Arithmetical Congruence Preservation: from Finite to Infinite

Patrick CÉGIELSKI 1

LACL, EA 4219, Université Paris-Est Créteil, France cegielski@u-pec.fr

Serge GRIGORIEFF ¹

LIAFA, CNRS and Université Paris-Diderot, France seg@liafa.univ-paris-diderot.fr

Irène GUESSARIAN 1 2

LIAFA, CNRS and Université Paris-Diderot, France ig@liafa.univ-paris-diderot.fr

Abstract

Various problems on integers lead to the class of congruence preserving functions on rings, i.e. functions verifying a-b divides f(a)-f(b) for all a,b. We characterized these classes of functions in terms of sums of rational polynomials (taking only integral values) and the function giving the least common multiple of $1,2,\ldots,k$. The tool used to obtain these characterizations is "lifting": if $\pi\colon X\to Y$ is a surjective morphism, and f a function on Y a lifting of f is a function F on X such that $\pi\circ F=f\circ\pi$. In this paper we relate the finite and infinite notions by proving that the finite case can be lifted to the infinite one. For p-adic and profinite integers we get similar characterizations via lifting. We also prove that lattices of recognizable subsets of $\mathbb Z$ are stable under inverse image by congruence preserving functions.

1 Introduction

A function f (on \mathbb{N} or \mathbb{Z}) is said to be congruence preserving if a-b divides f(a)-f(b). Polynomial functions are obvious examples of congruence preserving functions. In [3, 4] we characterized this notion (which we named "functions having the integral difference ratio property") for functions $\mathbb{N} \to \mathbb{Z}$ and $\mathbb{Z} \to \mathbb{Z}$. In [5] we extended the characterization to functions $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ (for a suitable extension of the notion of congruence preservation).

In the present paper, we prove in §2 that every congruence preserving function $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ can be lifted to a congruence preserving function $\mathbb{N} \to \mathbb{N}$ (i.e. it is the projection of such a function). As a corollary (i) we show that such a lift also works replacing \mathbb{N} with $\mathbb{Z}/qn\mathbb{Z}$ and (ii) and we give an alternative

¹Partially supported by TARMAC ANR agreement 12 BS02 007 01.

²Emeritus at UPMC Université Paris 6. Corresponding author

proof of a representation (obtained in [5]) of congruence preserving functions $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ as linear sums of "rational" polynomials.

In §3 we consider the rings of p-adic integers (resp. profinite integers) and prove that congruence preserving functions are inverse limits of congruence preserving functions on the $\mathbb{Z}/p^k\mathbb{Z}$ (resp. on the $\mathbb{Z}/n\mathbb{Z}$). Considering the Mahler representation of continuous functions by Newton series, we prove that congruence preserving functions correspond to those series for which the linear coefficient with rank k is divisible by the least common multiple of $1, \ldots, k$.

We proved in [2] that lattices of regular subsets of \mathbb{N} are closed under inverse image by congruence preserving functions: in §4, we extend this result to functions $\mathbb{Z} \to \mathbb{Z}$.

2 Congruence preservation: exchanging finite and infinite

We characterize congruence preserving functions on $\mathbb{Z}/n\mathbb{Z}$ by first lifting each such function into a congruence preserving function $\mathbb{N} \to \mathbb{N}$. In a second step, we use our characterization of congruence preserving functions $\mathbb{N} \to \mathbb{Z}$ to characterize the congruence preserving functions $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$.

Definition 1. Let X be a subset of a commutative (semi-)ring $(R, +, \times)$. A function $f: X \to R$ is said to be congruence preserving if

$$\forall x,y \in X \quad \exists d \in R \quad f(x) - f(y) \ = d(x-y) \,, \quad \text{i.e. } x-y \ \textit{divides} \ f(x) - f(y) \,.$$

Definition 2 (Lifting). Let $\sigma: X \to N$ and $\rho: Y \to M$ be surjective maps. A function $F: X \to Y$ is said to be a (σ, ρ) -lifting of a function $f: N \to M$ (or simply lifting if σ, ρ are clear from the context) if the following diagram commutes:

We will consider elements of $\mathbb{Z}/k\mathbb{Z}$ as integers and vice versa via the following maps.

Notation 3. 1. Let $\pi_k \colon \mathbb{Z} \to \mathbb{Z}/k\mathbb{Z}$ be the canonical surjective homomorphism associating to an integer its class in $\mathbb{Z}/k\mathbb{Z}$.

- 2. Let $\iota_k \colon \mathbb{Z}/k\mathbb{Z} \to \mathbb{N}$ be the injective map associating to an element $x \in \mathbb{Z}/k\mathbb{Z}$ its representative in $\{0, \ldots, k-1\}$.
- 3. Let $\pi_{n,m}: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ be the map $\pi_{n,m} = \pi_m \circ \iota_n$. In case m divides n, $\pi_{n,m}$ is a surjective homomorphism.

If $m \leq n$ let $\iota_{m,n} \colon \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ be the injective map $\iota_{m,n} = \pi_n \circ \iota_m$.

Lemma 4. If m divides n, $\pi_m = \pi_{n,m} \circ \pi_n$.

The next theorem insures that congruence preserving functions $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ can be lifted to congruence preserving functions $\mathbb{N} \to \mathbb{Z}$.

Theorem 5 (Lifting functions $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ to $\mathbb{N} \to \mathbb{N}$). Let $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ with $m \geq 2$. The following conditions are equivalent:

- (1) f is congruence preserving.
- (2) f can be (π_n, π_n) -lifted to a congruence preserving function $F: \mathbb{N} \to \mathbb{N}$.

In view of applications in the context of p-adic and profinite integers, we state and prove a slightly more general version with an extended notion of congruence preservation defined below.

Definition 6. A function $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ is congruence preserving if

for all
$$x, y \in \mathbb{Z}/n\mathbb{Z}$$
, $\pi_{n,m}(x-y)$ divides $f(x) - f(y)$ in $\mathbb{Z}/m\mathbb{Z}$. (1)

Theorem 7 (Lifting functions $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ to $\mathbb{N} \to \mathbb{N}$). Let $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ with m divides n and $m \geq 2$. The following conditions are equivalent:

- (1) f is congruence preserving.
- (2) f can be (π_n, π_m) -lifted to a congruence preserving function $F : \mathbb{N} \to \mathbb{N}$.
- (3) f can be (π_n, π_m) -lifted to a congruence preserving function $F : \mathbb{N} \to \mathbb{Z}$.

Proof. (2) \Rightarrow (3) is trivial.

(3) \Rightarrow (1). Assume f lifts to the congruence preserving function $F: \mathbb{N} \to \mathbb{Z}$. The following diagram commutes

$$\mathbb{N} \xrightarrow{F} \mathbb{Z}$$

$$\pi_n \downarrow \qquad \qquad \downarrow \pi_m \text{ and thus } \begin{cases}
\pi_m \circ F = f \circ \pi_n \\
f = \pi_m \circ F \circ \iota_n
\end{cases}$$

$$\mathbb{Z}/n\mathbb{Z} \xrightarrow{f} \mathbb{Z}/m\mathbb{Z}$$

Let $x, y \in \mathbb{Z}/n\mathbb{Z}$. As F is congruence preserving, $\iota_n(x) - \iota_n(y)$ divides $F(\iota_n(x)) - F(\iota_n(y))$, hence $F(\iota_n(x)) - F(\iota_n(y)) = (\iota_n(x) - \iota_n(y)) \delta$. Since π_m is a morphism and $\pi_m \circ \iota_n = \pi_{n,m}$, we get $\pi_m(F(\iota_n(x))) - \pi_m(F(\iota_n(x))) = \pi_{n,m}(x-y) \pi_{n,m}(\delta)$. As F lifts f we have $\pi_m(F(\iota_n(x))) - \pi_m(F(\iota_n(y))) = f(x) - f(y)$ whence (1).

 $(1) \Rightarrow (2)$. By induction on $t \in \mathbb{N}$ we define a sequence of functions $\varphi_t \colon \{0, \dots, t\} \to \mathbb{N}$ for $t \in \mathbb{N}$ such that φ_{t+1} extends φ_t and (*) and (**) below hold.

$$\begin{cases} (*) & \varphi_t \text{ is congruence preserving,} \\ (**) & \pi_m(\varphi_t(u)) = f(\pi_n(u)) \text{ for all } u \in \{0, \dots, t\}. \end{cases}$$

Basis. We choose $\varphi_0(0) \in \mathbb{N}$ such that $\pi_m(\varphi_0(0)) = f(\pi_n(0))$. Properties (*) and (**) clearly hold for φ_0 .

Induction: from φ_t to φ_{t+1} . Since the wanted φ_{t+1} has to extend φ_t to the

domain $\{0, \ldots, t, t+1\}$, we only have to find a convenient value for $\varphi_{t+1}(t+1)$. By the induction hypothesis, (*) and (**) hold for φ_t ; in order for φ_{t+1} to satisfy (*) and (**), we have to find $\varphi_{t+1}(t+1)$ such that t+1-i divides $\varphi_{t+1}(t+1)-\varphi_t(i)$, for $i=0,\ldots,t$, and $\pi_m(\varphi_{t+1}(t+1))=f(\pi_n(t+1))$. Rewritten in terms of congruences, these conditions amount to say that $\varphi_{t+1}(t+1)$ is a solution of the following system of congruence equations:

$$\star(0) \qquad \left| \begin{array}{ccc} \varphi_{t+1}(t+1) & \equiv & \varphi_{t}(0) & \pmod{t+1} \\ & \vdots & & \\ \star(i) & \varphi_{t+1}(t+1) & \equiv & \varphi_{t}(i) & \pmod{t+1-i} \\ & \vdots & & \\ \star(t-1) & \vdots & & \\ \star(t-1) & \varphi_{t+1}(t+1) & \equiv & \varphi_{t}(t-1) & \pmod{2} \\ & \varphi_{t+1}(t+1) & \equiv & \iota_{m}(f(\pi_{n}(t+1))) & \pmod{m} \end{array} \right|$$

Recall the Generalized Chinese Remainder Theorem (cf. §3.3, exercice 9 p. 114, in Rosen's textbook [12]): a system of congruence equations

$$\bigwedge_{i=0,\dots,t} x \equiv a_i \pmod{n_i}$$

has a solution if and only if $a_i \equiv a_j \mod \gcd(n_i, n_j)$ for all $0 \le i < j \le t$. Let us show that the conditions of application of the Generalized Chinese Remainder Theorem are satisfied for system (2).

- Lines \star (i) and \star (j) of system (2) (with $0 \le i < j \le t-1$). Every common divisor to t+1-i and t+1-j divides their difference j-i hence $\gcd(t+1-i,t+1-j)$ divides j-i. Since φ_t satisfies (*), j-i divides $\varphi_t(j)-\varphi_t(i)$ and a fortiori $\gcd(t+1-i,t+1-j)$ divides $\varphi_t(j)-\varphi_t(i)$.
- Lines $\star(i)$ and $\star\star$ of system (2) (with $0 \le i \le t-1$). Let $d = \gcd(t+1-i,m)$. We have to show that d divides $\iota_m(f(\pi_n(t+1))) - \varphi_t(i)$. Since f is congruence preserving, $\pi_{n,m}(\pi_n(t+1) - \pi_n(i))$ divides $f(\pi_n(t+1)) - f(\pi_n(i))$. As m divides n, by Lemma 4, $\pi_{n,m}(\pi_n(t+1) - \pi_n(i)) = \pi_m(t+1) - \pi_m(i) = \pi_m(t+1-i)$ and $f(\pi_n(t+1)) - f(\pi_n(i)) = k\pi_m(t+1-i)$ for some $k \in \mathbb{Z}/m\mathbb{Z}$. Applying ι_m , there exists $\lambda \in \mathbb{Z}$ such that

$$\iota_m(f(\pi_n(t+1))) - \iota_m(f(\pi_n(i))) = \iota_m(k)\iota_m(\pi_m(t+1-i)) + \lambda m$$

as $\iota_m(\pi_m(u)) \equiv u \pmod{m}$ for every $u \in \mathbb{Z}$, there exists $\mu \in \mathbb{Z}$ such that

$$\iota_m(f(\pi_n(t+1))) - \iota_m(f(\pi_n(i))) = \iota_m(k)(t+1-i) + \mu m + \lambda m.$$
 (3)

Since φ_t satisfies (**), we have $\pi_m(\varphi_t(i)) = f(\pi_n(i))$ hence $\varphi_t(i) \equiv \iota_m(f(\pi_n(i)))$ (mod m). Thus equation (3) can be rewritten

$$\iota_m(f(\pi_n(t+1))) - \varphi_t(i) = (t+1-i)\iota_m(k) + \nu m \quad \text{for some } \nu. \tag{4}$$

As d divides m and t+1-i, (4) shows that d divides $\iota_n(f(\pi_n(t+1)))-\varphi_t(i)$ as wanted.

Thus, we can apply the Generalized Chinese Theorem and get the wanted value of $\varphi_{t+1}(t+1)$, concluding the induction step.

Finally, taking the union of the φ_t 's, $t \in \mathbb{N}$, we get a function $F : \mathbb{N} \to \mathbb{N}$ which is congruence preserving and lifts f.

Example 8 (counterexample to Theorem 7). Lemma 4 and Theorem 7 do not hold if m does not divide n. Consider $f: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/8\mathbb{Z}$ defined by f(0) = 0, f(1) = 3, f(2) = 4, f(3) = 1, f(4) = 4, f(5) = 7. Note first that, in $\mathbb{Z}/8\mathbb{Z}$, 1,3 and 5 are invertible, hence f is congruence preserving iff for $k \in \{2, 4\}$, for all $x \in \mathbb{Z}/6\mathbb{Z}$, k divides f(x + k) - f(x) and this holds; nevertheless, f has no congruence preserving lift $F: \mathbb{Z} \to \mathbb{Z}$. If such a lift F existed, we should have

- (1) because F lifts f, $\pi_8(F(0)) = f(\pi_6(0)) = 0$ and $\pi_8(F(8)) = f(\pi_6(8)) = f(2) = 4$;
- (2) as F is congruence preserving, 8 must divide F(8)-F(0); we already noted that 8 divides F(0), hence 8 divides F(8) and $\pi_8(F(8)) = 0$, contradicting $\pi_8(F(8)) = 4$.

Note that $\pi_{6,8}$ is neither a homomorphism nor surjective and $0 = \pi_8(8) \neq \pi_{6,8} \circ \pi_6(8) = 2$.

As a first corollary of Theorem 7 we get a new proof of the representations of congruence preserving functions $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ as finite linear sums of polynomials with rational coefficients (cf. [5]). Let us recall the so-called binomial polynomials.

Definition 9. For
$$k \in \mathbb{N}$$
, let $P_k(x) = {x \choose k} = \frac{1}{k!} \prod_{\ell=0}^{\ell=k-1} (x-\ell)$.

Though P_k has rational coefficients, it maps \mathbb{N} into \mathbb{Z} . Also, observe that $P_k(x)$ takes value 0 for all k > x. This implies that for any sequence of integers $(a_k)_{k \in \mathbb{N}}$, the infinite sum $\sum_{k \in \mathbb{N}} a_k P_k(x)$ reduces to a finite sum for any $x \in \mathbb{N}$ hence defines a function $\mathbb{N} \to \mathbb{Z}$.

Definition 10. We denote by lcm(k) the least common multiple of integers $1, \ldots, k$ (with the convention lcm(0) = 1).

Definition 11. To each binomial polynomial P_k , $k \in \mathbb{N}$, we associate a function $P_k^{n,m} : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ which sends an element $x \in \mathbb{Z}/n\mathbb{Z}$ to $(\pi_m \circ P_k \circ \iota_n)(x) \in \mathbb{Z}/m\mathbb{Z}$.

In other words, consider the representative t of x lying in $\{0, \ldots, n-1\}$, evaluate $P_k(t)$ in \mathbb{N} and then take the class of the results in $\mathbb{Z}/m\mathbb{Z}$.

Lemma 12. If lcm(k) divides a_k in \mathbb{Z} , then the function $\pi_m(a_k)P_k^{n,m}: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ (represented by a_kP_k) is congruence preserving.

Proof. In [3] we proved that if lcm(k) divides a_k then a_kP_k is a congruence preserving function on \mathbb{N} . Let us now show that $\pi_m(a_k)P_k^{n,m}: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ is also congruence preserving. Let $x,y\in\mathbb{Z}/n\mathbb{Z}$: as a_kP_k is congruence preserving, $\iota_n(x)-\iota_n(y)$ divides $a_kP_k(\iota_n(x))-a_kP_k(\iota_n(y))$. As π_m is a morphism, $\pi_m(\iota_n(x))-\pi_m(\iota_n(y))$ divides $\pi_m(a_k)\pi_m(P_k(\iota_n(x)))-\pi_m(a_k)\pi_m(P_k(\iota_n(y)))=\pi_m(a_k)P_k^{n,m}(x)-\pi_m(a_k)P_k^{n,m}(x)$; as $\pi_m\circ\iota_n=\pi_{n,m}$ (Notation 3), we conclude that $\pi_m(a_k)P_k^{n,m}$ is congruence preserving.

Corollary 13 ([5]). Let $1 \leq m = p_1^{\alpha_1} \cdots p_\ell^{\alpha_\ell}$, p_i prime. Suppose m divides n and let $\nu(m) = \max_{i=1,\dots,\ell} p_i^{\alpha_i}$. A function $f \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ is congruence preserving if and only if it is represented by a finite \mathbb{Z} -linear sum such that lcm(k) divides a_k (in \mathbb{Z}) for all $k < \nu(m)$, i.e. $f = \sum_{k=0}^{\nu(m)-1} \pi_m(a_k) P_k^{n,m}$.

Proof. Assume $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ is congruence preserving. Applying Theorem 7, lift f to $F: \mathbb{N} \to \mathbb{N}$ which is congruence preserving.

$$\mathbb{N} \xrightarrow{F = \sum_{k=0}^{\nu(m)-1} a_k P_k} \mathbb{Z}$$

$$\pi_n \downarrow \qquad \qquad \downarrow \pi_m \qquad f \circ \pi_n = \pi_m \circ F$$

$$\mathbb{Z}/n\mathbb{Z} \xrightarrow{f} \mathbb{Z}/m\mathbb{Z}$$

We proved in [5] that every congruence preserving function $F: \mathbb{N} \to \mathbb{N}$ is of the form $F = \sum_{k=0}^{\infty} a_k P_k$ where lcm(k) divides a_k for all k. Since F lifts f, for $u \in \mathbb{Z}$, we have

$$f(\pi_n(u)) = \pi_m(F(u)) = \pi_m(\sum_{k=0}^{\infty} a_k P_k(u))$$

$$= \sum_{k=0}^{\infty} \pi_m(a_k) \pi_m(P_k(u)) = \sum_{k=0}^{k=\nu(m)-1} \pi_m(a_k) \pi_m(P_k(u)) \quad (5)$$

The last equality is obtained by noting that for $k \geq \nu(m)$, m divides lcm(k) hence as a_k is a multiple of lcm(k), $\pi_m(a_k) = 0$. From (5) we get $f(\pi_n(u)) = \sum_{k=0}^{k=\nu(m)-1} \pi_m(a_k) \, \pi_m(P_k(u)) = \pi_m(\sum_{k=0}^{k=\nu(m)-1} a_k \, P_k(u))$. This proves that f is lifted to the rational polynomial function $\sum_{k=0}^{k=\nu(m)-1} a_k \, P_k$.

The converse follows from Lemma 12 and the fact that any finite sum of congruence preserving functions is congruence preserving. \Box

As a second corollary of Theorem 7 we can lift congruence preserving functions $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ to congruence preserving functions $\mathbb{Z}/qn\mathbb{Z} \to \mathbb{Z}/qn\mathbb{Z}$.

We state a slightly more general result.

Corollary 14. Assume $m, n, q, r \geq 1$, m divides both n and s, and n, s both divide r. If $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ is congruence preserving then it can be $(\pi_{r,n}, \pi_{s,m})$ -lifted to $g: \mathbb{Z}/r\mathbb{Z} \to \mathbb{Z}/s\mathbb{Z}$ which is also congruence preserving.

Proof. Using Theorem 7, lift f to a congruence preserving $F: \mathbb{N} \to \mathbb{N}$ and set $g = \pi_s \circ F \circ \iota_r$. We show that the following diagram commutes:

$$\begin{array}{lll} \pi_{s,m} \circ g & = & \pi_{s,m} \circ (\pi_s \circ F \circ \iota_r) \\ & = & (\pi_m \circ F) \circ \iota_r & \text{by Lemma 4 since } \pi_m = \pi_{s,m} \circ \pi_s \\ & = & (f \circ \pi_n) \circ \iota_r & \text{since } F \text{ lifts } f \\ & = & f \circ \pi_{r,n} & \text{since } \pi_n \circ \iota_r = \pi_{r,n} \end{array}$$

Thus, $\pi_{s,m} \circ g = f \circ \pi_{r,n}$, i.e. g lifts f.

Finally, if $x, y \in \mathbb{Z}/r\mathbb{Z}$ then $\iota_r(x) - \iota_r(y)$ divides $F(\iota_r(x)) - F(\iota_r(y))$ (by congruence preservation of F). Since π_s is a morphism and $\pi_s = \pi_{r,s} \circ \pi_r$, we deduce that $\pi_s(\iota_r(x)) - \pi_s(\iota_r(y)) = (\pi_{r,s} \circ \pi_r \circ \iota_r)(x) - (\pi_{r,s} \circ \pi_r \circ \iota_r)(y) = \pi_{r,s}(x-y)$ (recall $\pi_r \circ \iota_r$ is the identity on $\mathbb{Z}/r\mathbb{Z}$) divides $\pi_s(F(\iota_r(x))) - \pi_s(F(\iota_r(y))) = g(x) - g(y)$ (by definition of g). Thus, g is congruence preserving.

Remark 15. The previous diagram is completely commutative: F lifts both f and g, and g lifts f: as r divides $x - \iota_r \circ \pi_r(x)$ for all x, and F is congruence preserving, r divides $F(x) - F \circ \iota_r \circ \pi_r(x)$, and because s divides r, $\pi_s \circ F(x) = \pi_s \circ F \circ \iota_r \circ \pi_r(x)$ hence $\pi_s \circ F = g \circ \pi_r = \pi_s \circ F \circ \iota_r \circ \pi_r$.

3 Congruence preservation on p-adic/profinite integers

All along this section, p is a prime number; we study congruence preserving functions on the rings \mathbb{Z}_p of p-adic integers and $\widehat{\mathbb{Z}}$ of profinite integers. \mathbb{Z}_p is the projective limit $\varprojlim \mathbb{Z}/p^n\mathbb{Z}$ relative to the projections π_{p^n,p^m} . Usually, $\widehat{\mathbb{Z}}$ is defined as the projective limit $\varprojlim \mathbb{Z}/n\mathbb{Z}$ of the finite rings $\mathbb{Z}/n\mathbb{Z}$ relative to the projections $\pi_{n,m}$, for m dividing n. We here use the following equivalent definition which allows to get completely similar proofs for \mathbb{Z}_p and $\widehat{\mathbb{Z}}$.

$$\widehat{\mathbb{Z}} = \varprojlim \mathbb{Z}/n! \mathbb{Z} = \{ \widehat{x} = (x_n)_{n=1}^{\infty} \in \prod_{n=1}^{\infty} \mathbb{Z}/n! \mathbb{Z} \mid \forall m < n, \ x_m \equiv x_n \pmod{m!} \}$$

Recall that \mathbb{Z}_p (resp. $\widehat{\mathbb{Z}}$) contains the ring \mathbb{Z} and is a compact topological ring for the topology given by the ultrametric d such that $d(x,y) = 2^{-n}$ where n is largest such that p^n (resp. n!) divides x - y, i.e. x and y have the same first n digits in their base p (resp. base factorial) representation. We refer to

the Appendix for some basic definitions, representations and facts that we use about the compact topological rings \mathbb{Z}_p and $\widehat{\mathbb{Z}}$.

We first prove that on \mathbb{Z}_p and $\widehat{\mathbb{Z}}$ every congruence preserving function is continuous (Proposition 17).

Definition 16. 1. Let $\mu : \mathbb{N} \to \mathbb{N}$ be increasing. A function $\Psi : \mathbb{Z}_p \to \mathbb{Z}_p$ admits μ as modulus of uniform continuity if and only if $d(x,y) \leq 2^{-\mu(n)}$ implies $d(\Psi(x), \Psi(y)) \leq 2^{-n}$.

2. Φ is 1-Lipschitz if it admits the identity as modulus of uniform continuity.

Since the rings \mathbb{Z}_p and $\widehat{\mathbb{Z}}$ are compact, every continuous function admits a modulus of uniform continuity.

Proposition 17. Every congruence preserving function $\Psi: \mathbb{Z}_p \to \mathbb{Z}_p$ is 1-Lipschitz. Idem with $\widehat{\mathbb{Z}}$ in place of \mathbb{Z}_p .

Proof. If $d(x,y) \leq 2^{-n}$ then p^n divides x-y hence (by congruence preservation) p^n also divides $\Psi(x) - \Psi(y)$ which yields $d(\Psi(x), \Psi(y)) \leq 2^{-n}$.

The converse of Proposition 17 is false: a continuous function is not necessarily congruence preserving as will be seen in Example 28. Note the following

Corollary 18. There are functions $\mathbb{Z}_p \to \mathbb{Z}_p$ (resp. $\widehat{\mathbb{Z}} \to \widehat{\mathbb{Z}}$) which are not continuous hence not congruence preserving.

Proof. As \mathbb{Z}_p has cardinality 2^{\aleph_0} there are $2^{2^{\aleph_0}}$ functions $\mathbb{Z}_p \to \mathbb{Z}_p$. Since \mathbb{N} is dense in \mathbb{Z}_p , \mathbb{Z}_p is a separable space, hence there are at most 2^{\aleph_0} continuous functions.

In general an arbitrary continuous function on \mathbb{Z}_p is not the inverse limit of a sequence of functions $\mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$'s. However, this is true for congruence preserving functions. We first recall how any continuous function $\Psi \colon \mathbb{Z}_p \to \mathbb{Z}_p$ is the inverse limit of a sequence of an inverse system of continuous functions $\psi_n \colon \mathbb{Z}/p^{\mu(n)}\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}, \ n \in \mathbb{N}$, i.e. the diagrams of Figure 1 commute for any $m \leq n$. For legibility, we use notations adapted to \mathbb{Z}_p : we write π_n^p for $\pi_{p^n} \colon \mathbb{Z}_p \to \mathbb{Z}/p^n\mathbb{Z}, \ \pi_{n,m}^p$ (resp. ι_{p^n}, ι_{p^m}) for π_{p^n}, ι_{p^m} (resp. ι_{p^n}, ι_{p^m}), and ι_p^p for $\iota_{p^n} \colon \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}_p$.

Proposition 19. Consider $\Psi: \mathbb{Z}_p \to \mathbb{Z}_p$ and a strictly increasing $\mu: \mathbb{N} \to \mathbb{N}$. Define $\psi_n: \mathbb{Z}/p^{\mu(n)}\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ as $\psi_n = \pi_n^p \circ \Psi \circ \iota_{\mu(n)}^p$ for all $n \in \mathbb{N}$. Then the following conditions are equivalent:

- (1) Ψ is uniformly continuous and admits μ as a modulus of uniform continuity.
- (2) For all $1 \leq m \leq n$, the diagrams of Figure 1 commute hence Ψ is the inverse limit of the ψ_n 's, $n \in \mathbb{N}$.

Idem with $\widehat{\mathbb{Z}}$ in place of \mathbb{Z}_p .

Figure 1: Ψ as the inverse limit of the ψ_n 's, $n \in \mathbb{N}$.

Proof. (1) and (2) are also equivalent to (3) below.

(3) For all $1 \le m \le n$, the lower half of the diagram of Figure 1 commutes.

(1) \Rightarrow (2). • We first show $\pi_n^p \circ \Psi = \psi_n \circ \pi_{\mu(n)}^p$. Let $u \in \mathbb{Z}_p$. Since $\pi_{\mu(n)}^p \circ \iota_{\mu(n)}^p$ is the identity on $\mathbb{Z}/p^{\mu(n)}\mathbb{Z}$, we have $\pi_{\mu(n)}^p(u) = \pi_{\mu(n)}^p(\iota_{\mu(n)}^p(\iota_{\mu(n)}^p(\pi_{\mu(n)}^p(u)))$ hence $p^{\mu(n)}$ (considered as an element of \mathbb{Z}_p) divides the difference $u - \iota_{\mu(n)}^p(\pi_{\mu(n)}^p(u))$, i.e. the distance between these two elements is at most $2^{-\mu(n)}$. As μ is a modulus of uniform continuity for Ψ , the distance between their images under Ψ is at most 2^{-n} , i.e. p^n divides their difference, hence $\pi_n^p(\Psi(u)) = \pi_n^p(\Psi(\iota_{\mu(n)}^p(\pi_{\mu(n)}^p(u)))$. By definition, $\psi_n = \pi_n^p \circ \Psi \circ \iota_{\mu(n)}^p$. Thus, $\pi_n^p(\Psi(u)) = \psi_n(\pi_{\mu(n)}^p(u))$, i.e. Ψ lifts ψ_n .

• We now show $\pi_{n,m}^p \circ \psi_n = \psi_m \circ \pi_{\mu(n),\mu(m)}^p$. Since Ψ lifts ψ_m , we have

$$\begin{array}{rcl} \pi^p_m \circ \Psi & = & \psi_m \circ \pi^p_{\mu(m)} \\ \text{hence} & \pi^p_m \circ \Psi \circ \iota^p_{\mu(n)} & = & \psi_m \circ \pi^p_{\mu(m)} \circ \iota^p_{\mu(n)} \\ \pi^p_{n,m} \circ \pi^p_n \circ \Psi \circ \iota^p_{\mu(n)} & = & \psi_m \circ \pi^p_{\mu(n),\mu(m)} \circ \pi^p_{\mu(n)} \circ \iota^p_{\mu(n)} \\ \pi^p_{n,m} \circ \psi_n & = & \psi_m \circ \pi^p_{\mu(n),\mu(m)} \quad \text{since } \pi^p_{\mu(n)} \circ \iota^p_{\mu(n)} \text{ is the identity.} \end{array}$$

This last equality means that ψ_n lifts ψ_m .

- $(2) \Rightarrow (3)$. Trivial
- $(3) \Rightarrow (1)$. The fact that Ψ lifts ψ_n shows that two elements of \mathbb{Z}_p with the same first $\mu(n)$ digits (in the *p*-adic representation) have images with the same first n digits. This proves that μ is a modulus of uniform continuity for Ψ . \square

For congruence preserving functions $\Phi: \mathbb{Z}_p \to \mathbb{Z}_p$, the representation of Proposition 19 as an inverse limit gets smoother since then $\mu(n) = n$.

Theorem 20. For a function $\Phi : \mathbb{Z}_p \to \mathbb{Z}_p$, letting $\varphi_n : \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ be defined as $\varphi_n = \pi_n^p \circ \Phi \circ \iota_n^p$, the following conditions are equivalent.

(1) Φ is congruence preserving.

Figure 2: Φ as the inverse limit of the φ_n 's, $n \in \mathbb{N}$.

(2) Φ is 1-Lipschitz, all φ_n 's are congruence preserving and Φ is the inverse limit of the φ_n 's, $n \in \mathbb{N}$.

A similar equivalence also holds for functions $\Phi: \widehat{\mathbb{Z}} \to \widehat{\mathbb{Z}}$.

Proof. (1) and (2) are also equivalent to (3) and (4) below.

- (3) All φ_n 's are congruence preserving and, for all $1 \leq m \leq n$, the diagrams of Figure 2 commute.
- (4) All φ_n 's are congruence preserving and, for all $1 \leq m \leq n$, the lower half (dealing with φ_n and φ_m) of the diagrams of Figure 2 commute.
- (2) \Leftrightarrow (3) \Leftrightarrow (4). Instantiate Proposition 19 with μ the identity on \mathbb{N} .
- (1) \Rightarrow (2). Proposition 17 insures that Φ is 1-Lipschitz. We show that φ_n is congruence preserving. Since Φ is congruence preserving, if $x, y \in \mathbb{Z}/p^n\mathbb{Z}$ then $\iota_n^p(x) \iota_n^p(y)$ divides $\Phi(\iota_n^p(x)) \Phi(\iota_n^p(y))$. Now, the canonical projection π_n^p is a morphism hence $\pi_n^p(\iota_n^p(x)) \pi_n^p(\iota_n^p(y))$ divides $\pi_n^p(\Phi(\iota_n^p(x))) \pi_n^p(\Phi(\iota_n^p(y)))$. Recall that $\pi_n^p \circ \iota_n^p$ is the identity on $\mathbb{Z}/p^n\mathbb{Z}$. Thus, x y divides $\pi_n^p(\Phi(\iota_n^p(x))) \pi_n^p(\Phi(\iota_n^p(y))) = \varphi_n(x) \varphi_n(y)$ as wanted.
- (4) \Rightarrow (1). The fact that Φ lifts φ_n shows that two elements of \mathbb{Z}_p with the same first n digits (in the p-adic representation) have images with the same first n digits. This proves that Φ is 1-Lipschitz.

It remains to prove that Φ is congruence preserving. Let $x, y \in \mathbb{Z}_p$. Since φ_n is congruence preserving $\pi_n^p(x) - \pi_n^p(y)$ divides $\varphi_n(\pi_n^p(x)) - \varphi_n(\pi_n^p(y))$. Let

$$U_n^{x,y} = \left\{ u \in \mathbb{Z}/p^n \mathbb{Z} \mid \varphi_n(\pi_n^p(x)) - \varphi_n(\pi_n^p(y)) = (\pi_n^p(x) - \pi_n^p(y)) u \right\}.$$

If $m \le n$ and $u \in U_n^{x,y}$ then, applying $\pi_{n,m}^p$ to the equality defining $U_n^{x,y}$, and using the commutative diagrams of Figure 2, we get

$$\varphi_{n}(\pi_{n}^{p}(x)) - \varphi_{n}(\pi_{n}^{p}(y)) = (\pi_{n}^{p}(x) - \pi_{n}^{p}(y)) u$$

$$\pi_{n,m}^{p}(\varphi_{n}(\pi_{n}^{p}(x))) - \pi_{n,m}^{p}(\varphi_{n}(\pi_{n}^{p}(y))) = (\pi_{n,m}^{p}(\pi_{n}^{p}(x)) - \pi_{n,m}^{p}(\pi_{n}^{p}(y))) \pi_{n,m}^{p}(u)$$

$$\varphi_{m}(\pi_{n,m}^{p}(\pi_{n}^{p}(x))) - \varphi_{m}(\pi_{n,m}^{p}(\pi_{n}^{p}(y))) = (\pi_{n,m}^{p}(\pi_{n}^{p}(x)) - \pi_{n,m}^{p}(\pi_{n}^{p}(y))) \pi_{n,m}^{p}(u)$$

$$\varphi_{m}(\pi_{m}^{p}(x)) - \varphi_{m}(\pi_{n}^{p}(y)) = (\pi_{m}^{p}(x) - \pi_{m}^{p}(y)) \pi_{n,m}^{p}(u)$$

Thus, if $u \in U_n^{x,y}$ then $\pi_{n,m}^p(u) \in U_m^{x,y}$.

Consider the tree \mathcal{T} of finite sequences (u_0,\ldots,u_n) such that $u_i\in U_i^{x,y}$ and $u_i=\pi_{n,i}^p(u_n)$ for all $i=0,\ldots,n$. Since each $U_n^{x,y}$ is nonempty, the tree \mathcal{T} is infinite. Since it is at most p-branching, using König's Lemma, we can pick an infinite branch $(u_n)_{n\in\mathbb{N}}$ in \mathcal{T} . This branch defines an element $z\in\mathbb{Z}_p$. The commutative diagrams of Figure 2 show that the sequences $(\pi_n^p(x)-\pi_n^p(y))_{n\in\mathbb{N}}$ and $\varphi_n(\pi_n^p(x))-\varphi_n(\pi_n^p(y))$ represent x-y and $\Phi(x)-\Phi(y)$ in Z_p . Equalities $\varphi_m(\pi_m^p(x))-\varphi_m(\pi_m^p(y))=(\pi_m^p(x)-\pi_m^p(y))$ $\pi_{n,m}(u)$ show that (going to the projective limits) $\Phi(x)-\Phi(y)=(x-y)z$. This proves that Φ is congruence preserving.

Congruence preserving functions $\widehat{\mathbb{Z}} \to \widehat{\mathbb{Z}}$ are determined by their restrictions to \mathbb{N} since \mathbb{N} is dense in $\widehat{\mathbb{Z}}$. Let us state a (partial) converse result.

Theorem 21. Every congruence preserving function $F : \mathbb{N} \to \mathbb{Z}$ has a unique extension to a congruence preserving function $\Phi : \mathbb{Z}_p \to \mathbb{Z}_p$ (resp. $\widehat{\mathbb{Z}} \to \widehat{\mathbb{Z}}$).

Proof. Observe that \mathbb{N} is dense in \mathbb{Z}_p (resp. $\widehat{\mathbb{Z}}$) and congruence preservation implies uniform continuity. Thus, F has a unique uniformly continuous extension Φ to \mathbb{Z}_p (resp. $\widehat{\mathbb{Z}}$). To show that this extension Φ is congruence preserving, observe that Φ is the inverse limit of the $\varphi_n = \rho_n \circ \Phi \circ \iota_n$'s. Now, since ι_n has range \mathbb{N} , we see that $\varphi_n = \rho_n \circ F \circ \iota_n$ hence is congruence preserving as is F. Finally, Theorem 20 insures that Φ is also congruence preserving.

Polynomials in $\mathbb{Z}_p[X]$ obviously define congruence preserving functions $\mathbb{Z}_p \to \mathbb{Z}_p$. But non polynomial functions can also be congruence preserving.

Consequence 22. The extensions to \mathbb{Z}_p and $\widehat{\mathbb{Z}}$ of the $\mathbb{N} \to \mathbb{Z}$ functions [3, 4]

$$x\mapsto \lfloor e^{1/a}\,a^x\,x!\rfloor\quad (\textit{for }a\in\mathbb{Z}\setminus\{0,1\})\quad ,\quad x\mapsto \textit{if }x=0 \ \textit{then }1\ \textit{else }\lfloor e\,x!\rfloor$$

and the Bessel like function $f(n) = \sqrt{\frac{e}{\pi}} \times \frac{\Gamma(1/2)}{2 \times 4^n \times n!} \int_1^{\infty} e^{-t/2} (t^2 - 1)^n dt$ are congruence preserving.

We now characterize congruence preserving functions via their representation as infinite linear sums of the P_k s; this representation is similar to Mahler's characterization for continuous functions (Theorem 25). First recall the notion of valuation.

Definition 23. The p-valuation (resp. the factorial valuation) Val(x) of $x \in \mathbb{Z}_p$, or $x \in \mathbb{Z}/p^n\mathbb{Z}$ (resp. $x \in \widehat{\mathbb{Z}}$) is the largest s such that p^s (resp. s!) divides x or $is +\infty$ in case x = 0. It is also the length of the initial block of zeros in the p-adic (resp. factorial) representation of x.

Note that for any polynomial P_k (or more generally any polynomial), the below diagram commutes for any $m \leq n$ (recall that $P_k^{p^n,p^n} = \pi_{p^n} \circ P_k \circ \iota_{p^n}$):

$$\mathbb{Z}/p^{n}\mathbb{Z} \xrightarrow{P_{k}^{p^{n},p^{n}}} \mathbb{Z}/p^{n}\mathbb{Z}$$

$$\pi_{p^{n},p^{m}} \downarrow \qquad \qquad \downarrow \pi_{p^{n},p^{m}} \quad \text{i.e.} \quad \pi_{p^{n},p^{m}} \circ P_{k}^{p^{n},p^{n}} = P_{k}^{p^{m},p^{m}} \circ \pi_{p^{n},p^{m}}$$

$$\mathbb{Z}/p^{m}\mathbb{Z} \xrightarrow{P_{k}^{p^{m},p^{m}}} \mathbb{Z}/p^{m}\mathbb{Z}$$

We now can define the interpretation $\widehat{P}_k(x)$ of $P_k(x)$ in \mathbb{Z}_p (similar for $\widehat{\mathbb{Z}}$).

Definition 24. Define
$$\widehat{P}_k \colon \mathbb{Z}_p \to \mathbb{Z}_p$$
 as $\widehat{P}_k = \varprojlim_{n \in \mathbb{N}} P_k^{p^n, p^n}$. For $x \in \mathbb{Z}_p$, $x = (\varprojlim_{n \in \mathbb{N}} x_n)$, we have $\widehat{P}_k(x) = \varprojlim_{n \in \mathbb{N}} \pi_{p^n}(P_k(\iota_{p^n}(x_n)))$.

Moreover, the below diagrams commute for all n

$$\begin{array}{ccc}
\mathbb{Z}_p & \xrightarrow{\widehat{P_k}} & \mathbb{Z}_p \\
\pi_n^p \downarrow & & \downarrow \pi_n^p \\
\mathbb{Z}/p^n \mathbb{Z} & \xrightarrow{P_k^{p^n,p^n}} & \mathbb{Z}/p^n \mathbb{Z} \\
\iota_{p^n} \downarrow & & \downarrow \iota_{p^n} \\
\mathbb{N} & \xrightarrow{P_k} & \mathbb{N}
\end{array}$$

Theorem 25 (Mahler, 1956 [9]). 1. A series $\sum_{k\in\mathbb{N}} a_k \widehat{P_k}(x)$, $a_k \in \mathbb{Z}_p$, is convergent in \mathbb{Z}_p if and only if $\lim_{k\to\infty} a_k = 0$, i.e. the corresponding sequence of valuations $(Val(a_k))_{k\in\mathbb{N}}$ tends to $+\infty$.

2. The above series represent all uniformly continuous functions $\mathbb{Z}_p \to \mathbb{Z}_p$. Idem with $\widehat{\mathbb{Z}}$.

We can also characterize of congruence preserving functions via their representation as infinite linear sums of the P_k s.

Theorem 26. A function $\Phi: \mathbb{Z}_p \to \mathbb{Z}_p$ represented by a series $\Phi = \sum_{k \in \mathbb{N}} a_k \widehat{P}_k$ is congruence preserving if and only if lcm(k) divides a_k for all k, i.e. $a_k = p^i b_k$ for $k \geq p^i$.

Proof. Suppose Φ is congruence preserving. By Theorem 20, Φ is uniformly continuous and by Theorem 25, $\Phi = \sum_{k \in \mathbb{N}} a_k \widehat{P_k}$ with $a_k \in \mathbb{Z}_p$. Substituting in $\varphi_n = \pi_n^p \circ \Phi \circ \iota_n^p$, we get $\varphi_n = \pi_n^p \circ (\sum_{k \in \mathbb{N}} a_k \widehat{P_k}) \circ \iota_n^p = \sum_{k \in \mathbb{N}} \pi_n^p (a_k) \pi_n^p \circ \widehat{P_k} \circ \iota_n^p = \sum_{k \in \mathbb{N}} \pi_n^p (a_k) P_k^{p^n, p^n}$. Theorem 20 insures that $\Phi = \varprojlim_{n \in \mathbb{N}} \varphi_n$ and the φ_n are congruence preserving on $\mathbb{Z}/p^n\mathbb{Z}$; thus by Corollary 13: $\varphi_n = \sum_{k=0}^{\nu(n)-1} b_k^n P_k^{p^n, p^n}$, with lcm(k) divides b_k^n for all $k \leq \nu(n) - 1$. We proved in [5]

that the $P_k^{p^n,p^n}$ form a basis of the functions on $\mathbb{Z}/p^n\mathbb{Z}$, hence $\pi_n^p(a_k) = b_k^n$ and lcm(k) divides $\pi_n^p(a_k)$. Noting that $Val(a_k) = Val(\pi_n^p(a_k))$ and applying Lemma 27, we deduce that lcm(k) divides a_k , i.e. $\nu_p(k) \leq Val(a_k)$, and $a_k = p^{\nu_p(k)}b_k$. In particular, this implies that $d(a_k,0) \leq 2^{-\nu_p(k)}$ and thus $\lim_{k\to\infty} a_k = 0$.

Conversely, if $\Phi = \sum_{k \in \mathbb{N}} a_k \widehat{P_k}$ and lcm(k) divides a_k for all k, then lcm(k) divides $\pi_n^p(a_k)$ for all n, k; hence the associated φ_n are congruence preserving which implies that so is Φ .

Lemma 27. Let $\nu_p(k)$ be the largest i such that $p^i \leq k < p^{i+1}$. In $\mathbb{Z}/p^n\mathbb{Z}$, lcm(k) divides a number x iff $\nu_p(k) \leq Val(x)$.

Proof. In $\mathbb{Z}/p^n\mathbb{Z}$ all numbers are invertible except multiples of p. Hence lcm(k) divides x iff $p^{\nu_p(k)}$ divides x.

Example 28. Let $\Phi = \sum_{k \in \mathbb{N}} a_k P_k$ with $a_k = p^{\nu_p(k)-1}$, with $\nu_p(k)$ as in Lemma 27. Φ is uniformly continuous by Theorem 25. By Lemma 27 lcm(k) does not divide a_k hence by Theorem 26 Φ is not congruence preserving.

4 Congruence preserving functions and lattices

A lattice of subsets of a set X is a family of subsets of X such that $L \cap M$ and $L \cup M$ are in \mathcal{L} whenever $L, M \in \mathcal{L}$. Let $f: X \to X$. A lattice \mathcal{L} of subsets of X is closed under f^{-1} if $f^{-1}(L) \in \mathcal{L}$ whenever $L \in \mathcal{L}$. Closure under decrement means closure under Suc^{-1} , where Suc is the successor function. For $L \subseteq \mathbb{Z}$ and $t \in \mathbb{Z}$, let $L - t = \{x - t \mid x \in L\}$.

Proposition 29. Let X be \mathbb{N} or \mathbb{Z} or $\mathbb{N}_{\alpha} = \{x \in \mathbb{Z} \mid x \geq \alpha\}$ with $\alpha \in \mathbb{Z}$. For L a subset of X let $\mathcal{L}_X(L)$ be the family of sets of the form $\bigcup_{j \in J} \bigcap_{i \in I_j} X \cap (L-i)$ where J and the I_j 's are finite non empty subsets of \mathbb{N} . Then $\mathcal{L}_X(L)$ is the smallest sublattice of $\mathcal{P}(X)$, the class of subsets of X, containing L and closed under decrement.

Let $f:\mathbb{N}\longrightarrow\mathbb{N}$ be a non decreasing function, the following conditions are equivalent [2]:

- (1)_N For every finite subset L of N, the lattice $\mathcal{L}_{\mathbb{N}}(L)$ is closed under f^{-1} .
- $(2)_{\mathbb{N}}$ The function f is congruence preserving and f(a) > a for all $a \in \mathbb{N}$.
- (3)_N For every regular subset L of N the lattice $\mathcal{L}_{\mathbb{N}}(L)$ is closed under f^{-1} .

We now extend this result to functions $\mathbb{Z} \to \mathbb{Z}$. First recall the notions of recognizable and rational subsets: a subset L of a monoid X is rational if it can be generated from finite sets by unions, products and stars; L is recognizable if there exists a morphism $\varphi \colon X \to M$, with M a finite monoid, and F a subset of M such that $L = \varphi^{-1}(F)$. For \mathbb{N} , recognizable and rational subsets coincide and are are called regular subsets of \mathbb{N} . For \mathbb{Z} , recognizable subsets are finite unions of arithmetic sequences, while rational subsets are unions of the form $F \cup P \cup -N$, with F finite, and P, N two regular subsets of \mathbb{N} ; i.e. a recognizable subset of \mathbb{Z} is also rational, but the converse is false. It is known that

- 1. A subset $L \subseteq \mathbb{N}$ is regular if it is the union of a finite set with finitely many arithmetic progressions, i.e. $L = F \cup (R + d\mathbb{N})$ with $d \ge 1$, $F, R \subseteq \{x \mid 0 \le x < d\}$ (possibly empty).
- 2. A subset $L \subseteq \mathbb{Z}$ is rational if it is of the form $L = L^+ \cup (-L^-)$ where L^+, L^- are regular subsets of \mathbb{N} , i.e. $L = -(d+S+d\mathbb{N}) \cup F \cup (d+R+d\mathbb{N})$ with $d \ge 1$, $R, S \subseteq \{x \mid 0 \le x < d\}$, $F \subseteq \{x \mid -d < x < d\}$ (possibly empty). See [1].
- 3. A subset $L \subseteq \mathbb{Z}$ is recognizable if it is of the form $L = (F + d\mathbb{Z})$ with $d \ge 1$, $F \subseteq \{x \mid 0 \le x < d\}$

Theorem 30. Let $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ be a non decreasing function. The following conditions are equivalent:

- (1)_Z For every finite subset L of Z, the lattice $\mathcal{L}_{\mathbb{Z}}(L)$ is closed under f^{-1} .
- $(2)_{\mathbb{Z}}$ The function f is congruence preserving and $f(a) \geq a$ for all $a \in \mathbb{Z}$.
- $(3)_{\mathbb{Z}}$ For every recognizable subset L of \mathbb{Z} the lattice $\mathcal{L}_{\mathbb{Z}}(L)$ is closed under f^{-1} .

Proof. For this proof, we need the \mathbb{Z} -version of Lemma 3.1 in [2].

Lemma 31. Let $f: \mathbb{Z} \to \mathbb{Z}$ be a nondecreasing congruence preserving function. Then, for any set $L \subseteq \mathbb{Z}$, we have $f^{-1}(L) = \bigcup_{a \in f^{-1}(L)} \bigcap_{t \in L-a} (L-t)$.

Proof. Let $a \in f^{-1}(L)$. As $t \in L - a \Leftrightarrow a \in L - t$, we have $a \in \bigcap_{t \in L - a} L - t$, proving inclusion \subseteq .

For the other inclusion, let $b \in \bigcap_{t \in L-a} L - t$ with $a \in f^{-1}(L)$. To prove that $f(b) \in L$, we argue by way of contradiction. Suppose $f(b) \notin L$. Since $f(a) \in L$ we have $a \neq b$. The condition on f insures the existence of $k \in \mathbb{Z}$ such that f(b) - f(a) = k(b-a). In fact, $k \in \mathbb{N}$ since f is nondecreasing.

Suppose first that a < b. Since $k \in \mathbb{N}$ and $f(a) + k(b-a) = f(b) \notin L$ there exists a least $r \in \mathbb{N}$ such that $f(a) + r(b-a) \notin L$. Moreover, $r \ge 1$ since $f(a) \in L$. Let t = f(a) - a + (r-1)(b-a). By minimality of r, we get $t + a = f(a) + (r-1)(a-b) \in L$. Now $t + a \in L$ implies $t \in L - a$; as $b \in \bigcap_{t \in L-a} L - t$ this implies $b \in L - t$ hence $t + b \in L$. But $t + b = f(a) + r(b-a) \notin L$, this contradicts the definition of r.

Suppose next that a>b. Since $k\in\mathbb{N}$ and $f(b)+k(a-b)=f(a)\in L$ there exists a least $r\in\mathbb{N}$ such that $f(b)+r(a-b)\in L$. Moreover, $r\geq 1$ since $f(b)\notin L$. Let t=f(b)-b+(r-1)(a-b). By minimality of r, we get $t+b=f(b)+(r-1)(a-b)\notin L$. Now $t+a\in L$ implies $t+b\in L$, contradiction.

• $(1)_{\mathbb{Z}} \Rightarrow (2)_{\mathbb{Z}}$. Assume $(1)_{\mathbb{Z}}$ holds. We first prove inequality $f(x) \geq x$ for all $x \in \mathbb{Z}$. Observe that (by Proposition 29) $\mathcal{L}_{\mathbb{Z}}(\{z\}) = \{X \in \mathcal{P}_{<\omega}(\mathbb{Z}) \mid X = \emptyset \text{ or } \max X \leq z\}$. In particular, letting z = f(x) and applying $(1)_{\mathbb{Z}}$ with $\mathcal{L}(\{f(x)\})$, we get $f^{-1}(\{f(x\}) \in \mathcal{L}_{\mathbb{Z}}(\{f(x)\})$ hence $x \leq \max(f^{-1}(\{f(x\})) \leq f(x)$.

To show that f is congruence preserving, we reduce to the \mathbb{N} case.

For $\alpha \in \mathbb{Z}$, let $Suc_{\alpha} : \mathbb{N}_{\alpha} \to \mathbb{N}_{\alpha}$ be the successor function on $\mathbb{N}_{\alpha} = \{z \in \mathbb{Z} \mid z \geq \alpha\}$. The structures $\langle \mathbb{N}, Suc \rangle$ and $\langle \mathbb{N}_{\alpha}, Suc_{\alpha} \rangle$ are isomorphic. Since $f(x) \geq x$ for all $x \in \mathbb{Z}$, the restriction $f \upharpoonright \mathbb{N}_{\alpha}$ maps \mathbb{N}_{α} into \mathbb{N}_{α} . In particular, using our result in \mathbb{N} , conditions $(1)_{\mathbb{N}_{\alpha}}$ and $(2)_{\mathbb{N}_{\alpha}}$ (relative to $f \upharpoonright \mathbb{N}_{\alpha}$) are equivalent.

We show that condition $(2)_{\mathbb{N}_{\alpha}}$ holds. Let $L \subseteq \mathbb{N}_{\alpha}$ be finite. Condition $(1)_{\mathbb{Z}}$ insures that $\mathcal{L}_{\mathbb{Z}}(L)$ is closed under f^{-1} . In particular, $f^{-1}(L) \in \mathcal{L}_{\mathbb{Z}}(L)$. Using Proposition 29, we get $f^{-1}(L) = \bigcup_{j \in J} \bigcap_{i \in I_j} (L-i)$ for finite J, I_j 's included in \mathbb{N} hence $(f \upharpoonright \mathbb{N}_{\alpha})^{-1}(L) = f^{-1}(L) \cap \mathbb{N}_{\alpha} = \bigcup_{j \in J} \bigcap_{i \in I_j} (\mathbb{N}_{\alpha} \cap (L-i)) \in \mathcal{L}_{\mathbb{N}_{\alpha}}(L)$. This proves condition $(1)_{\mathbb{N}_{\alpha}}$. Since $(1)_{\mathbb{N}_{\alpha}} \Rightarrow (2)_{\mathbb{N}_{\alpha}}$ we see that $f \upharpoonright \mathbb{N}_{\alpha}$ is congruence preserving Now, α is arbitrary in \mathbb{Z} and the fact that $f \upharpoonright \mathbb{N}_{\alpha}$ is congruence preserving for all $\alpha \in \mathbb{Z}$ implies that f is congruence preserving. Thus, condition $(2)_{\mathbb{Z}}$ holds.

- $(2)_{\mathbb{Z}} \Rightarrow (3)_{\mathbb{Z}}$. Assume $(2)_{\mathbb{Z}}$. It is enough to prove that $f^{-1}(L) \in \mathcal{L}_{\mathbb{Z}}(L)$ whenever L is recognizable. Let $L = (F + d\mathbb{Z})$ with $d \geq 1$, $F = \{f_1, \cdots, f_n\} \subseteq \{x \mid 0 \leq x < d\}$. Then f is not constant since $f(x) \geq x$ for all $x \in \mathbb{Z}$. Also, $f^{-1}(\alpha)$ is finite for all α : let b be such that $f(b) = \beta \neq \alpha$, by congruence preservation the nonzero integer $\alpha \beta$ is divided by a b for all $a \in f^{-1}(\alpha)$ hence $f^{-1}(\alpha)$ is finite. $f^{-1}(F)$ is thus finite too. Moreover, $L t = F t + d\mathbb{Z} = L t d + d\mathbb{Z} = L t d + d\mathbb{Z} = L t + d + d\mathbb{Z} = L t + d$, hence there are only finitely many L t 's. By Lemma 31 we have $f^{-1}(L) = \bigcup_{a \in f^{-1}(F)} \bigcap_{t \in L a} (L t)$; as there are only a finite number of L t 's, all union and intersections reduce to finite unions and intersections and $f^{-1}(L) \in \mathcal{L}_{\mathbb{Z}}(L)$.
- $(3)_{\mathbb{Z}} \Rightarrow (2)_{\mathbb{Z}}$. Similar to $(1)_{\mathbb{Z}} \Rightarrow (2)_{\mathbb{Z}}$.
- $(2)_{\mathbb{Z}} \Rightarrow (1)_{\mathbb{Z}}$. Similar to $(2)_{\mathbb{Z}} \Rightarrow (3)_{\mathbb{Z}}$.

Example 32. Theorem 30 does not hold if we substitute rational for recognizable in $(3)_{\mathbb{Z}}$. Consider $L = (6 + 10\mathbb{N})$ and $f(x) = x^2$; L is rational and f is congruence preserving. However $f^{-1}(L) = (\{4,6\} + 10\mathbb{N}) \cup -(\{4,6\} + 10\mathbb{N})$ does not belong to $\mathcal{L}_{\mathbb{Z}}(L)$: $f^{-1}(L)$ contains infinitely many negative numbers, while each L - t for $t \in f^{-1}(L)$ contains only finitely many negative numbers; hence any finite union of finite intersections of L - t 's can contain only a finite number of negative numbers and cannot be equal to $f^{-1}(L)$.

Theorem 30 does not hold for \mathbb{Z}_p : $f^{-1}(L)$ no longer belongs to $\mathcal{L}_{\mathbb{Z}_p}(L)$, the lattice of subsets of \mathbb{Z}_p containing L and closed under decrement. Consider the congruence preserving function $f(x) = \left(\sum_{i \geq 2} p^i\right)x$, and let $L = \left\{\sum_{i \geq 2} p^i\right\} = \{f(1)\}$. Then $f^{-1}(L) = \{1\} \notin \mathcal{L}_{\mathbb{Z}_p}(L)$ because all elements of the (L-i)s end with an infinity of 1s.

Thus integer decrements are not sufficient; but even if we substitute translations for decrements, Theorem 30 can't be generalized.

A recognizable subset of \mathbb{Z}_p is of the form $F+p^n\mathbb{Z}_p$ with F finite, $F\subseteq \mathbb{Z}/p^n\mathbb{Z}$. For L a subset of \mathbb{Z}_p let $\mathcal{L}^c_{\mathbb{Z}_p}(L)$ (resp. $\mathcal{L}_{\mathbb{Z}_p}(L)$) be the family of sets of the form $\bigcup_{j\in J}\bigcap_{i\in I_j}(L+a_i)$, $a_i\in \mathbb{Z}_p$, where J and the I_j 's are (resp. finite) non empty subsets of \mathbb{N} . Then $\mathcal{L}^c_{\mathbb{Z}_p}(L)$ (resp. $\mathcal{L}_{\mathbb{Z}_p}(L)$) is the smallest complete sublattice (resp. sublattice) of $\mathcal{P}(\mathbb{Z}_p)$, the class of subsets of \mathbb{Z}_p , containing L and closed under translation. It is easy to see that, for $f: \mathbb{Z}_p \to \mathbb{Z}_p$. and $L\subseteq \mathbb{Z}/p^k\mathbb{Z}$, we have $f^{-1}(L) = \bigcup_{a\in f^{-1}(L)}\bigcap_{t\in L}(L+(a-t))$. Hence for any $f: \mathbb{Z}_p \to \mathbb{Z}_p$

 $(1)_{\mathbb{Z}_p}$ If $f^{-1}(a)$ is finite for every a, then for every finite subset L of \mathbb{Z}_p , the lattice $\mathcal{L}_{\mathbb{Z}_p}(L)$ is closed under f^{-1} .

 $(3)_{\mathbb{Z}_p}$ For every recognizable subset L of \mathbb{Z}_p the lattice $\mathcal{L}_{\mathbb{Z}_p}^c(L)$ is closed under f^{-1} .

However conditions $(1)_{\mathbb{Z}_p}$ and $(3)_{\mathbb{Z}_p}$ do not imply that f is congruence preserving: let f be inductively defined on \mathbb{Z} by: for $0 \le x < p$, f(x) = x, and for $x \ge p$, f(x) = f(x-p) + 1. For $np \le k < (n+1)p$, f(k) = n + (k-np); hence f is uniformly continuous and has a unique uniformly continuous extension \hat{f} to \mathbb{Z}_p ; then \hat{f} satisfies $(1)_{\mathbb{Z}_p}$ and $(3)_{\mathbb{Z}_p}$ but is not congruence preserving as p does not divide 1.

5 Conclusion

We here studied functions having congruence preserving properties; these functions appeared in two ways at least: (i) as the functions such that lattices of regular subsets of \mathbb{N} are closed under f^{-1} (see [2]), and (ii) as the functions uniformly continuous in a variety of finite groups (see [10]).

The contribution of the present paper is to characterize congruence preserving functions on various sets derived from \mathbb{Z} such as $\mathbb{Z}/n\mathbb{Z}$, (resp. $\mathbb{Z}_p, \widehat{\mathbb{Z}}$) via polynomials (resp. series) with rational coefficients which share the following common property: lcm(k) divides the k-th coefficient. Examples of non polynomial (Bessel like) congruence preserving functions can be found in [4].

Acknowledgments

We thanks the anonymous referee for careful reading and valuable comments.

References

- M. Benois, Parties Rationnelles du Groupe Libre, C. R. Acad. Sci. Paris Série A, 269, pp 1188-1190, 1969.
- [2] P. CÉGIELSKI AND S. GRIGORIEFF AND I. GUESSARIAN, On Lattices of Regular Sets of Natural Integers Closed under Decrementation, Information Processing Letters 114(4):197-202, 2014.
- [3] P. Cegielski, S. Grigorieff, I. Guessarian, Newton representation of functions over natural integers having integral difference ratios. To be published in Int. J. Number Theory. Preliminary version on arXiv, 2013.
- [4] P. CÉGIELSKI AND S. GRIGORIEFF AND I. GUESSARIAN, *Integral Difference Ratio functions on Integers*, LNCS 8808, Computing with new resources, Festschrift for Jozef Gruska, C, Calude, R. Freivalds, I. Kazuo (Eds.), Springer, (2014), p. 277–291.
- [5] P. CÉGIELSKI, S. GRIGORIEFF, I. GUESSARIAN, Characterizing congruence preserving functions $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ via rational polynomials, Submitted, 2015.
- [6] S. Lang, Algebra 3rd ed., Springer, 2002.
- [7] H.W. LENSTRA, Profinite Fibonacci numbers. Nieuw Arch. Wiskd., (5) 6, n.4:297–300, 2005.

- [8] H.W. Lenstra, Profinite groups. Lecture notes available on the web.
- [9] K. Mahler, An Interpolation Series for Continuous Functions of a p-adic Variable. Journal für die reine und angewandte Mathematik, 199:23–34, 1956.
- [10] J.-É. PIN AND P.V. SILVA, On profinite uniform structures defined by varieties of finite monoids, *International Journal of Algebra and Computation*, 21:295-314, 2011.
- [11] A. ROBERT, A course in p-adic analysis, Springer, 2000.
- [12] K. ROSEN, Elementary number theory and its applications, Addison,-Wesley, 1984.

6 Appendix

Recall some classical equivalent approaches to the topological rings of p-adic integers and profinite integers, cf. Lenstra [7, 8], Lang [6] and Robert [11].

Proposition 33. Let p be prime. The three following approaches lead to isomorphic structures, called the topological ring \mathbb{Z}_p of p-adic integers.

- The ring \mathbb{Z}_p is the inverse limit of the following inverse system:
 - the family of rings $\mathbb{Z}/p^n\mathbb{Z}$ for $n \in \mathbb{N}$, endowed with the discrete topology,
 - the family of surjective morphisms $\pi_{p^n,p^m}: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}$ for $0 \le n \ge m$.
- The ring \mathbb{Z}_p is the set of infinite sequences $\{0,\ldots,p-1\}^{\mathbb{N}}$ endowed with the Cantor topology and addition and multiplication which extend the usual way to perform addition and multiplication on base p representations of natural integers.
- The ring \mathbb{Z}_p is the Cauchy completion of the metric topological ring $(\mathbb{N}, +, \times)$ relative to the following ultrametric: d(x, x) = 0 and for $x \neq y$, $d(x, y) = 2^{-n}$ where n is the p-valuation of |x y|, i.e. the maximum k such that p^k divides x y.

Recall the factorial representation of integers.

Lemma 34. Every positive integer n has a unique representation as

$$n = c_k k! + c_{k-1}(k-1)! + ... + c_2 2! + c_1 1!$$

where $c_k \neq 0$ and $0 \leq c_i \leq i$ for all i = 1, ..., k.

Proposition 35. The four following approaches lead to isomorphic structures, called the topological ring $\widehat{\mathbb{Z}}$ of profinite integers.

• The ring $\widehat{\mathbb{Z}}$ is the inverse limit of the following inverse system:

- the family of rings $\mathbb{Z}/k\mathbb{Z}$ for $k \geq 1$, endowed with the discrete topology,
- the family of surjective morphisms $\pi_{n,m}: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ for $m \mid n$.
- The ring $\widehat{\mathbb{Z}}$ is the inverse limit of the following inverse system:
 - the family of rings $\mathbb{Z}/k!\mathbb{Z}$ for $k \geq 1$, endowed with the discrete topology,
 - the family of surjective morphisms $\pi_{(n+1)!,n!}: \mathbb{Z}/n!\mathbb{Z} \to \mathbb{Z}/m!\mathbb{Z}$ for $n \geq m$.
- The ring $\widehat{\mathbb{Z}}$ is the set of infinite sequences $\prod_{n\geq 1}\{0,\ldots,n\}$ endowed with the product topology and addition and multiplication which extend the obvious way to perform addition and multiplication on factorial representations of natural integers.
- The ring $\widehat{\mathbb{Z}}$ is the Cauchy completion of the metric topological ring $(\mathbb{N}, +, \times)$ relative to the following ultrametric: for $x \neq y \in \mathbb{N}$, d(x, x) = 0 and $d(x, y) = 2^{-n}$ where n is the maximum k such that k! divides x y.
- The ring $\widehat{\mathbb{Z}}$ is the product ring $\prod_{p \ prime} \mathbb{Z}_p$ endowed with the product topology.

Proposition 36. The topological rings \mathbb{Z}_p and $\widehat{\mathbb{Z}}$ are compact and zero dimensional (i.e. they have a basis of closed open sets).

Proposition 37. Let $\lambda : \mathbb{N} \to \mathbb{Z}_p$ (resp. $\lambda : \mathbb{N} \to \widehat{\mathbb{Z}}$) be the function which maps $n \in \mathbb{N}$ to the element of \mathbb{Z}_p (resp. $\widehat{\mathbb{Z}}$) with base p (resp. factorial) representation obtained by suffixing an infinite tail of zeros to the base p (resp. factorial) representation of n.

The function λ is an embedding of the semiring \mathbb{N} onto a topologically dense semiring in the ring \mathbb{Z}_p (resp. $\widehat{\mathbb{Z}}$).

Remark 38. In the base p representation, the opposite of an element $f \in \mathbb{Z}_p$ is the element -f such that, for all $m \in \mathbb{N}$,

$$(-f)(i) = \begin{cases} 0 & \text{if } \forall s \leq i \ f(s) = 0, \\ p - f(i) & \text{if } i \text{ is least such that } f(i) \neq 0, \\ p - 1 - f(i) & \text{if } \exists s < i \ f(s) \neq 0. \end{cases}$$

In particular

- Integers in \mathbb{N} correspond in \mathbb{Z}_p to infinite base p representations with a tail of 0's.
- Integers in $\mathbb{Z} \setminus \mathbb{N}$ correspond in \mathbb{Z}_p to infinite base p representations with a tail of digits p-1.

Similar results hold for the infinite factorial representation of profinite integers.