Skip to main content

Modular and Adaptive Wheelchair Automation

  • Chapter
  • First Online:
Book cover Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 109))

Abstract

We present in this paper a novel framework for the design of a modular and adaptive partial-autonomy wheelchair. Our design in particular aims to address hurdles to the adoption of partial-autonomy wheelchairs within general society. In this experimental work, a single assistance module (assisted doorway traversal) is evaluated, with arbitration between multiple goals (from multiple detected doors) and multiple control signals (from an autonomous path planner, and the human user). The experimental work provides the foundation and proof-of-concept for the technical components of our proposed modular and adaptive wheelchair robot. The system is evaluated within multiple environmental scenarios and shows good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Exceptions include the Smart Wheelchair from Smile Rehab [11] and TAO-7 Intelligent Wheelchair Base from AAI Canada [12].

  2. 2.

    Including: the Q-Logic system from Pride Mobility; PG Drive Systems’ R-Net electronics system used by Permobil, Pride Mobility, and Sunrise Medical; and the MK6i electronics system used by Invacare [34, 35].

  3. 3.

    Full specifications: mini-PC = Shuttle XH61 mini-PC with Intel i7-2600S processor, 16GB DDR3 SDRAM, 40GB solid state hard drive; IR range sensor = Sharp GP2Y0A02YK IR distance sensors (\(\times 10\)); Ultra-sonic range sensor = Maxbotix LV-MaxSonar-EZ1 Ultra-sonic range sensors (\(\times 4\)); Sensor interface board = Arduino Mega2560. Total cost: \(\$1070\).

  4. 4.

    Implementation of the adaptation components of our framework are currently under development, and are not included in this assessment.

  5. 5.

    Since d and \(\phi \) are both always positive, the logistic function (fractions in parentheses) range is [0, 0.5]. The factor of 2 in this equation compensates for this fact, so that the range of \(c_g\) becomes [0, 1].

References

  1. Fehr, L., Langbein, W.E., Skaar, S.B.: Adequacy of power wheelchair control interfaces for persons with severe disabilities: a clinical survey. J. Rehabil. Res. Dev. 37(3), 353–360 (2000)

    Google Scholar 

  2. Simpson, R.: Smart wheelchairs: a literature review. J. Rehabil. Res. Dev. 42(4), 423–438 (2005)

    Article  Google Scholar 

  3. Simpson, R., LoPresti, E., Cooper, R.: How many people would benefit from a smart wheelchair? J. Rehabil. Res. Dev. 45(1), 53–72 (2008)

    Article  Google Scholar 

  4. Wang, Y., Chen, W.: Hybrid map-based navigation for intelligent wheelchair. In: Proceedings of ICRA (2011)

    Google Scholar 

  5. Demeester, E., Hüntemann, A., Vanhooydonck, D., Vanacker, G., Degeest, A., Brussel, H.V., Nuttin, M.: Bayesian estimation of wheelchair driver intents: modeling intents as geometric paths tracked by the driver. In: Proceedings of IROS (2006)

    Google Scholar 

  6. Röfer, T., Mandel, C., Laue, T.: Controlling an automated wheelchair via joystick/head-joystick supported by smart driving assistance. In: Proceedings of ICORR (2009)

    Google Scholar 

  7. Li, Q., Chen, W., Wang, J.: Dynamic shared control for human-wheelchair cooperation. In: Proceedings of ICRA (2011)

    Google Scholar 

  8. Philips, J., del R. Millán, J., Vanacker, G., Lew, E., Galan, F., Ferrez, P.W., Brussel, H.V., Nuttin, M.: Adaptive shared control of a brain-actuated simulated wheelchair. In: Proceedings of ICORR (2007)

    Google Scholar 

  9. Iturrate, I., Antelis, J.M., Kübler, A., Minguez, J.: A noninvasive brain-actuated wheelchair based on a p300 neurophysiological protocol and automated navigation. IEEE Trans. Ind. Electron. 25(3) (2009)

    Google Scholar 

  10. Katsura, S., Ohnishi, K.: Human cooperative wheelchair for haptic interaction based on dual compliance control. IEEE Trans. Ind. Electron. 51(1) (2004)

    Google Scholar 

  11. Katsura, S., Ohnishi, K.: The smart wheelchair from smile rehab ltd. http://smilerehab.com/smart-wheelchair.php

  12. Katsura, S., Ohnishi, K.: The TAO-7 intelligent wheelchair base from AAI Canada, Inc. http://www.aai.ca/robots/tao_7.html

  13. Borgolte, U., Hoyer, H., Bühler, C., Heck, H., Hoelper, R.: Architectural concepts of a semi-autonomous wheelchair. J. Intell. Robot. Syst. 22(3–4), 233–253 (1998)

    Article  Google Scholar 

  14. Mazo, M.: An integral system for assisted mobility. IEEE Robot. Autom. Mag. 8(1), 46–56 (2001)

    Article  Google Scholar 

  15. Braga, R.A., Petry, M., Reis, L.P., Moreira, A.P.: Intellwheels: modular development platform for intelligent wheelchairs. J. Rehabil. Res. Dev. 48(9) (2011)

    Google Scholar 

  16. Urdiales, C.: Collaborative Assistive Robot for Mobility Enhancement (CARMEN): The bare necessities assisted wheelchair navigation and beyond. Springer, Berlin (2012)

    Book  Google Scholar 

  17. Desmond, R., Dickerman, M., Fleming, J., Sinyukov, D., Schaufeld, J., Padir, T.: Development of modular sensors for semi-autonomous wheelchairs. In: Proceedings of TePRA (2013)

    Google Scholar 

  18. Civit-Balcells, A., Gonz, J.A.: Tetranauta: a wheelchair controller for users with very severe mobility restrictions. In: Proceedings of the 3rd TIDE Congress (1998)

    Google Scholar 

  19. Prassler, E., Scholz, J., Fiorini, P.: A robotics wheelchair for crowded public environment. IEEE Robot. Autom. Mag. 8(1), 38–45 (2001)

    Article  Google Scholar 

  20. Biddiss, E.A., Chau, T.T.: Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet. Orthot. Int. 31(3), 236–257 (2007)

    Article  Google Scholar 

  21. Lankenau, A., Röfer, T.: A versatile and safe mobility assistant. IEEE Robot. Autom. Mag. 8(1), 29–37 (2001)

    Article  Google Scholar 

  22. Bley, F., Rous, M., Canzler, U., Kraiss, K.F.: Supervised navigation and manipulation for impaired wheelchair users. In: Proceedings of SMC (2004)

    Google Scholar 

  23. Parikh, S.P., Rao, R., Jung, S.H., Kumar, V., Ostrowski, J.P., Taylor, C.J.: Human robot interaction and usability studies for a smart wheelchair. In: Proceedings of IROS (2003)

    Google Scholar 

  24. Zeng, Q., Teo, C.L., Rebsamen, B., Burdet, E.: A collaborative wheelchair system. IEEE Trans. Neural Syst. Rehabil. Eng. 16(2), 161–170 (2008)

    Article  Google Scholar 

  25. Desai, M., Yanco, H.A.: Blending human and robot inputs for sliding scale autonomy. In: Proceedings of RO-MAN (2005)

    Google Scholar 

  26. Simpson, R.C., Poirot, D., Baxter, F.: The hephaestus smart wheelchair system. IEEE Trans. Neural Syst. Rehabil. Eng. 10(2) (2002)

    Google Scholar 

  27. System, T.N.A.W.N.: Simon p. levine and david a. bell and lincoln a. jaros and richard c. simpson and yoram koren and johann borenstein. IEEE Trans. Rehabil. Eng. 7(4) (1999)

    Google Scholar 

  28. Bourhis, G., Horn, O., Habert, O., Pruski, A.: An autonomous vehicle for people with motor disabilities. IEEE Robot. Autom. Mag. 8(1), 20–28 (2001)

    Article  Google Scholar 

  29. Iturrate, I., Antelis, J.M., Kübler, A., Minguez, J.: A noninvasive brain-actuated wheelchair based on a p300 neurophysiological protocol and automated navigation. IEEE Trans. Ind. Electron. 25(3) (2009)

    Google Scholar 

  30. Yanco, H.A.: Shared user-computer control of a robotic wheelchair system. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Boston (2000)

    Google Scholar 

  31. Park, J.J., Johnson, C., Kuipers, B.: Robot navigation with model predictive equilibrium point control. In: Proceedings of IROS (2012)

    Google Scholar 

  32. Park, J.J., Johnson, C., Kuipers, B.: Sip-N-Puff control interface from Therafin Corporation. http://www.therafin.com

  33. Park, J.J., Johnson, C., Kuipers, B.: Electronic head array from Adaptive Switch Laboratories. http://www.asl-inc.com

  34. Simpson, R., LoPresti, E., Hayashi, S., Nourbakhsh, I., Miller, D.: The smart wheelchair component system. J. Rehabil. Res. Dev. 41(3B) (2004)

    Google Scholar 

  35. Sharma, V., Simpson, R., LoPresti, E., Schmeler, M.: Evaluation of semiautonomous navigation assistance system for power wheelchairs with blindfolded nondisabled individuals. J. Rehabil. Res. Dev. 47(9) (2010)

    Google Scholar 

  36. Sharma, V., Simpson, R., LoPresti, E., Schmeler, M.: The Quantum 600 powered wheelchair from Pride Mobility. http://www.pridemobility.com

  37. Sharma, V., Simpson, R., LoPresti, E., Schmeler, M.: The MR-100 drive-by-wire wheelchair-base robot from Sensible Machines. http://www.sensiblemachines.com/enabling-modules.php

  38. Derry, M., Argall, B.: Automated doorway detection for assistive shared-control wheelchairs. In: Proceedings of ICRA (2013)

    Google Scholar 

Download references

Acknowledgments

Many thanks to Matthew Derry for his significant contributions to the development of the software infrastructure for this system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenna D. Argall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Argall, B.D. (2016). Modular and Adaptive Wheelchair Automation. In: Hsieh, M., Khatib, O., Kumar, V. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-319-23778-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23778-7_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23777-0

  • Online ISBN: 978-3-319-23778-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics