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5 An extension of the Ehrenfeucht-Fräısse game

for first order logics augmented with

Lindström quantifiers

Simi Haber

Saharon Shelah

Abstract

We propose an extension of the Ehrenfeucht-Fräısse game able to
deal with logics augmented with Lindström quantifiers. We describe
three different games with varying balance between simplicity and ease
of use.

Dedicated to Yuri Gurevich on the occasion of his 75th birthday

1 Introduction

The Ehrenfeucht-Fräısse game [3–6] is an important tool in contemporary
model theory, allowing to determine whether two structures are elementary
equivalent up to some quantifier depth. It is one of the few model theoretic
machineries that survive the transition from general model theory to the
finite realm.

There are quite a few known extensions of the Ehrenfeucht-Fräısse game
and in the following we mention a few (this is not a comprehensive list). In [8]
Immerman describes how to adapt the Ehrenfeucht-Fräısse game in order to
deal with finite variable logic. Infinitary logic has a precise characterization
by a similar game [1,7]. An extension for fixpoint logic and stratified fixpoint
logic was provided by Bosse [2].

Lindström quantifiers were first introduced and studied by Lindström in
the sixties [9–12] and may be seen as precursors to his theorem.
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The aim of this paper is to present several related extensions of the
Ehrenfeucht-Fräısse game adapted to logics augmented with Lindström quan-
tifiers.

2 The Game

Notation 2.1. (1) Let τ denote a vocabulary. We assume τ has no func-
tion symbols, but that is purely for the sake of clearer presentation. τ
may have constant symbols.

(2) First order logic will be denoted by LFO. Along this paper we will
look on extensions of first order logic, therefore the logic under dis-
cussion will change according to our needs. We shall denote the logic
currently under discussion by L, and we will explicitly redefine L when-
ever needed.

(3) Given a vocabulary τ , we use L(τ) to denote the language with logic L
and vocabulary τ . We will use this notation only when clarity demands,
so in fact we may abuse notation and use L also for the language under
discussion.

(4) For even further transparency, all the examples in this manuscript (in
particular, all cases of pairs of models to be proved equivalent) will
be dealing with simple1 graphs. Hence (only in examples) we further
assume that τ is the vocabulary of graphs denoted henceforth by τGra.
Explicitly, τGra = {∼} where ∼ is a binary, anti-reflexive and symmet-
ric relation. For the Lindström quantifiers given in examples, we may
use vocabularies other than τGra.

(5) Let A1,A2, . . . be classes of models2, each closed under isomorphism.
The models in Ai are all τi-structures in some relational vocabulary
τi =

{

P
ai,1
i,1 , . . . , P

ai,ti
i,ti

}

.

(6) For simplicity, we will assume that each τi has an additional relation,
P 1
i,0. This will serve for the formula defining the universe of the model.

Formally, all our models will have their domain the entire universe, and
the first relation will be a subset defining the domain de facto.

1An undirected graph with no loops and no double edges is called a simple graph.
2I don’t see a problem with having infinitely many of these.

2



(7) We set ai,0 = 1 for every i.

(8) EachAi corresponds to a Lindström quantifierQi binding ai =
∑ti

j=0
ai,j

variables.

Example 2.2. (1) A1 may be the class of commutative groups, in which
case τ1 is consisted of a constant symbol and a ternary relation encoding
the group operation.

(2) Another example may be finite Hamiltonian graphs, in which case the
vocabulary is the vocabulary of graphs and the class A will be the set
of all finite Hamiltonian graphs (over, say, [n] = {1, . . . , n} for any
n ∈ N).

Notation 2.3. Giver a vector x̄, we denote its length by len(x̄).

Definition 2.4. We define the quantifier Qi corresponding to Ai as fol-
lows: Let G be a τ -structure with domain V . For any index i and formulae
ϕ0(x0, ȳ), ϕ1(x̄1, ȳ), . . . , ϕti(x̄ti , ȳ) such that len(x̄j) = ai,j, the satisfiability
of Qi x0, x̄1, . . . , x̄ti(ϕ0(x0, b̄), ϕ1(x̄1, b̄), . . . , ϕti(x̄ti , b̄)) is given by

G |= Qi x0, x̄1, . . . , x̄ti(ϕ0(x0, b̄), ϕ1(x̄1, b̄), . . . , ϕti(x̄ti , b̄)) ⇐⇒

({x0 ∈ V | G |= ϕ0(x0, b̄)}, {x̄1 ∈ V ai,1 | G |= ϕ1(x̄1, b̄)}, . . . ,

{x̄ti ∈ V ai,ti | G |= ϕti(x̄ti , b̄)}) ∈ Ai,

where b̄ are parameters.

Remark 2.5. Definition 2.4 requires ϕ0 to have exactly one free variable, x0

(excluding ȳ, saved for parameters). However there is not real reason to to
avoid sets of vectors of any length from serving as the domain of the model
defined in the quantifier. We will not discuss this here, but the generalization
of the proposed games to this case are straightforward.

Definition 2.6. (1) Let τ be a vocabulary and L = L(τ) be a language.
Given two τ -structures G1, G2 (not necessarily with distinct universe
sets) and two equal length sequences of elements x̄1 ∈ G1, x̄2 ∈ G2, we
say that (G1, x̄1) and (G2, x̄2) are k-equivalent with respect to L if for
any formula ϕ(x̄) ∈ L of quantifier depth at most k one has

G1 |= ϕ(x̄1) ⇐⇒ G2 |= ϕ(x̄2).
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(2) When considering only one model, that is, when we take G = G1 = G2,
we refer to the equivalence classes of this relation in the domain of G
simply by the (a, k, G)-equivalence classes (or just equivalence classes
when the context is clear enough).

Notice that unions of (a, k, G)-equivalence classes are exactly the definable
sets of a-tuples of elements in dom(G) using L-formulas of quantifier depth
at most k.

Example 2.7. Let L be the first order language of graphs, L = LFO(τGra),
and let G = (V,E) be a graph. If G is simple then the (1, 0, G)-equivalence
classes are V and ∅. If |V | > 1 then the (1, 1, G)-equivalence classes are3 the
set of isolated vertices in G, the set of vertices adjacent to all other vertices
and the set of vertices having at least one neighbor and one non-neighbor
(some of which may be empty of course).

Notation 2.8. We denote the logic obtained by augmenting the first order
logic with the quantifiers Q1, Q2, . . . by L = L[Q1, Q2, . . . ].

Example 2.9. Consider L = L[QHam](τGra), where QHam stands for the
“Hamiltonicity quantifier” (corresponding to the class of graphs containing
a Hamiltonian cycle — a cycle visiting each vertex precisely once). Let
G be a graph. Then the set of all vertices x for which all of the graphs4

G[NG(x)], G[NG(x)], G[NG(x)], G[NG(x)] are Hamiltonian is an example of a
(1, 1, G)-equivalence class with respect to L[QHam]. The set of vertices with
degree exactly two is a union of (1, 1, G)-equivalence classes, as can be seen
by5

ϕ(x) = QHamx0, x1, x2( x0 ∼ x, x1 6= x2).

2.1 Description of the first game

Before describing the game, we need the following definition:

Definition 2.10. Let τ be a vocabulary, L a language over that vocabulary
(not necessarily first order) and G a model of τ . Additionally, let M =

3The atomic sentences appearing in ϕ(x) are x = y and x ∼ y.
4Here N(x) = {y ∈ V | x ∼ y} is the neighborhood of x in G, G[U ] where U ⊆ V is

the graph induced on U and G is the compliment of G.
5ϕ expresses: “the complete graph Kd(x) is Hamiltonian” which is true when d(x) > 2

and false when d(x) = 2 (we may treat K0 and K1 separately, if needed).
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(S ′, R′
1, . . . , R

′
t) be a model of another vocabulary τ ′. A copy of M in G is a

tuple (S,R1, . . . , Rt) such that

(1) S is a subset of dom(G) with the same cardinality as dom(M) = S ′

(where dom(G) is the universe or underlying set of G).

(2) R1, . . . , Rt are relations over S, such that each Rj has the same arity
as R′

j .

(3) (S,R1, . . . , Rt) is isomorphic to (S ′, R′
1, . . . , R

′
t).

If in addition the following holds

(4) S is union of (1, k, G)-equivalence classes, and each relation Rj of arity
aj is a union of (aj , k, G)-equivalence classes;

we say that a copy of M in G is k-induced by L. When k and / or L can be
clearly determined by the context, we may omit mentioning one of them, or
both.

We may now define the first game.

Definition 2.11. Let G1 and G2 be two models with domains V1 and V2

respectively. Let k ≥ 0 an integer and c̄ℓ = (c1ℓ , . . . , c
r
ℓ) ∈ V r

ℓ two finite se-
quences. We define the game6 EFL1[G1, G2, c̄1, c̄2 ; k]. There are two players,
named ISO and AIS. The game board is the models G1 and G2 plus the
sequences c̄ℓ and there are k rounds. Each round is divided into two parts,
and each part consists of two sub-rounds. The game is defined recursively.
If k = 0, then if the mapping ci1 → ci2 is an isomorphism, then ISO wins,
otherwise AIS wins.

When k > 0 then first AIS plays. He picks one of the models G1 or G2

(denoted henceforth by Gℓ) and a quantifier Qi (or the existential quanti-
fier7). Next AIS picks a model M ∈ Ai, and embeds it into Gℓ in a manner
that preserve (k − 1, Gℓ)-equivalence classes. That is, AIS picks a tuple
(Sℓ, Rℓ,1, . . . , Rℓ,ti) that is a copy of M in G which is (k − 1)-induced by L
enriched with r constants having values x̄ℓ. If AIS can not find such an em-
bedding, he loses8. Implicitly AIS claims that ISO can not find a matching
induced copy of a model from Ai.

6We will describe a few variants, hence the subscript.
7In this case, A∃ = P (V ) \ {∅}, so AIS may choose any non-empty subset Sℓ of Vℓ.
8We will consider only logics stronger than first-order, hence the existential quantifier

is always assumed to be at AIS’ disposal and he will never lose in this manner.
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Second, ISO responds by choosing a model M ′ from Ai (M ′ may not
necessarily be the same as M), and then picking an induced copy of M ′ in
G3−ℓ which we naturally denote by (S3−ℓ, R3−ℓ,1, . . . , R3−ℓ,ti). She is implicitly
claiming that her choices match the picks of AIS, that is, each R3−ℓ,j (or
S3−ℓ,j) is a union of (ai,j , k−1, G3−ℓ)-equivalence classes defined by the same
formulas as the formulas defining the (ai,j, k − 1, Gℓ)-equivalence classes of
which Rℓ,j is made. If ISO can not complete this part she loses. This ends
the first part of the round.

In the second part of the round AIS chooses m ∈ {1, 2} and 0 ≤ j ≤ ti.
He then picks (cr+1

m , . . . , c
r+ai,j
m ) ∈ Rm,j (implicitly challenging ISO to do the

same). Finally ISO picks (cr+1

3−m, . . . , c
r+ai,j
3−m ) ∈ R3−m,j and they move on to

play

EFL1[G1, G2,(c
1

1, . . . , c
r
1, c

r+1

1 , . . . , c
r+ai,j ,

1 ),

(c12, . . . , c
r
2, c

r+1

2 , . . . , c
r+ai,j ,

2 ); k − 1].

This ends the second part and the round. Since k goes down every round,
the game ends when k = 0, as described above.

Given the description above, the following should be self-evident:

Lemma 2.12. Let L = L[Q1, Q2, . . . ](τ) be a language over some vocab-
ulary τ where Q1, Q2, . . . are Lindström quantifiers and let G1, G2 be two
τ -structures. Then, ISO has a winning strategy for EFL1[G1, G2,∅,∅ ; k] if
and only if for any sentence ϕ ∈ L of quantifier depth at most k

G1 |= ϕ ⇐⇒ G2 |= ϕ.

2.2 A game where definability is not forced

While the claim of Lemma 2.12 is satisfying, it may be hard to put into use
since it takes finding unions of (a, k − 1, G)-equivalence classes for granted,
being a rule of the game. This might hinder strategy development and we
would like to describe another game with looser rules, denoted EFL2.

In this version the players are not bound to choosing unions of (a, k−1, G)-
equivalence classes when picking a copy of the chosen model (hence we call
their action “picking a copy of M in Gℓ”, omitting the “induced” part). That
is, we omit requirement 4 in Definition 2.10. It falls to the other player to
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check that indeed every relation is a union of the relevant equivalence classes.
A general round now goes as follows:

AIS picks a graph Gℓ ∈ {G1, G2} and a quantifier Qi (or, as before, the
existential quantifier). Next AIS picks a model M ∈ Ai and picks a copy of
M in Gℓ. His implicit claim now includes the claim that each of the relations
he chose is a union of (ai,j, k − 1, Gℓ)-equivalence classes with respect to L
enriched with r constants having values c̄ℓ.

ISO can respond in two different ways — she can “accept the challenge”
(as she did in EFL1), or attack the second part of the claim of AIS. That is,
she can do one of the following:

(1) Accept. In this case she chooses M ′ ∈ Ai and picks a copy of M ′ in
G3−ℓ. Implicitly she is claiming that her choices matches the choices
of AIS. That is, the set of vertices S3−ℓ and each of the relations
defined on it are a union of the (ai,j , k − 1, G3−ℓ)-equivalence classes
corresponding9 to the ones that AIS picked. This ends the first part of
the round.

AIS may continue in a two different ways.

(a) Reject the fact that S3−ℓ or one of the relations picked by ISO is a
union of equivalence classes. In order to settle this, we recursively
use EFL2:
Again, we let a = ai,j be the arity of the allegedly invalid rela-
tion R3−ℓ,j. AIS picks two a-tuples, (cr+1, . . . , cr+a) ∈ R3−ℓ,j and
(c′r+1, . . . , c′r+a) ∈ V a

3−ℓ \R3−ℓ,j , and they move on to play

EFL2[G3−ℓ, G3−ℓ,(c
1

3−ℓ, . . . , c
r
3−ℓ, c

r+1, . . . , cr+a),

(c13−ℓ, . . . , c
r
3−ℓ, c

′r+1, . . . , c′r+a); k − 1].

with exchanged roles (since this time AIS claims the two tuples
are actually (a, k − 1, G3−ℓ)-equivalent).

(b) Reject the fact that ISO’s choice matches his choice (as he did in
EFL1). In this case he picks a relation Pj ∈ τi and an ai,j-tuple

9We say that E1, an (a, k,G1)-equivalence class of a-tuples in G1 corresponds to E2 —
a set of a-tuples in G2 if for any x̄1 ∈ E1 and x̄2 ∈ E2 one has

G1 |= ϕ(x̄1) ⇔ G2 |= ϕ(x̄2)

for any ϕ ∈ L of quantifier depth at most k.
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of elements from Sℓ (or one element if he challenges her choice of
S3−ℓ). Denote his choice by (cr+1

ℓ , . . . , c
r+ai,j
ℓ ) ∈ Sℓ. ISO responds

by picking another a-tuple (cr+1

3−ℓ , . . . , c
r+ai,j ,

3−ℓ ) ∈ S3−ℓ, and they
move on to play

EFL2[G1, G2,(c
1

1, . . . , c
r
1, c

r+1

1 , . . . , c
r+ai,j ,

1 ),

(c12, . . . , c
r
2, c

r+1

2 , . . . , c
r+ai,j ,

2 ); k − 1].

(2) Reject. In this case ISO wants to prove that Sℓ or one of the relations
picked by AIS is not a union of equivalence classes. We continue simi-
larly to case 1.(b):
Let a = ai,j be the arity of the allegedly relation, Rℓ,j, splitting an
equivalence class. ISO picks two a-tuples, (cr+1, . . . , cr+a) ∈ Rℓ,j and
(c′r+1, . . . , c′r+a) ∈ V a

ℓ \Rℓ,j, and they move to play

EFL2[Gℓ, Gℓ,(c
1

ℓ , . . . , c
r
ℓ , c

r+1, . . . , cr+a),

(c1ℓ , . . . , c
r
ℓ , c

′r+1, . . . , c′r+a); k − 1].

this time keeping their original roles.

For any two models G1 and G2, constants c̄1, c̄2 and k ∈ N, whoever
has a winning strategy for EFL1[G1, G2, c̄1, c̄2; k] has a winning strategy for
EFL2[G1, G2, c̄1, c̄2; k]. Hence the parallel of Lemma 2.12 is true for EFL2 as
well.

While we got the benefit of in-game validation of the equivalence classes
integrity claims, EFL2 is not easy to analyze in applications because the
game-board and players role change over time. We amend this in the last
suggested version of the game.

2.3 A game with fixed game-board and roles

The last version, denoted EFL3, forks from EFL2 in two places.

Definition 2.13. We define EFL3 like EFL2 except that:

(1) First, assume the game reaches step 2., where ISO wants to prove that
AIS’s chose a relation Rℓ,j splitting an equivalence relation. In this case
the first part of the round ends immediately and the second part goes
as follows:

8



ISO chooses two ai,j-tuples, c̄ℓ,1 from Rℓ,j and c̄ℓ,2 from the comple-
ment of Rℓ,j. She then pick another ai,j-tuples from G3−ℓ, denoted
c̄3−ℓ. Spoiler than picks one of c̄ℓ,1 or c̄ℓ,2 and they move on to play
EFL3 with c̄3−ℓ concatenated to the constants of G3−ℓ and AIS’s choice
concatenated to the constants of Gℓ, and k−1 moves. They keep their
roles and the game-board is still G1 and G2.

If ISO can not find a matching tuple in G3−ℓ, she can not disprove the
integrity claim of AIS, but it does not matter as G1 and G2 are not
k-equivalent and she is bound to lose anyway.

Notice that in this case the first part of the round had only AIS playing,
and in the second part ISO played first.

(2) The second (and last) change from EFL2 happens when the game is in
step 1a. In this case AIS wants to prove that ISO’s choice of at least
one relation R3−ell,j is splitting an equivalence relation. In this case
AIS picks a tuple c̄3−ℓ (from the suspicious equivalence class) in G3−ℓ

that is not in R3−ell,j and challenges ISO to find a matching tuple c̄ℓ
in G3−ℓ that is not in Rell,j. They move on to play EFL3 with these
choices and k − 1 moves. Again both roles and game-board remain as
was. Notice that the game flow in this case is actually the same as the
game flow in 1b.

As before, it is easy to convince oneself that the claim of Lemma 2.12 is
still valid. We repeat it here:

Lemma 2.14. ISO has a winning strategy for EFL3[G1, F2,∅,∅ ; k] if and
only if for any sentence ϕ ∈ L of quantifier depth at most k

G1 |= ϕ ⇐⇒ G2 |= ϕ.

3 Summary

We have presented three equivalent variants of the celebrated Ehrenfeucht-
Fräısse game adapted to deal with logics extended by Lindström quantifiers.
We believe EFL3 may be easier to analyse than direct quantifier elimination
and it is out hope that it will find applications.
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