Skip to main content

On Argumentation with Purely Defeasible Rules

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9310))

Abstract

aspic \(^{+}\) is one of the most widely used systems for structured arguments and includes the use of both strict and defeasible rules. Here we consider using just the defeasible part of aspic \(^{+}\). We show that using the resulting system, it is possible, in a well defined sense, to capture the same information as using aspic \(^{+}\) with strict rules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is not same as definition of “strict” as in [11] where the only condition was that \(\mathcal {R}_d = \emptyset \). Here we insist that a strict argument includes at least one strict rule. As a consequence, the notions of “strict” and “defeasible” are not duals, and an argument can be neither strict or defeasible — but only if it contains only premises and/or axioms.

  2. 2.

    \(A=B\) is defined as \(A \le B\) and \(B \le A\).

References

  1. Amgoud, L.: Five weaknesses of ASPIC\(^ \text{+ } \). In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part III. CCIS, vol. 299, pp. 122–131. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Amgoud, L., Bodenstaff, L., Caminada, M., McBurney, P., Parsons, S., Prakken, H., van Veenen, J., Vreeswijk, G.A.W.: Final review and report on formal argumentation system. Deliverable D2.6. Technical report, ASPIC IST-FP6-002307 (2006)

    Google Scholar 

  3. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011)

    Article  Google Scholar 

  4. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128, 203–235 (2001)

    Google Scholar 

  5. Caminada, M.: Contamination in formal argumentation systems. In: Proceedings of the 17th Belgium-Netherlands Conference on Artificial Intelligence (2005)

    Google Scholar 

  6. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif. Intell. 171(5), 286–310 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caminada, M., Modgil, S., Oren, N.: Preferences and unrestricted rebut. In: Computational Models of Argument: Proceedings of COMMA 2014 (2014)

    Google Scholar 

  8. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-persons games. Artif. Intell. 77(2), 321–358 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 199–218. Springer, New York (2009)

    Chapter  Google Scholar 

  10. García, A.J., Simari, G.R.: Defeasible logic programming: An argumentative approach. Theory Pract. Logic Programm. 4(1+2), 95–138 (2004)

    Google Scholar 

  11. Modgil, S., Prakken, H.: A general account of argumentation with preferences. Artif. Intell. 195, 361–397 (2012)

    Article  MathSciNet  Google Scholar 

  12. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument Comput. 1(2), 93–124 (2010)

    Article  Google Scholar 

  13. Prakken, H., Modgil, S.: Clarifying some misconceptions on the ASPIC+ framework. In: Computational Models of Argument: Proceedings of Comma 2012 (2012)

    Google Scholar 

  14. Wu, Y., Podlaszewski, M.: Implementing crash-resistance and non-interference in logic-based argumentation. J. Logic Comput. 1–31 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zimi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, Z., Parsons, S. (2015). On Argumentation with Purely Defeasible Rules. In: Beierle, C., Dekhtyar, A. (eds) Scalable Uncertainty Management. SUM 2015. Lecture Notes in Computer Science(), vol 9310. Springer, Cham. https://doi.org/10.1007/978-3-319-23540-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23540-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23539-4

  • Online ISBN: 978-3-319-23540-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics