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Abstract. Temporal logics targeting real-time systems are traditionally
undecidable. Based on a restricted fragment of MTL-

R
, we propose a new

approach for the runtime verification of hard real-time systems. The
novelty of our technique is that it is based on incremental evaluation,
allowing us to e↵ectively treat duration properties (which play a crucial
role in real-time systems). We describe the two levels of operation of
our approach: o✏ine simplification by quantifier removal techniques; and
online evaluation of a three-valued interpretation for formulas of our
fragment. Our experiments show the applicability of this mechanism as
well as the validity of the provided complexity results.

1 Introduction

Temporal logics are widely used formalisms in the field of specification and ver-
ification of reactive systems [19], since they provide a natural and abstract
technique for the analysis of safety and liveness properties. Linear Temporal
Logic (LTL) describes properties concerning the temporal order of the input
model, and is well studied in terms of expressiveness, decidability and com-
plexity. Timed temporal logics are extensions of temporal logics with quanti-
tative constraints to handle temporal logic specifications [2]. Metric Temporal
Logic (MTL) [12,15] is an undecidable real-time extension of LTL, describing the
temporal order constrained by quantitative intervals on the temporal operators.

These formalisms have been used for formal verification, either by deductive
or by algorithmic methods [11]. However, real-time logics are notably less well-
behaved than traditional temporal logics. In particular, the model checking prob-
lem for MTL is known to be undecidable [15]. Decidable real-time formalisms
that can be used as alternatives are currently the focus of much attention.

A diversity of MTL fragments reveal that the undecidable results of MTL
are due to the excessive precision of the timing constraints (i.e., punctuality [1]),
the presence of unbounded temporal operators (unboundedness), the presence of
unsafe formulas, and the excessive richness of the semantic model [15]. Metric
Interval Temporal Logic (MITL) is a fragment that avoids punctuality by con-
straining any interval on the temporal operators to be non-singular; Bounded
MTL (BMTL) is another fragment that, instead of avoiding punctual intervals,
bounds intervals that are infinitely large. Both are decidable fragments. Syntac-
tic restrictions on temporal logic operators of MTL may also result in decidable



fragments. Ouaknine and Worrell [16] describe a fragment of MTL named Safety
MTL (SMTL), that does not allow expressing invariant formulas, and Bouyer et
al. [5] have introduced the term flatness for MTL.

In addition to being undecidable, the previous logics also fail to capture
the notion of duration. This notion, however, is of paramount importance when
specifying and developing real-time systems, mainly because the fundamental
results about the reliability of this class of systems are related to ensuring that
the execution time of the involved components does not miss some predetermined
deadline. Lakhneche and Hooman [13] came up with Metric temporal logic with
durations (MTL-

R
) and Chaochen and colleagues [9] with Duration Calculus,

which provide expressive power to specify and reason about durations within
real intervals. By applying syntactic and semantic restrictions it is possible to
derive decidable fragments for duration properties.

The motivation for this work is that of providing an expressive formal lan-
guage that fits the timing requirements of real-time systems, from the point of
view of runtime verification (RV). RV is concerned with the problem of gener-
ating monitors from formal specifications, and adding these monitors into the
target code as a safety-net that is able to detect abnormal behaviors and, possi-
bly, respond to them via the release of counter-measures. As such, RV methods
can be applied to systems where the source code is not available due to intel-
lectual property, or in those cases where we have access to the code but the
complexity of the system’s requirements is too high to be addressed via any of
the known static verification approaches.

The major contribution of this paper is a new mechanism for runtime veri-
fication of hard real-time systems regarding duration properties, based on a de-
cidable fragment of MTL-

R
and a three-valued abstraction of this fragment. The

fragment allows for expressing quantified formulae, and is adequate for quantifier
elimination: we give an algorithm for the simplification of formulas containing
quantifiers and free logic variables. Intuitively, we abstract our fragment into
first order logic of real numbers (FOLR) to obtain quantifier-free formulas.

One particular application scenario for RV is in scheduling theory of hard
real-time systems. Rigorous calculation of the worst case execution time (WCET)
is commonly di�cult, and the known approximation methods based on statis-
tical abstractions degrade the dependability of the systems, since the available
schedulability theory tends to assume the WCET. Application of monitors in
this case will make the system more reliable. We will show through an appli-
cation example (based on resource models, which are mechanisms that ensure
time isolation for execution units) the interest of allowing formal specifications
to express existential quantification over durations, for real applications.

The paper is organized as follows: in Section 2 we introduce suitable restric-
tions over MTL-

R
; Section 3 describes the three-valued semantics of restricted

MTL-
R
, and Section 4 describes an algorithm for inequality abstraction. In Sec-

tion 5 we then introduce an evaluation algorithm for the restricted MTL-
R
with

three-valued semantics. Section 6 describes our experimental work and finally
Section 7 discusses related work and concludes the paper.
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2 Specification Language RMTL-

R

MTL-
R

is more expressive than DC [13], but is undecidable since the relation
over terms or the term function may themselves be undecidable. Let us begin
by briefly reviewing MTL-

R
.

Definition 1. Let P be a set of propositions and V a set of logic variables. The
syntax of MTL-

R
terms ⌘ and formulas ' is defined inductively as follows:

⌘ ::= ↵ | x | f(⌘1, . . . , ⌘n) |
Z

⌘

'

' ::= p | R(⌘1, . . . , ⌘n) | '1 _ '2 | ¬' | '1 U⇠�

'2 | '1 S⇠�

'2 | 9x'

where ↵ 2 R, x 2 V is a logic variable, f a function symbol of arity n,
R
⌘

' is the
duration of the formula ' in the interval [0, ⌘], p 2 P is an atomic proposition,
U and S are temporal operators with ⇠2 {<,=}, � 2 R�0, and the meaning of
R(⌘

1

, . . . , ⌘

n

),'
1

_ '
2

,¬', 9x' is defined as usual.

We will use the following abbreviations: '^ for ¬(¬'_¬ ), '!  for ¬'_ ,
tt for ' _ ¬', ↵ for ' ^ ¬', ⌃⇠� ' for tt U⇠� ', and ⇤⇠� ' for ¬(tt U⇠� ¬').

An observation function � of length � 2 R�0 [ {1} over P is a function
from P into the set of functions from interval [0, �) into {tt,↵}. The length of �
is denoted by #�. A logical environment is any function � : V ! R�0. For any
such �, x 2 V and r 2 R, we will denote by �[x 7! r] the logical environment
that maps x to r and every other variable y to �(y). The following auxiliary
definition will be used in the interpretation of the duration of a formula.

Definition 2 (MTL-
R

semantics). The truth value of a formula ' will be
defined relative to a model (, �, t) consisting of a timed state sequence k, a logical
environment �, and a time instant t 2 R�0. We will write (, �, t) |= ' when ' is
interpreted as true in the model (, �, t). Terms and formulas will be interpreted
in a mutual recursive way. First of all, for each formula ', timed state sequence k
and logical environment �, the auxiliary indicator function 1

'(,�)

: R�0 ! R�0
is defined as follows, making use of the satisfaction relation:

1
'(,�)(t) =

(
1 if (, �, t) |= ',

0 otherwise.

The value T J⌘K (, �) t of a term ⌘ relative to a model is then defined using a
Riemann integral [8] of the function 1

'(,�)

for the case of a duration
R
⌘

':

T J↵K (, �) t = ↵

T JxK (, �) t = �(x)

T Jf(⌘1, . . . , ⌘n)K (, �) t = f (T J⌘1K (, �) t, . . . ,T J⌘
n

K (, �) t)

T

sZ
⌘

'

{
(, �) t =

(R
t+T J⌘K(,�)t
t

1
'(,�)(t⇤) dt⇤ if (⇤)

0 otherwise
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where (⇤) means that 1
'(,�)

satisfies the Dirichlet condition [13, p.7] and the
sub-term T J⌘K (, �) t is non-negative. The satisfaction relation in turn is de-
fined as follows:

(, �, t) |= p i↵ �(p)(t) = tt and t < #�

(, �, t) |= R(⌘1, . . . , ⌘n) i↵ R(T J⌘1K (, �) t, . . . ,T J⌘
n

K (, �) t)
(, �, t) |= '1 _ '2 i↵ (, �, t) |= '1 or (, �, t) |= '2

(, �, t) |= ¬' i↵ (, �, t) 6|= '

(, �, t) |= '1 U⇠�

'2 i↵ there exists t

0 such that t < t

0 ⇠ t+ �, (, �, t0) |= '2,

and for all t00, t < t

00
< t

0
, (, �, t00) |= '1

(, �, t) |= '1 S⇠�

'2 i↵ there exists t

0 such that t� � ⇠ t

0
< t, (, �, t0) |= '2,

and for all t00, t

0
< t

00
< t, (, �, t00) |= '1

(, �, t) |= 9x' i↵ there exists an r 2 R such that (, �[x 7! r], t) |= '

Note that the semantics of the until operator is strict and non-matching [4].

To overcome the undecidability results of MTL-
R
, we apply restrictions over

MTL-
R
. Restricted metric temporal logic with durations (RMTL-

R
) is a syntac-

tically and semantically restricted fragment of MTL-
R
; the syntactic restrictions

over MTL-
R
include the use of bounded formulas, of a single relation < over the

real numbers, the restriction of the n-ary function terms to use one of the + or
⇥ operators, and a restriction of ↵ constants to the set or rationals Q. Tarski’s
theorem [21] states that the first-order theory of reals with +, ⇥, and < allows
for quantifiers to be eliminated. Algorithmic quantifier elimination leads to de-
cidability, assuming that the truth values of sentences involving only constants
can be computed. We will denote by � the set of RMTL-

R
formulas.

The semantic restrictions on the other hand include the conversion of the
continuous semantics of MTL-

R
into an interval-based semantics, where models

are timed state sequences and formulas are evaluated in a given logical envi-
ronment at a time t 2 R�0. A timed state sequence  is an infinite sequence
of the form  = (p

0

, [i
0

, i

0
0

[), (p
1

, [i
1

, i

0
1

[) . . . , where p

j

2 P, i

0
j

= i

j+1

and
i

j

, i

0
j

2 R�0 such that i
j

< i

0
j

and j � 0. The replacement rule for propositions
is (, �, t) |= p i↵ p 2 (t).

Real-time systems operate in continuous time, and state changes may be
performed at any real-numbered time point; the semantics used in MTL-

R
is

thus appropriate for reasoning about such systems. However, the verification of
digital systems does not require the expressive power of continuous (R) seman-
tics. Instead one may use RMTL-

R
, where the input model is restricted to the

observation of a set of step functions, which are indeed timed state sequences.
Many verification methods are based on the assumption that states are observed
at integer points only [10] applying the notion of digitization, a technique that
allows for the encoding of dense-time traces.

An important property of our restriction is that RMTL-
R

satisfies by con-
struction the Dirichlet conditions implying the Riemann property:

Lemma 1. For any formula ' in RMTL-
R
, timed state sequence , and logical

environment �, the indicator function 1
'(,�)

is Riemann integrable.
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3 Three-valued Abstraction of RMTL-

R

The three-valued logic abstraction of RMTL-
R
, which we will call three-valued

restricted metric temporal logic with durations (RMTL-
R
3

), is syntactically de-
fined as before, but contains two new terms. These terms allow variables to be
maximized and minimized in a certain interval, subject to a constraint given as
a formula. The terms must be introduced here due to the situation in which no
minimum or maximum exists (the formula is not satisfied in the interval), since
we need to define an infeasible value instead of assigning a real number to these
terms. The language of terms of RMTL-

R
3

is defined as follows:

⌘ ::= ↵ | x | min

x2I

' | max

x2I

' | ⌘1 � ⌘2 |
Z

⌘

'

where min

x2I
' and max

x2I
', with I = [I

min

, I

max

] and I

min

, I

max

2 R, and � 2
{+,⇥}. All other formulas and terms are as in RMTL-

R
. We will denote by �3

the set of RMTL-
R
3

formulas, and by � the set of RMTL-
R
3

terms.

Definition 3 (RMTL-
R
3

Semantics). The truth value of a formula ' will
again be defined relative to a model (, �, t) consisting of a timed state sequence
k, a logical environment �, and a time instant t 2 R�0. The interpretation of
the term ⌘ will be given by T J⌘K (, �) t 2 R[{?R}, as defined by the following
rules. Whenever T J⌘K (, �) t = ?R, this means that the term ⌘ is infeasible.

Rigid terms:
– T J⌘

1

K (, �) t is defined as ↵ if ⌘
1

= ↵, and as �(x) if ⌘
1

= x

Minimum and Maximum terms:
– If ⌘

1

= min

x2I
', then T J⌘

1

K (, �) t = is defined as:

⇢
I = min{r | r 2 I and (, �[x 7! r], t) |=3 '} if I 6= ;
?R otherwise

– If ⌘
1

= max

x2I
', then T J⌘

1

K (, �) t is defined as:

⇢
Z = max{r | r 2 I and (, �[x 7! r], t) |=3 '} if Z 6= ;
?R otherwise

Duration term:
– If ⌘

1

=
R
⌘

2

�, then T J⌘
1

K (, �) t is defined as:
⇢R

t+T J⌘
2

K(,�) t
t

1
�(,�)(t

0) dt

0 if T J⌘2K (, �) t � 0

?R otherwise

Turning to the interpretation of formulas, we define J'K (, �, t) to be one of the
three values in {tt,↵,?}, according to the following rules.

Basic formulae:
– If � = p, then J�K (, �, t) is tt if p 2 (t), ↵ if p 62 (t), and ? if (t)

is undefined.
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Relation operator:
– If � = ⌘

1

< ⌘

2

, then J�K (, �, t) is defined as:
8
>>>>><

>>>>>:

tt if T J⌘1K (, �) t < T J⌘2K (, �) t, and
T J⌘1K (, �) t,T J⌘2K (, �) t 2 R

↵ if T J⌘1K (, �) t � T J⌘2K (, �) t, and
T J⌘1K (, �) t,T J⌘2K (, �) t 2 R

? otherwise

Boolean operators:
– If � = ¬', then J�K (, �, t) is tt if J'K (, �, t) = ↵, ↵ if J'K (, �, t) =

tt, and ? otherwise.

– If � = '

1

_'
2

, then J�K (, �, t) is tt if J'
1

K (, �, t) = tt_J'
2

K (, �, t) =
tt, ↵ if J'

1

K (, �, t) = ↵ ^ J'
2

K (, �, t) = ↵, and ?otherwise.

Temporal Operators:
– If � = '

1

U⇠� '2

, then J�K (, �, t) is defined as:
8
>>>>><

>>>>>:

tt if 9t0, t < t

0 ⇠ t+ � such that J'2K (, �, t0) = tt, and

8t00, t < t

00
< t

0
, J'1K (, �, t00) = tt

↵ if 8t0, t < t

0 ⇠ t+ � such that

J'1K (, �, t0) = ↵ ! 9t00, t < t

00
< t

0
, J'1K (, �, t00) = ↵

? otherwise

– If � = '

1

S⇠� '2

, then J�K (, �, t) is defined as:
8
>>>>><

>>>>>:

tt if 9t0, t� � ⇠ t

0
< t such that J'2K (, �, t0) = tt, and

8t00, t0 < t

00
< t, J'1K (, �, t00) = tt

↵ if 8t0, t� � ⇠ t

0
< t such that

J'1K (, �, t0) = ↵ ! 9t00, t0 < t

00
< t, J'1K (, �, t00) = ↵

? otherwise

Existential operator:
– If � = 9x ', then J�K (, �, t) is defined as:

8
<

:

tt if there exists a value r 2 R such that J'K (, �[x 7! r], t) = tt

↵ if for all r 2 R such that J'K (, �[x 7! r], t) = ↵

? otherwise

We will write (, �, t) |=
3

' when J'K (, �, t) = tt, and (, �, t) 6|=
3

' when
J'K (, �, t) = ↵. In what follows we will often write x 2 I as an abbreviated
form for I

min

< x ^ x < I

max

, and ⌘
1

= ⌘

2

for ¬(⌘
1

< ⌘

2

) ^ ¬(⌘
1

> ⌘

2

).

Preservation of RMTL-
R
Semantics. An immediate motivation for the choice of

defining a three-valued semantics for our logic fragment comes from the nature of
runtime verification, which evaluates timed sequences where it is not possible to
determine a definitive true or false value without analyzing the complete trace.
For instance, considering a prefix {

p

of a timed sequence {, we have that the
evaluation of the same formula in the models ({, �, t) and ({

p

, �, t) produces
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di↵erent truth values. Classic semantics cannot provide a common truth value
to make consistent incremental evaluations of the model, which is an important
feature for RV.

The semantic preservation of both truth and falsity for the three-valued logic
is defined using the following two relations: a partial relation � on {tt,↵,?}
defined by ? � tt, ? � ↵, ? � ?, tt � tt, and ↵ � ↵; and a partial relation
/ : R⇥R[{?R} defined by 0/?R, and n/m, with n,m 2 R, which gives a distinct
treatment to duration terms that evaluate to 0 in the standard semantics.

Definition 4. Let (, �, t) be a model. The three-valued semantics is said to
preserve the two-valued semantics i↵ the following rules hold:

1. For basic formulas containing the relation operator, for all terms ⌘
1

2 RMTL-
R

and ⌘
2

2 RMTL-
R
3

excluding minimum and maximum terms, T J⌘
1

K (, �) t /
T J⌘

2

K (, �) t holds and it implies that 0 /?R if ⌘
1

has the form
R
⌘

3

� and
T J⌘

3

K (, �) t < 0; and 0 / 0 otherwise.

2. For each basic formula � containing Boolean, temporal, and existential op-
erators, [(, �, t) |=

3

�] � [(, �, t) |= �] holds.

We will now formulate two auxiliary results required to prove the semantic
preservation of RMTL-

R
in RMTL-

R
3

. From a close examination of the minimum
and maximum term semantics, we have that these terms are indeed quantified
formulas, interpreted as a minimum or a maximum value that satisfies the quan-
tification, or as ?R when this minimum or maximum is nonexistent. First of all
we observe that the following axioms [21, p. 205] extend to our present setting:

A 1 ⌘1 �min

x2I

� ⇠ ⌘2 implies that there exists an x such that ⌘1 � x ⇠ ⌘2, x 2 I, and

� implies that for all y, y < x and ¬�.

A 2 ⌘1 �max

x2I

� ⇠ ⌘2 implies that there exists an x such that ⌘1 � x ⇠ ⌘2, x 2 I, and

� implies that for all y, y > x and ¬�.

Theorem 1. Let (, �, t) be a model, and �3 be a formula in RMTL-
R
3

. Then
[(, �, t) |=

3

�

3] � [(, �, t) |= f

t

(�3)].

Example 1 (Application of Durations). Let us now consider a system whose evo-
lution depends entirely on the occurrence of events, on evaluating propositions
over these events, and that all of its tasks have an associated fixed set of events.
Let �

m

be a formula that specifies the occurrence of the periodic release of re-
source events for a task in the system, and let  

m

be a formula specifying every
event triggered by that task. To monitor utilization and the release of timed
resources, we employ the formula,

�

m

!
Z

t

 

m

 �,

where t is the period of the periodic release of events, that is, their priority. Using
the two-valued setting, the incremental evaluation is not allowed. This is not the
case in our three-valued setting, since it allows the monitor to execute even when
an incomplete trace is provided and incrementally evaluates the formula until a
tt or ↵ verdict is obtained.
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4 Inequality Abstraction Using a Theory of Reals

A close examination of the semantics of RMTL-
R
3

reveals that the timed state se-
quence  and the logic environment � are independent parameters for evaluating
the truth value of formulas. This allows us to define a mechanism for introducing
isolation by splitting formulas in two parts using a Boolean connective, and then
analyzing one statically and the other at execution time.

The axiom system for the arithmetic of real numbers provided by Tarski [21]
can be used as an abstraction of inequalities in RMTL-

R
3

. Several properties
provided by this well-known fragment will be used to facilitate the removal of ex-
istential quantifiers, when properties expressed as formulas containing them are
monitored at execution time. From the Tarski–Seidenberg theorem [21] we have
that for any formula in first order logic with real arithmetic (R, <,+,⇥) contain-
ing an existential quantifier, there is an equivalent one without the quantifier.
Thus there exists a decision procedure for quantifier elimination over FOLR.

One of the most e�cient algorithms, with complexity 2-EXPTIME, is the
cylindrical algebraic decomposition later proposed by Collins [6,3]. To use it,
we require a mechanism to solve quantified formulas as well as formulas without
quantification, by applying several transformations on their Boolean connectives.
Let us now describe the constraints required for an RMTL-

R
3

formula to be
interpreted as a formula of FOLR, and describe the notion of isolated formula.

Definition 5 (Inequality Abstraction Constraint). Let �
3

be a RMTL-
R
3

.
�

3

is a formula in FOLR if it is free of duration terms, minimum/maximum
terms, temporal operators, and propositions.

Definition 6 (Quantifier Isolation). Let �3 be a formula in RMTL-
R
3

. We
say that �3 is an isolated formula if all propositions and temporal operators occur
outside the scope of quantifications.

Now, we require some axioms for isolating temporal operators and introduc-
ing logic variables in duration terms. Axioms A 3 and A 4 below describe how a
temporal formula can be split into two: a quantified formula not containing oc-
currences of temporal operators, and another formula not containing quantifiers.
Let �

<

be a formula in FOLR, and op 2 {^,_}. Axiom 5 states that a formula
containing a duration constrained in an interval can be transformed so the du-
ration is constrained by a logic variable with appropriate coupled constraints.
Intuitively, it reduces a duration term

R
⌘

� into
R
x

� with x = ⌘.

A 3
��
�

1
<

op1 �1

�
U

�
�

2
<

op2 �2

��
!

�
�

2
<

op2

�
¬(�2

<

) !
��
�

1
<

op1 �1

�
U �2

���

A 4 ((�
<

op1 �1) U �2) ! ((�
<

! true U �2) op1 �1 U �2)

A 5
R

⌘

x

�1 � ⌘1 ⇠ ⌘2 ! 9x
�
x = ⌘

x

^ ¬(x < 0) ^
R

x

�1 � ⌘1 ⇠ ⌘2

�

In addition, for a formula to be compliant with Definition 5 we also require a
technique for isolating propositions. We will not describe here axioms or strate-
gies for their application, and simply consider that some mechanism for formula
isolation is available, allowing a formula to be transformed into a disjunction or
conjunction of a quantified part on the left and a propositional part on the right.

Let us now see a practical application of these axioms.
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Require: a formula � in RMTL-

R

Ensure : a simplified formula �, a formula � 6< in RMTL-

R
without logic variables, and op a

Boolean operator

1 Function simplify inequalities (�) is

begin

2 If not Is Variable Free(�) then return �, tt, ^;
3 �

r

, E, f

E

 Replace Non Rigid Terms(Simplify minmax Terms(�));

4 �

<

,� 6<, op Isolate Quantifiers(�

r

);

5 �

smp

 Minimum Assignment(Cylindrical Decomposition(�

<

));

6 for ⌘

x

2 E do

begin

7 � get � of

R
⌘

� = f

E

(⌘

x

);

8 �

<s

,� 6<s

, op simplify inequalities (�);

9 replace f

E

(⌘

x

) in �

smp

with ⌘ if op = _ and �

<s

= tt or

with

R
⌘

� 6<s

otherwise

10 �

smp

 �

smp

op �

<s

end

11 return �

smp

, � 6<, op

end

Algorithm 1: Simplification of RMTL-
R
3

Inequalities

Example 2. Consider the formula 9x
R
min

x2I

�

2

�

1

⇠ ⌘, where I is some positive
real interval. By Axiom 5, we know that 9x x = min

x2I
�

2

^
R
x

�

1

⇠ ⌘ holds. Then

we get 9x 9y
�
x = y ^ y 2 I ^ (�

2

! (8z z < y ^ ¬�
2

)) ^
R
x

�

1

⇠ ⌘

�
by applying

Axiom 1. We proceed by removing the logic variables x, y and z via cylindrical
decomposition and substituting the duration terms accordingly, wich leads us

to the formula scheme
R {↵

n

}
�

1

⇠ ⌘

:=
R
↵

1

�

1

⇠ ⌘ _ · · · _
R
↵

n

�

1

⇠ ⌘, where
{↵

n

} is the set of all solutions that satisfy constrained formulas resulting from
the decomposition process.

It is clear from Example 2 that the formula can be as long as the cardinality
of {↵

n

}. To overcome this limitation some optimization techniques can be ap-
plied for checking the formula at runtime. One of them begins by reducing the
search space of the logical variables, constraining only the variable x with the
upper values of the sub-intervals when x has finite many discontinuities, or with
the maximum value that the variable x allows. Since we are using a real arith-
metic theory that admits existential quantification removal, a general method
to compute minimum satisfying assignments [7] can be employed. The order of
the quantifiers is extremely important for faster results when computing at exe-
cution time the set of values. Intuitively, the method begins by reorganizing the
universal quantifiers considering the same cost for each quantifier, in order to
find the minimum satisfying assignment for a certain formula.

Formulas and terms are of course defined in a mutually inductive way, so
any algorithm for formula simplification will have to follow this mutual recur-
sion structure. An algorithm can start from the leafs of a formula’s parse tree
and proceed up to the root (bottom-up), or conversely implement a top-down
analysis. The bottom-up approach is ine�cient, since each node will necessarily
be analyzed. To avoid this, we propose Algorithm 1, a branch-and-cut algorithm
for simplification of formulas containing quantified inequalities.

The algorithm begins by testing if a formula contains free logic variables or
existential quantifiers. If the formula can be simplified we proceed, otherwise



we return the input formula � ^ tt (Line 2). Next, the duration terms are re-
placed by new fresh variables in �, and minimum and maximum terms are trans-
formed into quantified inequalities. The function Simplify minmax Terms ap-
plies min/max term substitutions as provided by axioms 1, 2, and 5. The function
Replace Non Rigid Terms returns a triple composed of a formula �

r

contain-
ing the abstracted inequality, the set E of fresh logical variables, and a one-to-one
mapping f

E

from elements of E into formulas. The function Isolate Quantifiers

isolates propositions and temporal operators from the scopes of quantifiers. The
function Cylindrical Decomposition applies the algebraic method for cylindri-
cal decomposition of polynomials with a certain order over the logical variables,
and the function Minimum Assignment introduces the minimum satisfying as-
signment to reorder and discard quantifiers when possible.

For each term, the algorithm recursively calls the simplification function for
the formula given by the terms ⌘

x

and applies some substitutions (Lines 7 and 9).
The simplified formula �

smp

may contain terms of the form
R
x

�; for deciding
these we require an external procedure for incremental evaluation of durations,
where the bounds of x are known prior to evaluation, as in Example 2.

5 Computation of RMTL-

R
3 formulae

Given the definition of RMTL-
R
3

, we can derive an evaluation algorithm for
monitor synthesis. In what follows we will present the algorithm and study the
time complexity of the computation with respect to both trace and formula size.

We begin with a set of preliminary definitions. The set of timed sequences
is denoted by K, the duration of the timed state sequence  2 K is denoted
by d

(), and the set of logic environments is denoted by ⌥. Let B
4

be the set
{tt

4

,↵
4

,?
4

} [ {r} where r is a new symbol that will be used only for purposes
of formulae evaluation, and D the set R�0 [ {?R}. The function sub

K

: (K ⇥
⌥⇥R�0) ! R�0 ! K defines a timed sub-sequence constrained by the interval
]t, t + �], where t and � are real numbers to be used as parameters in sub

K

.
The function map

B

4 : B
3

! B
4

maps tt to tt
4

, ↵ to ↵
4

and ? to ?
4

; map

B
3 :

B⇥B
4

! B
3

maps (tt, r) to ?; (↵, r), (↵,↵
4

), and (tt,↵
4

) to ↵; and (↵, tt
4

) and
(tt, tt

4

) to tt. We will employ a left fold function defined in the usual way.
From close examination of the operators, we derive the corresponding Compute

(¬)

and Compute
(_) evaluation functions with time complexity constant in the num-

ber of timed sequence symbols, and linear in the size of the formula. Let us
consider the functions Compute

(⌘)

:: (K⇥⌥) ! R! � ! D and Compute
'

::

(K⇥⌥⇥R�0) ! �3 ! B
3

for the evaluation of U
<

and <, and the term
R
.

Operator U

<

. Given formulas �
1

, �
2

and � 2 R�0, the formula �

1

U

<�

�

2

is evaluated in a model (, �, t) by the function Compute
(U

<

)

: (K ⇥ ⌥ ⇥
R�0) ! R�0 ! �3 ! �3 ! B

3

, defined in Figure 1. We report here only
on the computation function Compute

(U

<

)

; the remaining functions would be
Compute

(U

=

)

for punctual until, Compute
(S

<

)

for the non-punctual dual opera-
tor, and Compute

(S

=

)

for the punctual dual operator. These operators have at
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ev

i

al

:: B
3

! B
3

! B

4

ev

i

al

b

1

b

2

,

8
><

>:

map

B
4

b

2

if b

2

6= ↵

map

B
4

b

1

if b

1

6= tt and b

2

= ↵

r otherwise

ev

b

al

::

�
K⇥⌥⇥ R�0

�
! �

3 ! �

3 ! B

4

! B

4

ev

b

al

m �

1

�

2

v ,
(
ev

i

al

�
Compute

'

m �

1

� �
Compute

'

m �

2

�
if v = r

v otherwise

ev

fold

al

:: (K⇥⌥⇥ R�0

)! �

3 ! �

3 ! K! B

4

ev

fold

al

(, �, t) �

1

�

2

{ , fold

⇣
�v (p, (i, t

0
))! ev

b

al

(, �, t

0 � ✏) �
1

�

2

v

⌘
r {

ev

C

al

:: (K⇥⌥⇥ R�0

)! R�0

! �

3 ! �

3 ! K! (B⇥B

4

)

ev

C

al

(, �, t) � �

1

�

2

{ ,
⇣
d

()  t + �, ev

fold

al

(, �, t) �

1

�

2

{
⌘

Compute

(U<)

m � �

1

�

2

,
(
map

B
3

⇣
ev

C

al

m � �

1

�

2

(subK m �)

⌘
if � � 0

↵ otherwise

ev

<

al

:: R! R! R

ev

<

al

val

1

val

2

,
(
val

1

< val

2

if val

1

2 R and val

2

2 R
? otherwise

Compute

(<)

m h

1

h

2

, ev

<

al

⇣
Compute

(⌘)

m h

1

⌘⇣
Compute

(⌘)

m h

2

⌘

1

'(,�)

:: (K⇥⌥)! R�0

! �

3 ! {0, 1}

1

'(,�)

(, �) t � ,
(
1 if Compute

'

(, �, t) � = tt

0 otherwise

ev

⌘

al

:: (K⇥⌥)! �

3 ! K! R�0

ev

⌘

al

(, �) � { , fold

�
�s, (p, (i, t

0
))! t

0 ·
�
1

'(,�)

(, �) t

0
�

�
+ s

�
0 {

Compute

(

R
)

(, �) t a � ,
(
ev

⌘

al

(, �) � (subK (, �, t) a) if a � 0

?R otherwise

Fig. 1: Evaluation of the operators U
<

and <, and of duration terms

most two new branches. Given an input  with size n



, and m a measure of the
number of temporal operators in ', we obtain from the structure of the computa-
tion the lower bound of time complexity 2(n



)2 ·m(')�4(n


)2+n



·m(')�2(n


).

Operator <. Given two terms ⌘
1

, ⌘

2

2 �, the formula ⌘
1

< ⌘

2

is evaluated
relative to a model (, �, t) by the function Compute

(<)

: (K⇥⌥⇥R�0) ! � !
� ! B

3

, also shown in Figure 1. The time complexity of this computation is
constant, since any formula containing only the relation operator < cannot have
the size of the formula greater than one or consume any input symbols.

Term
R
. The evaluation of a duration term

R
a

� in the model (, �, t) is per-
formed by the function Compute

(

R
)

: (K ⇥ ⌥) ! R�0 ! R ! �3 ! D, again
defined in Figure 1. It has linear time complexity in the size of the timed se-
quence, and constant time complexity in the formula size. + and ⇥ terms are
directly mapped into their respective computational operations. The complexity
of those operations is directly related to the number of terms. Given a formula
' and a measure m

⌘

describing the number of operators + and ⇥ occurring in
a formula ', we have a linear lower bound of time complexity in m

⌘

(').



Function Compute

(⌘)

(, �) t h :: (K⇥⌥)! R! �! D is

case h of

↵ : eval

↵

↵

h

1

+ h

2

:

⇣
Compute

(⌘)

m h

1

⌘
+

⇣
Compute

(⌘)

m h

2

⌘

h

1

⇥ h

2

:

⇣
Compute

(⌘)

m h

1

⌘
⇥
⇣
Compute

(⌘)

m h

2

⌘

Z
h

1

� : Compute

(

R
)

(, �) t

⇣
Compute

(⌘)

(, �) t h

1

⌘
�

end

end

Function Compute

'

m � :: (K⇥⌥⇥ R�0

)! �

3 ! B
3

is

case � of

p : eval

p

m p – base case

¬� : Compute

(¬)

m � – Boolean operators

�

1

_ �
2

: Compute

(_)

m �

1

�

2

�

1

U

<

� �

2

: Compute

(U

<

)

m � �

1

�

2

– temporal operators

�

1

S

<

� �

2

: Compute

(S

<

)

m � �

1

�

2

⌘

1

< ⌘

2

: Compute

(<)

m ⌘

1

⌘

2

– relational operator

end

end

Algorithm 2: Computation of RMTL-
R
3

formulas (Compute
'

)

Time complexity of the evaluation algorithm. We are now in a position to present
the recursive top-level evaluation Algorithm 2 excluding punctual temporal op-
erators, using the previous definitions for auxiliary computations. Let m be a
measure for _, <, temporal operators, and non-rigid terms. Given the complexity
of these formulas and term operators, and knowing that all temporal operators
have the same complexity as the until operator, we have by semantic definition
that any combination of formulas has higher complexity. As such, the complexity
of Algorithm 2 is polynomial in the input size of the formula and the timed state
sequence, as given by the lower bound identified above.

6 Experiments

Our approach uses an o✏ine algorithm for formula simplification, and an online
evaluation procedure that can be directly applied for the synthesis of runtime
monitors. We will now show an example of application of Algorithm 1 for mon-
itoring the budget of a set of resource models (RMs); then we will present the
empirical validation of the complexity results for Algorithm 2.

RMs are mechanisms to ensure time isolation between tasks. In the case of
periodic RMs [20], they are defined by a replenishment period and a budget
supply. The budget supply is available as time passes, and is replenished at each
period by the resource model. Elastic periodic RMs are resource models contain-
ing elastic coe�cients (similar to spring coe�cients in physics), describing how
a task can be compressed when the system is overloaded, allowing RV of impre-
cise computation. Naturally, the coe�cients need to be constrained (linearly or
non-linearly) before execution. Intuitively, the idea is to check the coe�cients
according to the polynomial constraints using our static phase, and provide the
simplified formulas for the further runtime evaluation phase.

Let us now extend Example 1 for multiple RMs, considering without loss of
generality the case of two RMs. We will use indexed formulas �

m

i

,  
m

i

with
0  i < 2, and let ↵

i

,↵

ai

be pre-defined constants. For measuring their budgets
we could use the following invariant:
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n�1^

i=0

�

m

i

^ ⇤
<1⇤

  
n�1^

i=0

�

m

i

!
!
 
0 

n�1X

i=0

c

i

⇥
Z

↵

i

 

m

i

< ↵

b

^ r

m

^ ⌃
=⇡

n�1^

i=0

�

m

i

!!
,

where c
i

are coe�cients that have di↵erent weights for each RM, compliant with

the restrictions r

m

constrained in the interval [0,↵
b

[, ↵
b

2 R�0, and
n�1V
i=0

�

m

i

corresponds to the periodic release of the RMs with period ⇡. A more detailed
description can be found in [17]. The problem is then to find values for c

1

, c

2

satisfying the constraints r
1

:= 1

250

(245� 444x+200c
1

2) = c

2

, r
2

:= 1� c

1

= c

2

,
or r

3

:= 1� c

1

2 = c

2

, as shown in Figure 2, based on two duration observations
over  

m

i

formulas.

0 0.5 1
0

0.5

1

c

0

c

1

r

1

r

2

r

3

Fig. 2

We will use Algorithm 1 for discarding possible inconsis-
tencies, and decompose the formulas into sub-formulas that
are free of quantifiers. Let us simplify the previously defined
invariant for two resource models where the coe�cient c

0

is
existentially quantified and constrained by r

2

. After some
transformations on the formula we obtain

�

1

6< := �

m

0

^�
m

1

^¬(tt U
<1⇤ ((�

m

0

^�
m

1

^¬⌃
=⇡

(�
m

0

^ �
m

1

))_(�
m

0

^�
m

1

^¬�1
<

))),

such that �1
<

:= 9c
0

0  c

0

⇥ a + c

1

⇥ b < ↵

b

^ 1 � c

0

= c

1

^ c

0

� 0 ^ c

1

� 0
holds. Duration terms have been replaced by the logic variables a and b. Since
Axioms 3 and 4 cannot be used here for isolation purposes, we have to substitute
the inequality formula by a constant ⇥. We will then have an isolated formula,
and apply cylindrical algebraic decomposition to determine if �1

<

is satisfied. If
it is, then we directly replace ⇥ by tt, otherwise we have the bounds that satisfy
�

1

<

. For this case, we obtain (a = 0 ^ b � 10 ^ 0  c

1

<

10

b

) _ (a = 0 ^ 0  b <

10^ 0  c

1

 1)_ (a � 10^ a�10
a�b < c

1

 1^ 0  b < 10)_ (b � 10^ 0 < a^ a <

10 ^ 0  c

1

<

a�10
a�b ) _ (0 < a < 10 ^ 0  b < 10 ^ 0  c

1

 1). This is applied
recursively for all the terms that have been substituted by fresh logic variables.
In this particular case there are no subsequent iterations. After these steps the
simplified bounds are ready to be evaluated by the online method.

Let us now discuss the complexity of Algorithm 2 and establish an empirical
comparison with the lower bounds presented previously. We observe that the
generation of nested durations is more critical on average than the nesting of
temporal operators. This result matches the semantics of both terms and for-
mulas, since the duration terms can integrate any indicative function provided
for any trace, unlike the until operator that requires a successful trace to max-
imize its search. Consider Figure 3a, where the boxes i

1

to i

6

are respectively
the intervals ]10j , 10j+1] for all j 2 [1, 7[. They represent the number of cycles
performed by folding functions. The results confirm that as the number of until
operators stabilizes and the number of duration operators increases, the com-
putation time also increases at a higher rate due to the presence of durations.
This occurs for generated uniform formulas and traces; deep nesting of until op-
erators and nested durations is unlikely to occur in hand-written specifications
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Fig. 3: Experimental validation of the complexity results

(it has not been clearly confirmed whether they are useful for real-life appli-
cations). The experiments confirm the theoretical complexity bounds obtained
earlier (Figure 3b). We have performed the experiments on an Intel Core i3-
3110M at 2.40GHz CPU, and 8 GB RAM running Fedora 21 X86’64; the source
code is available in http://webpages.cister.isep.ipp.pt/

~

anmap/rv15/.

7 Discussion and Future Work

We have developed a new approach for the RV of hard real-time systems, where
duration properties play an important role, and incremental evaluation is re-
quired. The closest approaches to ours are that of Nickovic and colleagues [14],
who provide synthesis algorithms for MTL specifications, and the work of Pike
and colleagues [18], who have developed a framework based on a formal stream
language embedded into Haskell, together with a synthesis mechanism that gen-
erates monitors to run in a distributed way. However, none of these previous
approaches is su�ciently expressive to allow reasoning about duration proper-
ties, which is the novelty of our work.

The first level of operation of our approach consists of o✏ine analysis for the
simplification of formulas by means of quantifier removal techniques; the second
is an online evaluation algorithm for RV purposes. This algorithm is polynomial
in the sizes of the trace and of the formula, as confirmed by our experiments,
which also reveal that the duration terms are on average computationally more
demanding than the temporal operators. We restrict syntactically and semanti-
cally the two-valued MTL-

R
logic, with a three-valued interpretation. Incremen-

tal evaluation allows our technique to handle millions of samples, with formulas
containing hundreds of operators. It remains to be seen whether extensions of
LTL that are strictly more expressive than MTL, such as TPTL [4] could be
used as an alternative for dealing with durations.
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A Appendix

Proof of Lemma 1 (sketch). Let (, �, t) |= p behave as a step function along
t for any �, and

T

sZ
1

�

{
(, �) t = 1� t.

We proceed by contradiction on the claim that the function 1
'(,�)

has finitely
many discontinuities for any t 2 R. In the case when � is a formula of the form

¬(
Z

1

� < 1 � a) ^ ¬(
Z

1

� > 1 � a)

then t is directly related to the variable a, when the timed state sequence  has
finite length 1. If a has infinitely many discontinuities along t then 1

'(,�)

also
contains infinitely many discontinuities. Considering the above relation between
t and the logic variable a, we can only introduce discontinuities along t by a.
However, we can only introduce many discontinuities in R if we have an infinite
formula. Consequently, from a close examination of the semantics of the logic,
we can conclude that t can be constrained only by linear combination using the
operators + and ⇥, and that any formula to be evaluated needs to be finite,
since the discontinuities in terms can only be provided by the relation <.

We skip the proof for the remaining cases, since no more relations between
t and logic variables can be allowed semantically, other than those originating
in duration terms in certain circumstances. To conclude the proof, we have that
no infinitely many discontinuities exist, and the integral is always bounded in
[0, 1], thus 1

'(,�)

is a step function for ' and for all , �, and t. Since, 1
'(,�)

is a step funtion, then any step function is Riemann integrable. ⇤

Lemma 2. Let �3
<

be a formula in RMTL-
R
3

constructed with the relation op-
erator. Moreover let f

t

: �3 ! � be some surjective function. Then there exists
a formula �

<

in RMTL-
R

such that �
<

= f

t

(�3
<

).

Proof of Lemma 2. We have to prove that there exists a function f that
removes the minimum and maximum terms of the formulas �3

<

, and the result
is a formula �

<

2 RMTL-
R
. The proof follows by induction on the structure of

the formulas �
<

.
Case �

<

= ⌘

1

�min

x2I
� ⇠ ⌘

2

with ⌘
1

= 0 and � = +. By Axiom 1, there exists

an x such that 0+x ⇠ ⌘

2

, x 2 I, and � implies that for all y, y < x and ¬�. We
skip the case when ⌘

1

6= 0, and also the case of �
<

= ⌘

1

�max

x2I
� ⇠ ⌘

2

, since the

sketch is the same.
Case �

<

= ⌘

1

� min

x2I
� ⇠ ⌘

2

� min

x2I
�. By the fourth axiom of the second

axiomatization of Tarski [21, p. 205], we have that there exists a z such that
⌘

1

�min

x2I
� ⇠ z and z ⇠ ⌘

2

�min

x2I
�. For the other cases where minimum terms



are commuted with maximum terms, the same reasoning is applied. Then, there
exists a function f

t

that converts a formula containing minimum and maximum
terms into a formula without these terms, by adding at most three new quanti-
fiers. ⇤

Proof of Theorem 1. We proceed by induction over the structure of the for-
mula �3. For Boolean, temporal and existential operators the proof follows from
inductive hypotheses and from monotonicity of these operators with respect to
the partial order � on {tt,↵,?} following Definition 4 (2). The remaining case
is the relation operator. For formulas �3 containing ↵, x,

R
⌘

�, and � terms, the
claim follows from inductive hypotheses and by the monotonicity of these terms
with respect to the partial order /, following Definition 4 (1). If terms are of
the form min

x2I
' or max

x2I
', then by Lemma 2 there exists an equivalent formula

without minimum and maximum terms. Thus, the claim holds for all cases. ⇤
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