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Abstract. The cloud is a distributed architecture providing resources as
tiered services. Through the principles of service-orientation and gener-
ally provided using virtualisation, the deployment and provisioning of ap-
plications can be managed dynamically, resulting in cloud platforms and
applications as interdependent adaptive systems. Dynamically adaptive
systems require a representation of requirements as dynamically man-
ageable models, enacted through a controller implementing a feedback
look based on a control-theoretic framework. We argue that a control-
theoretic, model-based architectural framework for the cloud is needed.
While some critical aspects such as uncertainty have already been taken
into account, what has not been accounted for are challenges resulting
from the cloud architecture as a multi-tiered, distributed environment.
We identify challenges and define a framework that aims at a better un-
derstanding and a roadmap towards control-theoretic, model-based cloud
architecture – driven by software architecture concerns.
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1 Introduction

Adapting systems to changing requirements is often a necessity to guarantee
on-going correct and satisfying performance. Self-adaptive systems are systems
that are able to adjust their behaviour in response to their perception of the
environment and the system itself [4]. The software engineering community has
approached this from the requirements engineering perspective [10], but has
recognised the need for software architecture to play a major role in a solution.

Requirements need to have a representation at runtime to allow self-adaptive
systems to interact with the environment, i.e., reflect this through models that
also link in the decision-making process necessary to change the underlying sys-
tem itself [2, 6, 3]. Dynamically adaptive systems require a representation of re-
quirements as dynamically manageable models, enacted through a controller
implementing a feedback look based on a control-theoretic framework [1].

The cloud is moving towards a distributed, often federated architecture of
many individual cloud services [9], providing resources as services in a tiered
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fashion. The configuration, deployment and provisioning of application architec-
tures can be managed dynamically as a response to changes in requirements and
changes in the execution platform environment, resulting in cloud platforms and
the applications in them as interdependent adaptive systems. Microservices are
emerging as a new architectural style, aiming at realising software systems as a
package of small services, each deployable on a different platform. These run in
their own process while communicating through lightweight mechanisms without
any centralized control3. We argue that a cloud-specific control-theoretic, model-
based architectural framework is needed. While critical aspects such as uncer-
tainty have been investigated [5, 7, 8] for the cloud, what has not been accounted
for are the challenges resulting from the cloud architecture as a multi-tiered,
distributed environment for increasingly fragmented application architectures.

We identify the challenges and define a conceptual framework. The target is
a roadmap towards control-theoretic, model-based cloud architecture in which
software architecture concerns play the central role.

2 Cloud Architecture – Definition and Scenario

Our view on cloud systems from an architectural perspective addresses the key
shortcomings of the current discussion of control-theoretic approaches to adap-
tive systems, and cloud in particular. We will also argue for a model-based ap-
proach to controller definition later on as well. The cloud allows the distributed,
tiered deployment of software. The underlying architecture links infrastructure
and platform providers with the software applications running in them. Software
is usually logically architected in a layered format, but in the cloud mapped onto
(virtualised) physical tiers.

– Logical layers organise code. Typical layers include presentation, business
logic and data management and storage. However, this does not imply that
the layers run on different computers or in different processes.

– Physical tiers are about the location of the application execution. Tiers are
places where layers are deployed and where layers run.

The cloud services provided as infrastructure-as-a-services (IaaS), platform-as-
a-service (PaaS) or software-as-a-service (SaaS) realise these tiers, albeit in a
virtualised form accessed through services.

A further complication arises through clouds as distributed, often federated
systems, even if providing the same or similar services, will operate differently.
Interaction between the layers, but also horizontally is possible and necessary,
which we capture in the following architectural scenario in Figure 1.

Let us illustrate a common problem. An infrastructure server might have the
capacity to deal with 100 user applications at the same time, but the workload
might temporarily reduce significantly. Load balancing would allow the system
architecture to be adapted and applications relocated to one server, thus scaling

3 http://martinfowler.com/articles/microservices.html
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Fig. 1. Tiered and Distributed Cloud Architecture.

down the deployment of servers. Here, the system reacts to external factors –
the reduced load – and adapts the configuration to reduce the costs (a non-
functional requirement) while still maintaining adequate performance (also a
non-functional requirement). Two observations emerge.

– Workload and QoS dictate the adaptation. Cost and quality as drivers for
decisions – i.e., decisions are made based on non-functional requirements.

– In the cloud as a tiered architecture, where user applications might run
on third-party provided infrastructure servers. Factors that influence here
down-scaling as the adaptation include (i) application performance at the
user tier/layer and (ii) system workload at the infrastructure tier/layer.

Other scenarios here could involve changing non-functional requirements rather
than changing environment factors. The performance requirement might need
to be tightened, resulting in an up-scaling of the infrastructure.

Recently, microservice architectures have been discussed, which aim to break
up application architectures into independently deployable services that can be
rapidly deployed to any infrastructure resource as required. Microservices are
independently deployable, usually supported by a fully automated deployment
and orchestration framework. They require the ability to deploy often and inde-
pendently at arbitrary schedules, instead of requiring synchronized deployments
at fixed times. The microservice deployment and orchestration across the vertical
and horizontal dimensions of the cloud are central architecture concerns. Clouds
provide a management tool for their flexible deployment schedules and provi-
sioning orchestration needs, particularly, if these are to be PaaS-provisioned.

3 Dynamic Requirements and Models

As the example above has indicated, both requirements (the user-facing tiers)
and the platform (the infrastructure-facing tiers) can change dynamically. What
is needed first is a review of modelling concerns for this context. Drivers of
change are often requirements to maintain quality-of-service at the user end to
maintain within the limits (non-functional requirements) possible stated in a
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service-level agreement. In [4], a number of model dimensions are identified that
help to frame the adaptivity problem:

– Goals as system objectives: evolution, flexibility, multiplicity, dependency
– Change captures causes of adaptation: source, type, frequency, anticipation.
– Mechanism implements adaptation: type, autonomy, organisation, scope, du-

ration, timeliness, triggering
– Effects define adaptation impact: criticality, predictability, overhead, resilience

A challenges here is the mapping of requirements to the underlying architecture.
The solution is a control loop, based on control-theoretic foundations [10], but
importantly, the layering of the application architecture onto the tiered cloud.
The run-time representation of requirements in the form of application require-
ments and cloud infrastructure models needs to provide model manipulation and
access features to allow introspection and reasoning about these models [2, 6].

A specific challenge is the uncertainty that arises in the interaction between
models and the system architecture – the latter possibly at different tiers/layer,
all interacting with one another along their interfaces, cf. Figure 1. Respective
models that capture uncertainty and can map this as actions within the control
loop are needed. The models themselves need to reflect the adaptation approach,
requiring to capture the non-functional properties, but more significantly allow
prediction and reasoning to take place in an environment prone to uncertainty.

4 Measurement, Prediction and Uncertainty

The state of a system is characterised by a range of non-functional properties
that need to be aligned with non-functional requirements. Due to the layering,
mapping and managing these across layers, but also within one layer, is chal-
lenging. In general, we need to measure at different layers and map between the
different tiers in the cloud.

– The upper level represents the application service-level qualities.
– The lower level are the loads of infrastructure resources that run the service.

Furthermore, there is a mapping of the infrastructure loads into a cost model –
which can of course be a major driver of adaptation decisions.

Measurement and Uncertainty. Ideally, system state attributes can be reli-
ably measured. However, the cloud adds a high degree of uncertainty here [10]:

– Uncertainty Level 1: general confidence about the shape of the future, but
some key variables do not have precise values.

– Uncertainty Level 2: there are a variety of possible future scenarios, that can
be listed and are mutually exclusive and exhaustive.

– Uncertainty Level 3: it is feasible to construct future scenarios, but these are
mere possibilities and are unlikely to be exhaustive.

– Uncertainty Level 4: it is not even possible to frame possible future scenarios.
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Uncertainty emerges from various sources in cloud systems – as uncertainty
from different interpretations and decisions in the adaptation definition process
or as uncertainty arising from possible different, distributed monitoring systems
resulting in partially unreliable and incomplete data [8]:

– Uncertainty in Adaptation Definition. Adaptation policies need a careful
determination of thresholds. This relies on a users knowledge of system be-
haviour and how resources are managed. Therefore, the accuracy of policies
remains subjective, making the effect of adaptations prone to uncertainty.
Unpredictable changes in environment or application demand may require
adaptation models to be continuously re-evaluated and revised.

– Uncertainty in Dynamic Resource Provisioning. Acquiring and releasing vir-
tual resources in the cloud is not instantaneous. A cloud controller uses the
platform services to initiate the acquisition process and has to wait until re-
sources are available. During this time, which may take minutes for VMs, the
cloud application is vulnerable to workload increases, causing uncertainty.

– Uncertainty in Monitoring Data. The cloud controller needs to continuously
monitor the state of the application as well as of the resources in which the
application is deployed in order to timely react to load variations. Monitoring
involves a distribution of data collected by measurement-specific probes or
sensors, which are not immune to measurement deviations (so-called sensory
noise). This sensory noise is another source of uncertainty, as it results in
oscillations that may affect how the controller allocates resources.

Formal Models for Uncertainty. Models captures the state, its behaviour
and the adaptation rules. Models also reflect how we deal with uncertainty in
dynamic systems. The dynamics of a system are often based on state models, de-
scribing sequences of possible actions as a protocol. In [2], a Markovian model is
used (DTMC – Discrete Time Markov Chains; alternatives could include contin-
uous time models), formalising specific properties in logics such as a probabilistic
logics [3] to reason in uncertain spaces – in an uncertain space, the probability
of the next state is included in the model.

Others propose fuzzy logic [8], where fuzziness is expressed as a varying,
non-binary truth value. This allows the uncertainty of a system situation to
be expressed through a membership functions on fuzzy sets. For instance, a
fuzzification of adaptation rules [8] can be done. As an example, qualitative
values for infrastructure workload and service performance (such as ’very low’
or ’very high’ for workload) are presented as membership functions in a fuzzy
set model, resulting in smoother controller responses.

Analysis and Prediction – Cross-Tier Mapping and Uncertainty. Un-
reliable or incomplete data causes uncertainty, which can be alleviated to some
extent by prediction. Furthermore, the delay in providing resources, as discussed
above, also makes prediction a suitable approach. Two aspects emerge:

– Analysing measure system data allows us to predict behaviour, reducing
uncertainty and increasing the robustness of the adaptation.
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– Prediction also helps to link the layers and tiers in the architecture, as for in-
stance infrastructure tier metrics can be used to predict service-level quality.
Prediction captures dependencies and becomes a link between the tiers.

Through predication and analysis of monitored data, we can e.g. identify stable
quality utilisation patterns. We can map infrastructure workload patterns for
CPU, storage and network utilisation at the infrastructure tier to service-level
performance patterns, thus linking models (here pattern-based) across tiers [12].

We can implement a prediction technique for the same workload and perfor-
mance prediction context, based on simple and double exponential smoothing
to smoothen outliers and to anticipate trends. Here the aim is the robustness of
the prediction and overall adaptation process (by looking ahead in vulnerable
moments when the system is about to change).

5 Control Theory and Controller Architecture

Control theory and control engineering can be applied to build self-adaptive
systems. Control theory can help to build the models and the reasoning about
them to inform the decision making [4]. Decision making is a multi-objective
process [10]. Constructing a utility function that involves all stakeholders (such
as end-users and the providers of the various tiers of the system in question) is a
challenging task [11]. This utility function is implemented by the cloud controller.
This construction of utility function (the model) and the controller is a process
involving the following steps [1]: identify goals, identify knobs (measure), devise
model and design controller, complemented by validation and verification steps.

A key property of this controller is robustness. Robustness tells how resilient
the controller is against noise and uncertainty. Prediction, as discussed above,
is in addition to a proper calibration of the model a contributor to robustness.
Prediction across layers has already addressed the challenges arising from the
tiered cloud. architecture. Techniques such as horizontal scaling can deal with
the distribution dimension at each tier.

All concerns need to be managed by a control loop. Often, the MAPE-K
model is utilised [2], cf. Fig. 2, as the structure of a controller: Monitor applica-
tion and environment (in control-theoretic terms disturbances such as workload).
Analyse the input data and detect any possible violation. Plan corrective actions
in terms of adding resources or removing existing unutilized ones. Execute the
plan according to a specific platform. Uitilise a shared Knowledge (model).

It is the task of the controller to synchronise models with run-time archi-
tecture [10]. The model part of the controller needs to be implemented and
integrated with the cloud architecture in order to allow a model-driven cloud
control of non-functional aspects [1].

Controller construction still faces a number of problems [5], including uncer-
tainty, synthesize controllers, heterogeneity, unpredictable workloads, resource
bottlenecks, multi-tier applications, multi-cloud resources and scalability. We
have already discussed uncertainty and unpredictability. The last few points in-
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Fig. 2. MAPE-K Control Loop for the Cloud.

dicate the importance of the cloud as a problem from the software architecture
perspective, i.e., an architecture onto which the concerns need to be projected:

– Measurement: the controller integrates different models representing the ap-
plication and infrastructure models at the different tiers – vertical dimension.

– Actuating/executing: typically within a tier, but across services, e.g., based
on scalability actions as adaptations – the horizontal dimension.

Uncertainty [1, 7] could also be addressed by reducing the dependency on
human stakeholders. Here, machine learning can serve to learn adaptation rules
rather than relying on uncertain, possibly erroneous or inconsistent user input.
Again, the software architecture perspective can clarify this. A suitable archi-
tecture would add a meta-model layer on top of the MAPE-K control loop,
representing the learning loop on the models. Models can provide prediction
and the feedback loop can correct it, e.g., a queuing model provide how much
resources are needed to guarantee an SLA. Since the model is not precise, then
it can be augmented with a feedback to correct the error, called feedforwarding.

6 Conclusion

The cloud is a distributed, multi-tiered platform onto which layered, modular
software application architectures are mapped. The virtualisation of the cloud
resources causes this to be an adaptive system, that is, however, subject to
uncertainty and other challenges. Our contribution is the discussion from a soft-
ware architecture perspective and to propose a roadmap towards a model-based
control-theoretic solution that defines some core contributors to future solutions.

– models for uncertainty, allowing prediction and enforcing robustness in a
control-theoretic framework

– a model-driven multi-tier cloud controller to manage layered built from easily
deployable microservices

– adapting the architectural configuration in the cloud, but also re-architecting
the application for the cloud
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There is a need for a controller framework that addresses the layered architecture
of an application mapped onto tiered cloud resource services through a set of
linked models for robust control-theoretic uncertainty management.
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