
Using Feature Models for Distributed
Deployment in Extended Smart Home

Architecture

Amal Tahri 1,2, Laurence Duchien2, Jacques Pulou1

1Orange Labs Meylan, France
2INRIA Lille-Nord Europe, CRISTAL laboratory, University Lille 1, France

Abstract. Nowadays, smart home is extended beyond the house itself
to encompass connected platforms on the Cloud as well as mobile per-
sonal devices. This Smart Home Extended Architecture (SHEA) helps
customers to remain in touch with their home everywhere and any time.
The endless increase of connected devices in the home and outside within
the SHEA multiplies the deployment possibilities for any application.
Therefore, SHEA should be taken from now as the actual target plat-
form for smart home application deployment. Every home is different and
applications offer different services according to customer preferences. To
manage this variability, we extend the feature modeling from software
product line domain with deployment constraints and we present an ex-
ample of a model that could address this deployment challenge.

1 Introduction

Smart Home Extended Architecture (SHEA) expands the Smart Home (SH) de-
ployment environment to the Cloud and mobile personal devices to host the SH
applications. Different domains contribute to the SHEA such as home security,
comfort and energy efficiency to offer services to customers. A service is deliv-
ered as a component-based application [11]. The deployment of a SH application
is a mapping of a set of components onto a set of deployment nodes. These nodes
hold computational resources that must satisfy the component requirements de-
ployed on them.
The variability of the SHEA comes from different points of views as it is related
to the multitude of involved stakeholders for the SH market and different hard-
ware and software resources. This variability is very challenging and has to be
managed to enumerate all the deployment configurations within the SHEA. The
effective deployment between the SH and the Cloud is chosen from the analysis
results according to specific criteria, e.g., service availability, reduced cost.
Software Product Line (SPL) [9] is a promising methodology to handle the vari-
ability. SH applications are defined with Feature Models (FMs) [6], which are
tools of SPL principles. FM is a variability modeling technique for a compact
representation of all possible products, hereafter variants, and the definition of
compositional and dependency constraints, e.g., implies, excludes, among fea-
tures. Features are assets describing external properties of a product and their

ar
X

iv
:1

50
7.

08
03

7v
1 

 [
cs

.S
E

] 
 2

9 
Ju

l 2
01

5



relationships. Constraints clarify which feature combinations are valid, named
valid configurations, using the Constraint Satisfaction Problem (CSP) solvers [1].
For the deployment purpose, non-functional requirements must be expressed to
verify the adequacy of component requirements and node resources. FMs lack
tools to express such information. Extended Feature Models (EFMs) [3] overcome
the FM limits by introducing non-boolean variables using attributes, cardinali-
ties and complex constraints. Attributes describe non-functional and quantified
properties, e.g., CPU, RAM. Cardinalities allow the multiplication of features
and thus feature attributes such as CPU, RAM.
However, FM can not represent all deployment constraints. Deployment con-
straints refer to component placement indication among nodes, e.g., collocation,
separation, or component requirement adequacy with the deployment node re-
sources. EFMs are not adapted to be used in the deployment purpose as EFMs do
not offer enough technical operators to express deployment constraints. Without
a clear identification of deployment constraints, EFMs generate huge configura-
tion spaces and often few convenient for the deployment purpose.
Our approach uses feature modeling to match the component requirements and
the deployment node resources using CSP solver analysis.
The organization of the paper is the following. Motivation behind the distributed
deployment across the SHEA is detailed in Section 2. The deployment oriented
feature analysis is introduced in Section 3. Preliminary validation is given in
Section 4. Related work is described in Section 5. Finally, conclusion and future
works are presented in Section 6.

2 Motivations and Challenges

2.1 Motivating Example

A customer purchases a Control Admittance application for smart door (un)-
locking based on identification mechanisms. Different application variants are
available. The basic variant represents the service of door (un)locking using the
keypad identification mechanism. The person is asked to enter a pin code in the
keypad to open manually the door. The medium variant offers the face recogni-
tion service using one recognition algorithm. When the motion detector senses
a presence outdoor, the camera forwards images or video frame for face identi-
fication. This process matches the camera flow with the customer data base of
authorized persons. If the person is recognized, the door opens automatically.
The premium variant offers a powerful recognition performance using multiple
algorithms. The keypad is available as a degraded mode for all variants, when
Internet connection fails as it is deployed in the SH. Different deployment possi-
bilities are offered to the customers between the SH and the Cloud as in Fig 1.
The Home Automation Box (HAB) is an embedded environment that can host
components or even a whole application. We assume that the HAB is the only
node in the SH and the Cloud offers one or multiple deployment nodes, e.g.,
virtual machines on top of the Platform as a Service (PaaS).
Case 1: Deployment on the SH embedded nodes Application deployment in the



Fig. 1. Deployment possibilities in the SHEA.

SH confines all application components into the HAB which may lead to perfor-
mance degradation because of the HAB limited resources. To satisfy component
requirements, a hardware upgrade is required which raises the Bill of Material
(BOM) 1 and, therefore, the application acquisition cost.
Case 2: Deployment on the Cloud The Cloud is “a model for enabling conve-
nient and on-demand network access to a shared pool of configurable computing
resources that can be rapidly provisioned and released with minimal manage-
ment effort” [8]. The Cloud offers deployment nodes, e.g., virtual machines with
on-demand resource allocation that overcome the limited capacities of the HAB.
However, the deployment on the cloud may increase the latency and response
time of an application. Connection failure compromises the service availability
and user experience.
Case 3: Deployment across the SHEA nodes The deployment between the HAB
and the Cloud offers an attractive trade-off that overcomes the limitation pre-
sented in cases 1 and 2. As the Cloud offers on-demand resources that extend the
HAB resources and reduces the application cost presented in case 1, the HAB
ensures service availability when connection fails.

Fig. 2. Control Admittance Extended Feature Model.

1 http://en.wikipedia.org/wiki/Bill of materials



2.2 Challenges

Two challenges are tackled using feature modeling in this paper:

– Challenge 1 (C1) Bridge the gap between feature modeling and deployment
analysis by introducing deployment constraints in EFM.

– Challenge 2 (C2) Automate the verification of deployment constraints to
enumerate all the valid deployment configurations within the SHEA.

3 Feature Analysis Oriented Deployment

3.1 Feature Modeling

We refer to EFM to model the application and each deployment node. In the
application EFM in Fig 2(a), the components are the deployment units and rep-
resented as features. This model encompasses all the application variants pre-
sented in Section 2.1. In Fig 2(b), we present all variant for deployment nodes
where features are the offered resources. The same ontology is used to declare the
requirements and the resources, respectively, in the application and deployment
nodes EFMs. Mandatory feature, e.g., face extractor, represents a core func-
tionality in the application and is always present if its parent is selected in the
configuration. Optional feature, e.g., live streaming, introduces the variability
aspect as it may be included or not in a configuration. The exclusive group
of the images feature indicates that only one sub-feature can be selected in a
configuration. The or group of the face matcher feature allows the selection of
none, one or several sub-features in the configuration. Bayesian implies high
signifies that when the feature Bayesian is selected, the feature high must be
present in this configuration. Attributes (dotted rectangles) are linked to feature
to express quantified requirements, e.g., CPU and RAM. Feature cardinality
(integer range [m,n], m <= n) determines the number of feature instances and
thus the corresponding attributes allowed in the product configuration, e.g., live
streaming can be present up to three times in the same configuration. The root
feature control admittance and the keypad feature are the basic variant. When
adding face recognition feature and choosing from the face matcher group the
PCA feature, we obtain the medium variant.

3.2 Approach

Deployment Node Feature are a new feature category representing the deploy-
ment nodes in the application EFM. This new category allows the separation
between component features and deployment node features to declare Deploy-
ment Constraints. Then, we validate whether a deployment node is a suitable
host for application components using feature modeling analysis.

HostedBy(NF ,F) where F ∈ AF, NF ∈ LNF (1)

Colocated(F ,F
′
) , Separated(F ,F

′
) where F ,F ′ ∈ AF (2)

ResourceConstraint(rj) :=

ki∑
l=1

R
rj
Fil
≤ R

rj
NFi

(3)



HostedBy constraint, in (1), is a binary relation between the List of deployment
Node Features LNF and the set of Application Features AF. The couple (NF ,
F) implies that if the deployment node feature NF is selected in a configuration,
then, the feature F is deployed on this node.
Colocated and Seperated constraints, in (2), are binary relations between two
features in AF. When both features F and F ′

are selected in the same con-
figuration, (i) if Colocated, they must be on the same deployment node. (ii) If
Separated, they must be deployed on different deployment node.
Colcated may be identified between (i) features of the same package that need
to be deployed on the same node, (ii) features of different packages but with
mutual dependencies and high coupling, (iii) all the features that contribute to
the same service and should be deployed in the same network area to ensure
high availability of this service in case of connection failure.
Separated constraint can refer to (i) high availability when two features duplicate
important data that must not be lost during a single node failure, (ii) potential
parallelism when features operating independently are dispatched among dif-
ferent nodes to improve the throughput of the whole application, (iii) resource
greedy features when two features require a large amount of resources such as
CPU or RAM, they are deployed on different nodes.
The ResourceConstraint, in (3), ensures that the sum of the attributes for all
the selected features to be hosted on embedded nodes does not exceed the node
available resources. Fi is a feature to be deployed on NF i. ki is the size of the
selected list of features on NF i and ∀rj ⊂ Rj , j is the resource type where
j ∈ [1, n] n being the resource types taken into account. In our example, n = 2
as only two resource types are considered: r1 = CPU , r2 = RAM .
These constraints are added in the application EFM and translated to the con-
straint programming Choco solver [5] to check the configuration validity.
The PossibleHost function below finds allNF that satisfy the feature attributes
of AF and returns the analysis solution set. This function should be preceded
by an initialization step that inserts the deployment constraints, i.e., Hostedby,
Colocated and Separated predefined by the application developer in AF. The
algorithm takes as inputs the AF and the deployment node EFMs from which
it constructs the list LNF (here LNF = {HAB,CloudVM}). The algorithm has
two nested For loops. The outer loop covers the list LNF. The addFeature cre-
ates a mandatory feature NF from LNF under the root feature of AF. For each
node, the inner loop examines successively all the features with attributes in
AF. If no predefined Hostedby constraint is found for the given NF and F , the
FindMatch method searches the NF related EFM, e.g., Fig 2 (b), for an equiv-
alent attribute of this F . If match found, the addConstraint method introduces
a Hostedby constraint to AF between the F of this attribute and the given NF .
If no match found, the addConstraint creates notHostedBy constraint between
the given F and NF .
The ResourceV erification procedure verifies ResourceConstraint (3) and thus
is only carried out for embedded nodes, e.g., in our example only HAB node is
involved with the selected features hosted on them. The AF with these new con-



straints is translated into constraint programming and introduced to the solver
(i.e., addSolver) that automatically outputs the valid configurations from where
we feed the SolutionSet SS. The outer loop enters a new step and continues to
scan the NF list until its end.
This section tackles the challenges in Section 2.2. The deployment constraints
help bridge the gap between feature modeling and deployment analysis of the
C1 and the algorithm automates the verification of these constraints as in C2
to enumerate the valid deployment configurations within the SHEA.

Algorithm 1 Matching Algorithm

1: REQUIRE FeatureModelAF, list < FeatureModel > LNF
2: ENSURE PossibleHost
3: function SolutionSetPossibleHost(AF,LNF)
4: SolutionSet SS = empty
5: Copy AF in AF

′

6: for all NF ∈ LNF do
7: if NF /∈ AF

′
then addFeature(AF

′
, NF)

8: for all F with attributes ∈ AF
′
do

9: if HostedBy(NF ,F)) /∈ AF
′

then
10: if FindMatch(F with attributes in NF) then

11: addConstraint to AF
′

(HostedBy(NF ,F))
12: add F to FinNF . list of F hosted on NF used in line 17
13: else addConstraint to AF

′
(notHostedBy(NF ,F))

14: end if
15: end if
16: end for
17: if ResourceV erification(NF ,FinNF ) then . check constraint (3)

18: addSolver(AF
′
) to SS . solver invocation

19: end if
20: end if
21: end for
22: return SS
23: end function

4 Preliminary Validation

EFMs of the application and the deployment nodes are defined using the SA-
LOON framework [10], for SoftwAre product Lines for clOud cOmputiNg. This
framework relies on SPL principles for selecting and configuring cloud environ-
ments according to given requirements. SALOON offers the modeling and analy-
sis tools to manage cloud variability using cardinality-based feature models and
relies on the Eclipse Modeling Framework (EMF)2 to present a meta-model of
features. We have extended this meta-model by introducing deployment node

2 http://www.eclipse.org/modeling/emf/



features and deployment constraints. We translate the features, attributes and
deployment constraints to Choco solver [5] constraint programming to check the
configuration validity. The solution evaluation computes the valid deployment
configurations of the control admittance EFM on the HAB and the Cloud EFM
in Fig 2. Deployment constraints are introduced as follows: HostedBy(HAB,
keypad), Colocated (Baysien, live streaming), and Separated (smart phone,
Baysien) and the algorithm 1 is applied to the application EFM. Table 1 shows

Table 1. Valid Configurations for Admittance Control

Feature
Model

Features Config
Config with
1 Colocated

Config with
1 Seperated

Config with
1 Colocated

&1 Seperated

Application 16 25 11 16 8

Execution
Time (ms)

- 2926 2897 3639 2895

the results where the valid configuration number is reduced notably for a simple
example of 16 features. In the future, realistic application set including several
hundred of components will be used to characterize the limits of this method.

5 Related Work

The authors, in [7], propose an approach for managing and verifying deployment
constraints. This approach is based on Model-Driven Engineering to include de-
ployment constraints at earlier stage of application development. The execution
context includes the home devices, the mobile phones and the Cloud. The au-
thors introduce FM to manage applications and execution context variability
taking into account deployment constraints. Close to this research, our work is
an extension with some differences: (i) we only consider deployment time and
(ii) use CSP solver to verify the deployment configurations based on deployment
constraints in feature modeling. Druilhe et al. in [4] present a deployment model
to reduce energy consumption of the home device set (Set Top Box, Gateway).
They stand a distribution plan that maps the applications components on the
devices considering resources and quantity of resources constraints, e.g., CPU,
RAM. Quinton et al. [10] focus on the deployment on the Cloud considering
SPL techniques. They propose an extended feature models framework named
SALOON to configure Cloud environments to host applications. EFM repre-
sents the Cloud environment resources, e.g., web server, data base, execution
environment. This framework helps developers selecting the best solution based
on specific customer criteria. We extend these previous results to include SH
environment to SALOON and adapt feature modeling for the deployment pur-
pose. In [2], the authors analyze the deployment of health monitoring application
variants in different Cloud platforms using SPL in order to select the possible



deployment with the lower price. Our work focus on introducing deployment
constraints to adapt feature modeling for deployment analysis.

6 Conclusion

Our approach proposes to include deployment constraint in EFM that is not
proposed by other researches. We have used and extended the SALOON frame-
work [10] to introduce a new process for mapping application components onto
deployment nodes using feature modeling. This paper raises a preliminary vali-
dation of how to adapt feature modeling for the deployment purpose. However,
it does not characterize the limits of this method. The given example is re-
stricted to SHEA with only one SH node, e.g., HAB and other examples should
be checked to get better insight in the approach added value.

References

1. K. Apt. Principles of constraint programming. Cambridge University Press, 2003.
2. E. Cavalcante, A. Almeida, T. Batista, N. Cacho, F. Lopes, F. C. Delicato, T. Sena,

and P. F. Pires. Exploiting software product lines to develop cloud computing appli-
cations. In Proceedings of the 16th International Software Product Line Conference-
Volume 2, pages 179–187. ACM, 2012.

3. K. Czarnecki, C. Hwan, P. Kim, and K. Kalleberg. Feature models are views on
ontologies. In Software Product Line Conference, 2006 10th International, pages
41–51. IEEE, 2006.

4. R. Druilhe, M. Anne, J. Pulou, L. Duchien, and L. Seinturier. Energy-driven
consolidation in digital home. In Proceedings of the 28th Annual ACM Symposium
on Applied Computing, pages 1157–1162. ACM, 2013.

5. N. Jussien, G. Rochart, and X. Lorca. Choco: an open source java constraint pro-
gramming library. In CPAIOR’08 Workshop on Open-Source Software for Integer
and Contraint Programming (OSSICP’08), pages 1–10, 2008.

6. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (foda) feasibility study. Technical report, DTIC Docu-
ment, 1990.

7. K. C. A. Lee, M. T. Segarra, and S. Guelec. A deployment-oriented development
process based on context variability modeling. In Model-Driven Engineering and
Software Development (MODELSWARD), 2014 2nd International Conference on,
pages 454–459. IEEE, 2014.

8. P. Mell and T. Grance. The nist definition of cloud computing. National Institute
of Standards and Technology, 53(6):50, 2009.

9. K. Pohl, G. Böckle, and F. Van Der Linden. Software product line engineering,
volume 10. Springer, 2005.

10. C. Quinton. Cloud Environment Selection and Configuration: A Software Product
Lines-Based Approach. PhD thesis, Université Lille 1, 2014.

11. C. Szyperski. Component Software: Beyond Object-oriented Programming. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 2002.


	Using Feature Models for Distributed Deployment in Extended Smart Home Architecture

