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Abstract. In this paper we study the automatic synthesis of robotic
controllers for the coordinated movement of multiple mobile robots. The
algorithm used to learn the controllers is a noise-resistant version of
Particle Swarm Optimization, which is applied in two different settings:
centralized and distributed learning. In centralized learning, every robot
runs the same controller and the performance is evaluated with a global
metric. In the distributed learning, robots run different controllers and
the performance is evaluated independently on each robot with a local
metric. Our results from learning in simulation show that it is possible to
learn a cooperative task in a fully distributed way employing a local met-
ric, and we validate the simulations with real robot experiments where
the best solutions from distributed and centralized learning achieve sim-
ilar performances.

1 Introduction

This paper deals with the synthesis of simple controllers for cooperative tasks
performed by resource-constrained robots. Under these settings, evaluative ma-
chine learning techniques are an interesting tool for human designers that may
be able to fully exploit the platforms’ limited sensing capabilities as well as deal
with noise in the performance evaluations [1–4].

The cooperative task chosen for this study is a loosely-coordinated collec-
tive movement or flocking [5–9], in which a set of robots move together as a
group. Previous works have shown that it is feasible to use learning to generate
cooperative behaviors [2, 3]. However, in these cases learning has been done in
a centralized manner, using homogeneous controllers and a global performance
metric. The goal of this paper is to distribute the learning process, which in-
creases robustness to failure of individual agents and may also speed up the
learning process by testing several candidate solutions at the same time [10]. In
order to achieve this goal, we aim to design a local or individual performance
metric that can be evaluated by each robot but also leads to the desired coop-
erative behavior.
⋆ This research was supported by the Swiss National Science Foundation through the
National Center of Competence in Research Robotics.
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It should be noted that the task as implemented in this article is harder than
those from previous work in that the robots are not physically connected to each
other [2], they are required not only to aggregate but also move together[3], and
there is no environmental template or goal to guide their movement [1].

Both the local and global performance metrics used in this article mimic
in their components two of the flocking Reynolds’ rules [11]: avoiding collisions
and attraction to neighboring flock-mates. The alignment or velocity matching
rule is not directly reflected in the performance metric in order to simplify the
implementation on real robots. In [12], Q-learning is used to generate flocking
behaviors of virtual agents (not robots) in the presence of a predator, where the
agents individually learn discrete actions similar to Reynolds’ rules.

Some researchers have used different optimization techniques to improve the
performance of human designed flocking controllers [13–15]. Our approach in this
article differs in that our behaviors are generated from a general non-recurrent
artificial neural network and not a specific flocking controller.

The remainder of this article is organized as follows. Section 2 describes the
learning algorithms, performance metrics and controller used. Section 3 describes
the experimental setup and the different experiments performed. In Section 4 we
present and discuss the results obtained both in simulation and with real robots.
Finally, in Section 5 we summarize the findings of this article and discuss the
limitations of the approach to be addressed in future work.

2 Methodology

In this article, a version of Particle Swarm Optimization (PSO) [16] is used in
order to learn a coordinated collective movement behavior. The learning problem
for PSO is choosing a set of parameters of an underlying robotic controller such
that a given performance metric is maximized.

2.1 Learning Algorithm

The PSO algorithm used is a noise-resistant variation introduced by Pugh et
al. [17], which operates by re-evaluating personal best positions and aggregating
them with the previous evaluations (in our case a regular average performed at
each iteration of the algorithm). The pseudocode for the algorithm is shown in
Figure 1.

The position of each particle represents a set of parameters of a controller.
The movement of particle i in dimension j depends on three components: the
velocity at the previous step weighted by an inertia coefficient w, a randomized
attraction to its personal best x∗

i,j weighted by wp, and a randomized attraction
to the neighborhood’s best x∗

i′,j weighted by wn (Eq. 1). rand() is a random
number drawn from a uniform distribution between 0 and 1.

vi,j = w · vi,j + wp · rand() · (x∗
i,j − xi,j) + wn · rand() · (x∗

i′,j − xi,j) (1)
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1: Intialize particles
2: for Ni iterations do
3: for ⌈Np/Nrob⌉ particles do
4: Update particle position
5: Evaluate particle
6: Re-evaluate personal best
7: Aggregate with previous best
8: Share personal best
9: end for
10: end for

Fig. 1. Noise-resistant PSO algorithm.

The PSO neighborhood presents a ring topology with one neighbor on each
side. Particles’ positions and velocities are initialized randomly with a uniform
distribution in the [−20, 20] interval, and their maximum velocity is also limited
to that interval. The PSO algorithmic parameters are set following the guidelines
for limited-time adaptation we presented in our previous work [18] and are shown
in Table 1. Since the dimension of the search space is 26, we round up to 28
particles in order to have exactly seven particles per robot in the distributed
implementation.

Table 1. PSO parameter values

Parameter Value

Number of robots Nrob 4
Population size Np 28
Iterations Ni 50
Evaluation span te 4x45 s
Re-evaluations Nre 1
Personal weight pw 2.0
Neighborhood weight nw 2.0
Dimension D 26
Inertia w 0.8
Vmax 20

Using the PSO algorithm we explore two different learning schemes, in rela-
tion to how the particles are distributed among the robots and how the fitness
function is defined. The first, global homogeneous, copies the same candidate
solution (or set of weights) to every robot, and uses a global fitness function
that evaluates the group behavior. The second, local heterogeneous, distributes
a different candidate solution (or set of weights) to each robot, and uses a local
fitness function that is evaluated independently and individually on each robot.
The distributed version allows to speed up the evaluations by a factor equal
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to the number of robots, yet it makes the learning harder, especially when the
local and global performance metrics are not trivially aligned (e.g., the global
performance can be represented by a linear combination of local performances).

2.2 Performance Functions

This Section gives the mathematical definition of the performance metrics used
for centralized and distributed learning. The way inputs are measured during
the experiments in simulation and reality is described in Section 3.

Both global and local performance functions have three factors: movement,
compactness, and collision avoidance. These factors reward robots that move as
far as possible from their initial positions, stay close to each other, and avoid
collisions between them. The factors are all normalized to the interval [0, 1].

The movement factor of the global performance metric (f1g) is the normalized
distance between the initial and the final positions of the center of mass of the
group of robots. The normalization factor is the maximum distance that a robots
can travel in one evaluation, i.e., the robot’s maximum speed multiplied by the
evaluation time.

f1g =
|xc(tf )− xc(t0)|

Dmax
(2)

The global compactness factor (f2g) is the average over the evaluation time
and over each pair of robots of the inter-robot fitness. We define the inter-robot
fitness between two robots as a function of the distance between them, as shown
in Fig. 2. The fitness is maximum at 0m, and it is zero when the robots are
further apart than 0.7m. At each time step, we calculate the inter-robot fitness
for each pair of robots, and then average across all pairs:

f2g =
1

Neval

Neval∑
k=1

(
1

Npairs

Npairs∑
j=1

fit interj,k) (3)

where Neval is the number of time steps in the evaluation period, Npairs is
number of inter-robot pairs and fit interj,k is the inter-robot fitness for inter-
robot pair j at time step k.
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Fig. 2. Inter-robot fitness as a function of the distance between two robots.
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The global collision-avoidance factor (f3g) is the average for every robot and
over the evaluation time of the maximum value of the proximity sensors at each
time step:

f3g =
1

Nrobots

Nrobots∑
j=1

(
1

Neval

Neval∑
k=1

imax,j,k) (4)

where imax,j,k is the normalized proximity sensor activation value of the most
active sensor at time step k for robot j, and Nrobots is the number of robots.

The local performance metric is calculated individually by each robot, using
exclusively on-board resources. The local movement factor (f1l) is the normalized
distance travelled by the robot, based on the final position, which is calculated
with odometry using the wheel encoders.

f1l =
|xi(tf )− xi(t0)|

Dmax
(5)

The local compactness factor (f2l) is also based on the inter-robot fitness as
defined in Figure 2 and used in Equation 3. However, in the local case the number
of pairs Npairs in Equation 3 is modified so that each robot only measures the
distance to the other three using an on-board range and bearing module, and
then averages the inter-robot fitness only for those other three robots, as opposed
to averaging across all pairs of robots. Another difference worth noting between
the local and global compactness factors is that the local inter-robot distance
measurements are affected by occlusion, while the global ones are not.

Finally, the local collision-avoidance factor (f3l) is the single robot version of
the global factor:

f3l =
1

Neval

Neval∑
k=1

imax,j,k (6)

Both global and local fitness are obtained by aggregating the three corre-
sponding factors using the generalized aggregation functions described by Zhang
et al. [19]:

F =

(
ω1f

s
1 + ω2f

s
2 + ω3f

s
3

ω1 + ω2 + ω3

) 1
s

(7)

where fi are the individual fitness factors, ωi their corresponding aggregation
weights, and s is the degree of compensation. For all experiments in this article
we set the degree of compensation s equal to zero, simplifying Eq. 7 to:

F = (fω1
1 fω2

2 fω3
3 )

1
ω1+ω2+ω3 (8)

Since the three factors (fi) are in the interval [0, 1], the fitness function
F will also be in the same range. The different combinations of aggregation
weights explored in this article are as follows: {ω1 = 0.25, ω2 = 0.5, ω3 = 0.25},
{1/3, 1/3, 1/3}, and {0.1, 0.8, 0.1}.

In our previous work [20], we showed that the fitness evaluations for learning
a simpler robotic task had a large standard deviation, and that performing re-
evaluations was an effective way of dealing with this challenge in the learning.
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Given the more complex behavior to be learned in this article and the difficulties
encountered while doing so, we decided to perform multiple internal evaluations
of the fitness and average them in order to make the learning more robust. Con-
cretely, for each particle evaluation of the PSO algorithm, we perform 4 complete

experimental runs of 45 s and average them arithmetically (F ′ = 1
4

4∑
i=1

Fi).

2.3 Controller Architecture

The controller is a non-recurrent artificial neural network of two units which
uses only local, on-board measurements regardless of the performance metric.
Its inputs are the range and bearing measurements and the infrared proximity
sensors, and it outputs the two wheel speeds. Each neuron has 13 input connec-
tions: 4 corresponding to the infrared proximity sensors, 8 corresponding to the
range and bearing sensor, and one constant bias speed, resulting in 26 weight
parameters (wk) in total. The outputs of the neurons define the wheel speeds
{vl, vr} as given by Equations 9 and 10. f(·) represents the sigmoidal activation
function.

vl = f(w1 +
4∑

k=1

ik · wk+1 +
8∑

k=1

rbk · wk+5) (9)

vr = f(w14 +
4∑

k=1

ik · wk+14 +
8∑

k=1

rbk · wk+18) (10)

Instead of using the robot’s nine proximity sensors as inputs, the neural
network inputs use four virtual sensors irk (front-left, front-right, back-left and
back-right) obtained from averaging in pairs and normalizing the sensor values
of eight sensors and discarding the central sensor in the back part. This grouping
allows us to reduce the number of weight parameters while still being able to
detect and avoid obstacles [21].

The eight range and bearing inputs rbk are obtained by dividing the bearing
into eight sectors, and calculating the activation of each sector by taking the
maximum range value measured in that sector and dividing it by the maximum
possible range, which is approximately 3 meters.

3 Experimental Setup

Our experimental platform is the Khepera III mobile robot, a differential wheeled
vehicle with a diameter of 12 cm (Fig. 3a). It is equipped with nine infra-red
sensors for short range obstacle detection, which constitute one of the exter-
nal inputs for the controller. The other inputs are the distances to neighboring
robots. This information is obtained through a relative positioning system [22],
which calculates range and bearing to nearby robots based on the strength of
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(a) (b)

Fig. 3. (a) A Khepera III robot with a range and bearing module attached. (b) Ex-
perimental setup in the arena.

the infrared signal. The Khepera III has two wheel encoders, which are used to
estimate the trajectory followed by the robots for the fitness movement factor
calculations.

Since the response of the Khepera III proximity sensors is not a linear func-
tion of the distance to the obstacle, the proximity values are inverted and nor-
malized using measurements of the real robot sensor’s response as a function
of distance. This inversion and normalization results in a proximity value of 1
when touching an obstacle, and a value of 0 when the distance to the obstacle
is equal to or larger than 10 cm.

Simulations are performed in Webots [23], a realistic physics-based submicro-
scopic simulator that models dynamical effects such as friction and inertia. In this
context, by submicroscopic we mean that it provides a higher level of detail than
usual microscopic models, faithfully reproducing intra-robot modules (e.g., indi-
vidual sensors and actuators). The simulator has a built-in relative positioning
system that gives information about the distance and direction to neighboring
robots within line-of-sight, mimicking the one used in the real robots.

The learning process is performed completely in simulation. Each evaluation
during the learning process has a duration of 45 s and takes place in an un-
bounded arena. Four robots are placed forming a square of side length equal to
two robot diameters with random orientations. In order to calculate the local fit-
ness function, robots only use their internal measurements (simulated range and
bearing sensor and wheel encoders, both with added noise). The global fitness
function is calculated using the robots’ global positions with no errors provided
by the simulator.
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After the learning process is finished, the performance of the solution from
each of the 20 learning runs is evaluated systematically in simulation, running
20 experiments of 45 s for each solution.

Based on the results of these tests in simulation, the best solution for global
homogeneous learning and the best solution for local heterogeneous learning are
selected for systematic tests with real robots. We run 20 experiments for each
solution. In these experiments, the global positions is monitored using an over-
head camera connected to a computer running SwisTrack [24] (see Figure 3b).
The initial positions and number of robots are the same as used for learning in
simulation, but the evaluation time is reduced to 10 s in order to be able to keep
track of the robots’ positions during the whole evaluation due to the limited field
of view of the fixed overhead camera and the ideal unbounded arena.

Following the same scheme as done in simulation, the local fitness function is
computed on each robot using only its on-board resources, while the global fitness
is computed externally given the information provided by the overhead camera
and complemented with the local measures for the avoidance factor obtained
from the robots.

The two selected best controllers are also re-evaluated in simulation using
the reduced time of 10 s in order to perform valid quantitative comparisons and
validate our models.

4 Experiments and Results

As mentioned in Section 3 the learning is conducted in simulation with PSO,
which is a stochastic optimization method. Therefore, for statistical significance,
we perform 20 optimization runs for global homogeneous (centralized) learn-
ing and another 20 runs for local heterogeneous (distributed) learning. Figure 4
shows the progress of the best solution found at each iteration for the two dif-
ferent learning approaches. The curves show the average of the 20 runs, and the
error bars represent one standard deviation.

Comparing Figure 4b with Figure 4a we can notice that the performance of
the local heterogeneous learning measured with the global metric is not as high
as the global homogeneous one measured with the same metric. However, it
should be noted that in homogeneous learning each iteration uses four times the
number of evaluations as heterogeneous learning, as in homogeneous learning
each candidate solution must be copied to all robots while in heterogeneous
learning each robot tests a different candidate solution at the same time.

In addition to the global metric, Figure 4b shows the progress of the local
performance metric for local heterogeneous learning. The global and local metrics
are aligned, in the sense that learning with the local one leads to an improvement
in the global one.

After the learning is finished, each of the 20 solutions found in the learning
runs is tested in simulation for 20 evaluations of 45 seconds. Figure 5 shows the
performance measured using the global metric obtained in this testing. The solu-
tions from homogeneous learning outperform the ones from heterogeneous learn-
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Fig. 4. (a) Learning progress measured using the global metric for global homogeneous
(centralized) learning . (b) Learning progress measured using the global (blue) and local
(red) metrics for local heterogeneous (distributed) learning.

ing in average. However, the best solution from heterogeneous learning (number
15 in Figure 5b) has the highest performance over all.

All solutions present a high variation between evaluations (note that in this
case the boxplots represent the variation in the performance of each solution
during the 20 evaluation runs, which is different from the variation in the learn-
ing shown in Figure 4). This variation between individual evaluations implies
that the controllers are sensitive to the initial conditions, i.e. the initial random
orientations of the robots. The initial orientations affect the time it takes for the
robots to find a common direction of movement, and therefore the total distance
that the center of mass is able to travel in the 45 seconds. When robots fail to
find a common direction of movement, they either aggregate close to their initial
positions in a very compact group or split in smaller groups and go in separate
directions. Figure 6 shows two example trajectories where a common direction
of movement was found relatively quickly, allowing the robots to travel a large
distance while staying close to each other.

It should be noted that the weights used in the fitness aggregation function
also have a significant effect on the behavior of the resulting controllers. Before
choosing the final values of {0.25, 0.5, 0.25} for movement, compactness, and
avoidance respectively, preliminary tests were conducted in simulation with two
other set of weights: {1/3, 1/3, 1/3} and {0.1, 0.8, 0.1}. Figure 7 shows the effect
of these fitness aggregation weights on the resulting behaviors. Figure 7a has a
low compactness weight, causing the robots to spread out, while Figure 7b has
a high compactness weight, causing robots to stay together without moving far.
In order to keep the plots clear and avoid clutter, only the initial 10 s of the
trajectories are shown.

Based on the results from the tests in simulation, the solutions with the
highest medians were chosen to be tested on real robots (number 9 in Figure 5a,
homogeneous learning, and number 15 in Figure 5b, heterogeneous learning). We
conducted 20 evaluation runs of 10 seconds for each solution, both in simulation
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Fig. 5. Performance measured with the global metric in simulation for the 20 solutions
found with (a) global homogeneous (centralized) learning and (b) local heterogeneous
(distributed) learning.
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Fig. 6. Example of trajectories from simulation for successful runs with (a) local het-
erogeneous and (b) global homogeneous learning.

and reality. The evaluation time was reduced to 10 seconds to keep the robots in
the overhead camera’s field of view. The quantitative performance measured in
these evaluations is presented in Figure 8, which shows a good correspondence
between simulation and reality.

Qualitatively, the behaviors observed in reality were similar to the ones ob-
tained in simulation. Figure 9 depicts two example trajectories from these 10 s
evaluations. Note that the trajectories shown here for real robots last 10 s, rep-
resenting only a fraction of the 45 s from those in Figure 6, but the initial steps
are very similar. During the real robot experiments, it became evident that for
the heterogeneous solution the robot in front of the group was always the same,
while the other three robots followed, meaning that heterogeneous learning led
to specialized roles. On the other hand, for the homogeneous solution, the robot
in front changed every time based on the initial random orientations.

5 Conclusion and Future Work

Our results have shown that it is feasible to learn a cooperative task in a fully
distributed way with a local performance metric measured using local, on-board,
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Fig. 7. Example of trajectories for different fitness aggregation weights: (a)
{1/3, 1/3, 1/3} and (b) {0.1, 0.8, 0.1}, for compactness, movement, and avoidance, re-
spectively.
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Fig. 8. Performance measured with the global metric in simulation and reality for the
best controllers found with global homogeneous and local heterogeneous learning.

noisy sensors. On average, the performance of the solutions found with the dis-
tributed approach measured with the global metric was not as high as the ones
from centralized learning. This difference was not only due to the metric cho-
sen for learning but also to the increased difficulty in coordination arising from
heterogeneous controllers. However, the best solutions found for centralized and
distributed learning performed similarly, both in simulation and in experiments
with real robots. Additionally, the best solution from distributed learning ex-
hibited specialized roles in which one robot consistently led the group while the
others followed.

We have also seen that regardless of the learning method, the coordinated
motion task was very sensitive to the initial configuration of the robots, and
therefore the performance evaluations were noisy. We addressed this issue in the
learning by using different initial orientations for each evaluation and averaging
their performances.
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Fig. 9. Example of trajectories for successful runs with (a) local heterogeneous and (b)
global homogeneous learning tested on the real robots.

As future work, we intend to make the solutions for the coordinated mo-
tion task more consistent and robust. In order to achieve this, we will explore
increasing the complexity of the controller by using the relative velocity or the
relative orientation to other robots as inputs, as well as a adding a corresponding
alignment term in the local and global learning metrics. In addition, we would
like to explore learning in the presence of obstacles in order to generate obstacle
avoidance at the group level. Finally, we would like to test the learned controllers
in larger flocks of robots by replicating the sets of controllers. We are specially
interested in seeing how the heterogeneous solutions perform.
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