mathbb{N}$,

$$
(-f)(i)= \begin{cases}0 & \text { if } \forall s \leq i f(s)=0 \\ p-f(i) & \text { if } i \text { is least such that } f(i) \neq 0, \\ p-1-f(i) & \text { if } \exists s<i f(s) \neq 0\end{cases}
$$

In particular,

- Integers in \mathbb{N} correspond in \mathbb{Z}_{p} to infinite base p representations with a tail of 0 's.
- Integers in $\mathbb{Z} \backslash \mathbb{N}$ correspond in \mathbb{Z}_{p} to infinite base p representations with a tail of digits $p-1$.
Similar results hold for the infinite factorial representation of profinite integers.

[^0]: ${ }^{1}$ Partially supported by TARMAC ANR agreement 12 BS02 00701.
 ${ }^{2}$ Emeritus at UPMC Université Paris 6. Corresponding author

