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Abstract. RDF has become a standard format to describe resources in
the Semantic Web and other scenarios. RDF data is composed of triples
(subject, predicate, object), referring respectively to a resource, a prop-
erty of that resource, and the value of such property. Compact storage
schemes allow fitting larger datasets in main memory for faster process-
ing. On the other hand, supporting efficient SPARQL queries on RDF
datasets requires index data structures to accompany the data, which
hampers compactness. As done for text collections, we introduce a self-
indezr for RDF data, which combines the data and its index in a single
representation that takes less space than the raw triples and efficiently
supports basic SPARQL queries. Our storage format, RDFCSA, builds
on compressed suffix arrays. Although there exist more compact repre-
sentations of RDF data, RDFCSA uses about half of the space of the raw
data (and replaces it) and displays much more robust and predictable
query times around 1-2 microseconds per retrieved triple. RDFCSA is 3
orders of magnitude faster than representations like MonetDB or RDF-
3X, while using the same space as the former and 6 times less space than
the latter. It is also faster than the more compact representations on
most queries, in some cases by 2 orders of magnitude.

1 Introduction

The amount of data publicly available on the Web has been growing steadily over
the years. Many valuable resources are included in this gigantic repository, but
in many cases they are underutilized because of the lack of a common storage
format that allows those resources be automatically identified and accessed. The
Web of Data is an effort to structure the data published by resource providers in
a way that it can be discovered and used under a standard protocol in automatic
form. The Web of Data builds on the principles of the Semantic Web [9].

The Resource Description Framework (RDF) [19] provides a simple and pow-
erful way to structure and link data. It uses triples (subject, predicate, object) to
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model knowledge, in such a way that a value (object) for a property (predicate)
of a given resource (subject) is represented. The adoption of RDF by the W3C
as the recommended format to publish information [1] has boosted the growth
of RDF repositories and RDF management systems that make up the basis of
the current Web of Data. Those systems not only store the RDF data, but they
also support queries on it via the SPARQL query language [23].

The increasing interest in the management of RDF repositories (also called
RDF stores) is witnessed by the various storage schemes proposed in recent years,
which go from those based on relational databases [25] to native solutions such as
BITMAT [6], RDF-3X [22], HEXASTORE [26], MonetDB [2], or WaterFowl [12].
As the RDF repositories grow in size, scalability issues challenge the use of RDF
storage schemes [18]. A recent work (K2Triples) [4] succeeded at reducing both
the space usage of previous techniques and their performance to answer basic
SPARQL queries: the so-called basic graph patterns that make up the primitive
SPARQL operations and the algorithms for merge and join.

In this paper we introduce another storage scheme we call RDFCSA. 1t is
based on Sadakane’s Compressed Suffiz Array (CSA) [24], which can represent
a text collection in compressed space while supporting pattern searches on it.
We modify the CSA so as to index a set of triples in a way that all the basic
graph patterns of SPARQL boil down to pattern searches on the modified CSA.
The result is a representation that uses about twice the space of K2Triples, but
it is faster in most queries, up to 2 orders of magnitude in some cases, which
include the most common ones in real-life SPARQL queries [5]. Compared to
other representations, RDFCSA uses about the same space as MonetDB and 6
times less than RDF-3X, and it is 3 orders of magnitude faster than both.

2 Basic Concepts

2.1 State of the art: K2Triples

A RDF dataset can be seen as a set R of triples (s,p,0) where s, p, and o
are respectively a subject, a predicate, and an object. It can also be seen as a
connected graph where subjects and objects are nodes that are connected via
arcs labeled by a given predicate [19]. Figure 1 shows an example with (not
really) fictitious data about the SPIRE conference and some attendants. In the
left part, we show the source triples and the underlying RDF graph.

K2Triples [4] tackles the scalability problem of RDF datasets by focusing in
reducing their space usage. The authors used two main areas:

(a) Reducing the size of the representation of the strings in the triples through
a compressed string dictionary [20, 6, 14]. Each original triple is then repre-
sented by a triple of integer ids provided by the dictionary. The right part
of Figure 1 depicts the dictionary organization used, and the final set of
id-based triples.

(b) Representing the id-based triples in a compact (and indexed) way. The fact
that the number of predicates (n,) in a RDF dataset is typically very small
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is exploited by K2Triples, which resorts to vertical partitioning [3]: for each
predicate, it stores the subjects that are connected to each object. Each such
binary relation is generally sparse, so it is represented with a compact k2-tree
data structure [10], which performs well on those relations. The k2-tree of
each predicate can efficiently list the subjects related to a given object or the
objects related to a given subject.

Simple graph patterns are the most basic SPARQL queries. They are triples
where each component can be fully specified as a string (S, P, or O) or left
unspecified or “unbounded” (7S, ?P, or ?70). Such a pattern matches all triples
where the specified strings match. For example, in Figure 1, pattern (7.5, attends,
SPIRE) returns the 3rd, 4th and 5th triples listed on “Original RDF Triples”.

Due to the vertical partitioning of K2Triples, patterns with a fixed predicate,
that is, (S, P,0), (7S, P,0), (S, P,?70), and (7S, P, 70), can be efficiently solved
within a unique k?-tree, whereas patterns with unbounded predicate ((S,?P,O),
(?S,?P,0), (S,7P,70), and (75,7P,?0)) would involve accessing all the n,
k2-trees. The K2Triples structure partially overcomes this issue by adding two
auxiliary indexes, SP and OP, that respectively keep which subjects (s) or ob-
jects (0) occur in a triple related to each predicate p. Indexes SP and OP yield
large speedups, while typically costing 20%-30% further space.

K2Triples is shown to improve the space of the best state-of-the-art alterna-
tives by a factor of 1.5-12, whereas it matches or outperforms them all in simple
graph patterns [4].

2.2 Compressed suffix arrays

Given a string S[1,n] over alphabet X = [1,0], the suffix array A[l,n] is a
permutation of [n] so that S[A[i],n] is the ith lexicographically smallest suffix
in S. Thus the range of suffixes starting with a search pattern «[1,m] (i.e., the
occurrences of « in S) can be binary searched in A in time O(mlogn).
Sadakane’s CSA [24] represents S and A using two structures (plus others
that we ignore in this paper). The first is a bitmap D[1,n], where the 1s mark
the first suffixes starting with each distinct symbol in A (i.e., D[i] = 1 iff i =1
or S[Ai]] # S[A[i — 1]]). The second CSA structure is the array ¥[1,n|, where

(SPIRE, held on, London) \80}1 }London } [P]1]attends 2,3,1)
(London, capital of, UK) 2|SPIRE 2|capital of| (1,2,5)
?’%v 4 v Speaker inland> (A.Gionis, attends, SPIRE) [5 T3[A.Gionis 3lheldon ||| (3.1.2)
/1— es,/7 @ (R.Raman, attends, SPIRE) ZIM.Laimas 4]lives in (5,1,2)
"_6 /,> . é’j_g (M.Lalmas, attends, SPIRE) 5/R.Raman 5|position (4,1,2)
S R (M.Lalmas, lives in, UK) - 6|works in (4,4,5)
s (M.Lalmas, works in, London) © i i':n'c_':":aker 4.6.1)
I & (AGionis, lives in, Finland) mlas (34.3)
“ % <. e (R.Raman, lives in, UK) (5,4,5)
@ “heldon (R.Raman, position, inv-speaker) Dictionary Encoding (5,5,4)
Id-based|
RDF Graph Original RDF Triples | Triplets

Fig. 1. Example of RDF graph and dictionary encoding in K27Triples. SO entries in
the Dictionary represent terms that act as both subjects and objects in some triples.
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vli] = A7'[(A]i] mod n) + 1]. That is, if Afi] = j points to the suffix S[j,n],
then A[W[i]] = j 4+ 1 points to the next text suffix, S[j + 1,n].

In this paper we assume that every symbol in X' appears at least once in S.
Then S[A[i]] = rank:(D,i), where rank;(D,i) is the number of 1s in D[1,].
Moreover, S[A[i] + 1] = S[A[¥[i]]] = rank; (D, ¥[i]), and in general S[A[i] + j] =
rank; (D, ¥7[i]). Operation rank can be solved in constant time after building
an o(n)-bit structure on D [11]. Therefore, D and ¥ are sufficient to extract any
string S[A[é], A[¢{] +m — 1] in time O(m). As a result, the binary search on A can
be simulated on D and ¥ in the same O(mlogn) time, and the first £ symbols
of any matching suffix can be extracted in O(¢) time as well. Array ¥ can be
stored in nHy(S)+0(nlog Hy(S)) < nlogo+0O(nloglog o) bits while supporting
constant-time access, where Hy(S) is the zero-order empirical entropy of S [24].
Array ¥ is compressible because it is formed by ¢ increasing subsequences, which
can be differentially encoded using §-codes. By giving special codes to the runs of
consecutive 1s in the differences, the space gets closer to higher-order entropies
of S [21]. Sampled ¥ values at regular intervals yield fast random access to W.

Our RDFCSA is based on the integer-based CSA (iCSA)? [13], which is a
variant Sadakane’s CSA that is optimized for large (integer-valued) alphabets.
The iCSA reaches the best compression when using truncated Huffman coding
of differences and run lengths.

3 RDFCSA: A Compressed Suffix Array for RDF

An RDF collection is a set R of triples (s, p, 0) where s, p, and o are respectively
a subject, a predicate, and an object. We use the same dictionary encoding as
in previous work [4] so that from now on the triple components s, p, and o are
regarded as integer ids in the ranges s € [1,n;], p € [1,n,], and o € [1,n,)].

3.1 Structure

The first step to build our RDFCSA is to create an ordered list with the n triples
from R, and regarding it as a sequence S;4[1,3n] with 3n elements. Since the
order is not relevant in a set of triples, we sort them by object, then by predicate
and finally by subject. We obtain a sequence of integers S;q[1,3n] = (s1,p1, 01,
§2,P2,02,...,85n,Pn, On>.

To have disjoint subalphabets X, X, and X, for the n, subjects, the n,
predicates, and the n, objects, we set an array gaps[0,2] = [0,ns,ns + np) and
convert sequence Siq[1, 3n] to S[1,3n], where S[i] = Siq[i]+gaps[(i—1) mod 3]).
Sequence S ranges over alphabet X = [1,n + n, + n,), where values [1,n;] are
reserved to subjects, [ns + 1,ms + nyp| to predicates, and the rest to objects. We
can obviously recover the original triples from S. Then, we build an {CSA on S.

Due to our alphabet mapping, every subject is smaller than every predicate,
and this in turn is smaller than every object. Then, the suffix array A of S will
have three ranges: A; = A[l,n|, A, = A[n+1,2n] and A, = A2n + 1,3n]

3 http://vios.dc.fi.udc.es/indexing/wsi/
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where each range points to suffixes starting with a subject, a predicate, or an
object, respectively. Array ¥ also has three separate ranges. Entries in ¥[1, n] will
contain values in the range [n+ 1, 2n] (corresponding to the range of predicates).
Entries in ¥[n + 1, 2n] will contain values in the range [2n + 1,3n] (of objects).
Finally, entries in ¥[2n+1, 3n] will contain values in the range [1, n] (of subjects).

In a regular CSA, if Afi], for i € [2n + 1,3n], points to the object (third
component) of the kth triple of S (i.e., A[i] = 3k), then j = ¥[i] will indicate the
position such that A[j] points to the subject (first component) of the (k + 1)th
triple in S (i.e., A[j] = 3k+1). This is the key feature that allows traversing the
string S virtually using V.

For our purposes, it is more useful that ¥ cycles around the components of
the same triple, instead of advancing to the next one. The RDFCSA modifies
array ¥ so that values in ¥[2n + 1, 3n] point not to the subject of the next triple
in S, but to the subject of the same triple. Given the way we have sorted the
triples in S, it turns out that A[i] = 3(: — 1) + 1, and therefore all we have to
do to make ¥ cycle through the same triples is to set ¥[i] «— ¥[i] — 1 for all
i€2n+1,3n] (or ¥[i] + n if ¥li] =1).

With this modified ¥ we can start at the position A[i] pointing to any place
inside a triple (s,p,0) and recover the triple by successive applications of ¥.
For example, if A[i] points to p, then p = ranki(D,i), o = rank, (D, ¥]i]), and
s = ranky (D, ¥[¥i]]). If we take ¥ once more we return to i = ¥[P[¥[i]]]. In
particular, we can retrieve the kth triple of S by starting the process from A[i],
which we know points to the subject because i € [1,n]. This property will also
allow us reduce any simple graph pattern query to the search for a short pattern
in S using the CSA, and then extract the contents of the resulting triples.

Figure 2 shows the final structure of a RDFCSA created over the ten triples
included in Figure 1. In this case we have n = 10, ny, = 5, n, = 6, and n, = 5.
The first of the sorted set of source triples is S;4[1,3] = (1,2,5), the second is
Sia[4, 6], and so on. By adding gaps|0, 2] to the triples in S;; we obtain S[1, 30].
We show the suffix array A built on S and the structures D and ¥ that make
up the RDFCSA (¥ is already modified from the original array, Wyyig, to cycle
through each triple). We mark the boundaries of the three ranges [1,10],[11, 20],
and [21, 30]. We verify that entries in A[1, 10] point to positions in S[3k + 1],
those in A[11,20] to S[3k + 2], and those in A[21,30] to S[3k]. For example,

27 28 29
w\1\2\5\2\3\1\3\1\2\3\4\3\4\1\2\4\4\5\4\6\1\5\1\2\5\4\5\5\5\4\

3595 gas i ls  SI)=Sylil+ gaps((i-1) mod 3
‘1‘7‘16‘ ‘8‘12‘ ‘6‘13‘ \9\14\ ‘6‘13‘ ‘9‘16‘ [11]12]5 [ 6 [13]5 ]9 [16]5 [10]15
/71 2‘\ 3 1" 13 17 18 19 20 21 22 23 24 25 26 27 28 29 30

sub]ects - predlcales objects

A1) 13 (16|19 |22 |25|28 (8 |14(23 i’zj 5 [11[17]26]29]20| 6 |21] 9 15|24 12]30 (3 ]18]27
D1 |1 ] t+totorrofofr{ofo|1]1]1]olol1]sfstefrfolol1]11]0]0
¥ (147151116 [12[17 |20 [13 |18 |19 23 |24 | 25 |28 21 26(29]30|27]22|2 |7 |3 |5 |8 |4 |10]1]8 |9
Whig |14 15 |11 [16 (1217 [20 |13 |18 |19 |23 |24 |25 |28 |21 |26 (29 (30|27 [22]|3 |8 [4 |6 |9 |5 [1 |2 |7 [10

IN
=~/
S}

B
o

vSo!

Fig. 2. Structures involved in the creation of a RDFCSA for the graph in Figure 1.
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(ranky(D, 1), rank, (D, ¥[1]), rank, (D, ¥[¥[1]]) = (1,7, 16) recovers the triple in
S[1,3]. Also, the third source triple S;4[7, 9] can be recovered by doing S;4[7,9] =
(S[7] — gaps[0], S[8] — gaps(1], S[9] — gaps[2]).

In the RDFCSA, the modified array ¥ is represented as in the iCSA [13].
Bitvector D uses a fast rank structure that uses 0.375n bits, also as in the iCSA.
We will also need operation select:(D, j), which finds the position of the jth 1
in D. It is implemented by a binary search on the rank directories.

We note that enforcing the property ¥3[i] = i on our RDFCSA is analogous
to the more general permuterm index [17]. They index a set of strings as if they
were circular, so that patterns of the form a5 can be found by searching for the
substring 8$a, where $ is the string terminator. However, the permuterm index
is built on an FM-indez [15], which on large alphabets like our [1, ns+ny, +n,| is
implemented on a wavelet tree [16]. This implementation poses a time overhead
factor O(log(ns + np +n,)) for the operation equivalent to computing ¥, which
renders the FM-index inferior to the CSA on large alphabets [13]. We checked
this by using the best iSSA variant from [13] to represent sequence S. We tuned
iSSA to use the same space as RDFCSA (around 60% the size of S regarded as
32-bit integers). Query time to solve (S, P, O) patterns was around 2.5 — 4 times
slower than in RDFCSA. Newer alternatives to wavelet trees on large alphabets
are only slightly better when implementing FM-indexes [8]. This is why we opt
for implementing the technique on top of the iCSA for the case of RDF triples.

3.2 Supporting basic graph pattern queries in RDFCSA

Searching for triple patterns is the base to support more complex SPARQL
queries on an RDF store. We first show how the 8 primitive operations (.5, P, O),
(7S, P,0), (S,7P,0),(S, P,70),(?S,?7P,0),(S,?P,?0), (1S, P,?70), (1S,?P,?0)
can be solved on RDFCSA. Then we discuss some RDF-specific optimizations.

The pattern (?5,7P,70) is treated differently because it retrieves all the
triples in the dataset (thus it is not really useful as a query). If needed, it can be
solved by retrieving every ith triples as described above. The other 7 patterns
will be solved by an initial search followed by a traversal to recover the contents
of the matching triples.

Binary iCSA search for triple patterns: As explained, the iCSA can run a
binary search for the range A[l,r] pointing to the suffixes that start with any
pattern a1, m], so that o appears in S at positions A[é] for ¢ € [I,7]. Then, it
can use ¥ to recover the symbols S[A[i], %] for any such i.

In our case, we can solve query (S, P,0) by searching for «a[l,3] = SPO,
thus determining if it exists in the dataset (I = r) or not (I > r). Further, we
can solve queries (S, P,?0) and (7S5, P,O) by searching for o[l,2] = SP and
a[l,2] = PO, respectively. Because ¥ cycles over the triples, we can retrieve the
resulting triples in either case, starting from each i € [I, r]. Further, we can also
solve queries (S, 7P, O) by searching for a[l,2] = OS, since ¥ regards the triples
as circular strings. When only S, P, or O are specified, we must simply search
for af1,1] = S, a[l,1] = P, or a[l,1] = O. We give an example of each case:
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— (S, P,0): We set a[l,3] =[S + gaps[0], P + gaps[1], O + gaps[2]], and obtain
the range [I, 7] with the i{CSA binary search. If [ = r then (S, P,0) is in the
set, otherwise it is not.

— (S,7P,0): We set a[1,2] = [O + gaps|[2], S + gaps[0]], and find the interval
[I,7] with the iCSA. The number of answers is r — [ + 1. For each i € [I,7],
we return the triple (S, rank, (D, ¥[¥[i]]) — gaps[l], O).

— (78, P,70): We set a[1,1] = [P+ gaps[1]], and find the interval [I, 7] with the
iCSA (note that this does not require binary search on ¥: [ = select; (D, a[1])
and r = select1(D, «[l] + 1) — 1). The number of answers is » — [ + 1 and
for each i € [, r], the triple (rank, (D, ¥[¥[i]]) — gaps[0], P, rank, (D, ¥[i]) —
gaps|2]) is recovered.

By using binary search on the iCSA, all the triple pattern queries cost O(r —
[+ logn), where r — [ 4+ 1 is the number of occurrences retrieved. In practice,
the compression of ¥ introduces important space/time tradeoffs. If the number
of triples retrieved is large, the cost of the binary search is negligible. However,
it becomes relevant when only one or a few triples are recovered (e.g., no triple
recovering is needed for pattern (S, P, O)).

Our first optimization on the original iCSA aims at improving the accesses
to ¥ needed to retrieve the triples. Once [I,r] is determined, we always have to
compute ¥[i] and ¥[¥[i]] for all i € [I,r] (except on the pattern (S, P,0)). We
have sped up the access to a range ¥[l,r] by sequentially decompressing that
range of W. Therefore, we only need to access once the sample preceding ¥[l]
and reach position /; all the subsequent values are immediately decoded. This is
especially fast if we are inside a run of consecutive values of ¥. The remaining
accesses to ¥ are random and are not be improved.

The other optimizations aim at decreasing the cost of the binary search for
[[,7]. Two alternatives strategies, D-select+forward-check and D-select+backward-
check, are discussed below.

D-select+forward-check strategy: During the binary search, the compari-
son between « and S[A[i], n] might be decided with the first integer compari-
son. Obtaining S[A[i]] = rank;(D,i) does not require the application of ¥. At
some moment, however, we start having S[A[i]] = a[1] and must compute ¥ to
compare «[2] with rank,(D,¥[i]). This isolated access to ¥ can be expensive.
Instead, we can proceed as follows. Consider the triple pattern (S, P,0). We
first find the intervals Ry = [ZS—l—gaps[O]aTS—i-gaps[O]]v R, = [lP-i-gaps[l]vTP-‘rgaps[l]]a
and Ry, = [lo4gaps[2]s TO+gaps[2]]- These are computed with select on D: [. =
select1 (D, ¢) and 1, = select;(D,c+ 1) — 1. Since ¥ is increasing within those
intervals, for each ¢ in Ry we can check if ¥[i] € R,. The values i that do not
pass this check can be discarded. For those that do, we still have to check if
U[¥[i]] € R,, in which case we report an occurrence of the searched triple.

Figure 3 (left) illustrates this scenario, where R, = [10,12], R, = [200, 300],
and R, = [600,601]. Neither ¥[10] nor ¥[12] map into range [200,300], only
¥[11] does. In addition ¥[¥[11]] maps into the range [600, 601] corresponding to
object 261. Hence, we report an occurrence of the triple (8,4,261).
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s=8 P=4 0=261 0=261
[10 11 121 180 ,[200 , 230 23;/232 300301 %00601602 [70 11 12/1 180 , |_00 230 231 232, 300]301 , 550 ﬁooeﬂsoz
I"’0 aofaod] | [ | [ Joolooofeoe [ [ [ ] ] I“’0 & 3°‘| | \ | \ @6"0\@ \ | \ \ L
A T = A LMK

Fig. 3. D-select+forward-check (left) and D-select+backward-search (right) strategies
for pattern (S, P,0) = (8,4,261).

Computing all the values ¥[R;] is much cheaper than computing | R,| isolated
values of ¥, because of the differential compression of ¥. In general, there are
more objects than subjects, and many more subjects than predicates. Thus, we
expect that |R,| < |Rs| < |Rp|. If the interval R, is small enough, this technique
may be faster than a standard binary search. Since our ¥ is cyclic, we can start
the checking process in interval R, R,, or R,, so we start from the shortest one.

This procedure is not only applicable to pattern (S, P, O). If we have one un-
bounded term, we obtain the intervals R, and R, corresponding to the bounded
terms x and y. Then, we use the same procedure to check whether after applying
¥ to the positions ¢ in the starting interval R, we fall into R, or not. For pattern
(7S, P,O) we set © = P, y = O; for pattern (S,?P,0) we set x = O, y = S; and
for pattern (S, P,?70) we set x = S, y = P. Finally, recall that patterns with
only one bounded element are directly solved using select on D.

D-select+backward-check strategy: Note those ¢ in R4 that pass the check
in the previous strategy form a subinterval of R, thus we can use binary search
to find its limits instead of verifying every i € Rs one by one. The best way to
proceed is known as the backward-search strategy [24]. We show how it can be
carried out when searching for pattern (S, P, O). We start in interval R, = [l,, ro],
and since ¥ is increasing within interval R, = [l,,, rp,], we binary search the limits
of the subinterval Ry, = [lpo, Tpo] C R, such that ¥[i] € R, for all i € Ry,. If the
subinterval is empty, no match exists. Otherwise, we repeat the same process to
find the limits of the subinterval R0 = [lspo, 'spo] C Rs that contain the entries
i € R such that ¥[i] € Rp,. The final answer is [I,7] = Rgpo.

In Figure 3 (right) we can see that starting in range R, = [600, 601], when
we binary search the interval ¥[200,300] for the values that map into range
[600,601], only the entry ¥[231] remains. Therefore, we obtain the subinterval
Ry, = [231,231]. Now, we binary search the range ¥[10, 12] for the range that
maps to 231 and find that ¥[11] = 231. Then the final interval is Ry, = [11,11].

This strategy is also applicable to patterns (S, P, ?0), (S,?P,0), (7S, P,0).
In the first case we find the subinterval R, C R, that maps via ¥ inside R,. In
the second, the subinterval R,s C R,. In the third, the subinterval R,, C R,.

4 Experimental Evaluation

Our experiments ran on an Amd Phenom-X4-955@3.2GHz CPU, with 8GB
DDR2 RAM. The operating system was Ubuntu 12.04 (kernel 3.2.0-31-generic)
and the compiler used was gce 4.6.3 (option -09). We measure elapsed times.
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We evaluated the space/time performance of RDFCSA over Dbpedia®, “the
nucleus for a Web of Data” [7]. The size of this dataset is around 34GB, contain-
ing 232,542,405 triples (2,790,508,860 bytes when regarded as 32-bit integers).
The number of different subjects, predicates, and objects is 18,425,128; 39,672;
and 65,200,769; respectively. We compared RDFCSA with K2Triples, MonetDB,
and RDF-3X. The recent WaterFowl [12] was not included. Yet, since it reports
space 10 times smaller than RDF-3X and similar times [12], we expect it would
obtain worse query times than K2Triples (see comparison with RDF-3X below)
and similar space. Other systems do not run over a dataset of this size [4].

Figure 4 shows the space/time tradeoff of these RDF representations. For
K2Triples we show two points, corresponding to K2Triples and K2Triples+ [4]
(the latter includes the indexes SP and OP that speed up searches with un-
bounded predicate, see Section 2.1) and we used the tuning recommended by
the authors. In the case of RDFCSA, the lines connect four points that cor-
respond to sampling ¥ every ty values: ty € {16,32,64,256}. MonetDB and
RDF-3X store the index on disk; we measure the space they use to operate in
memory, and run them in warm state, as in previous work [4].

Results clearly show that K2Triples (and even K2Triples+) use less space
than RDFCSA (around a half in the case of K2Triples). Still, RDFCSA uses
around half of the space of a raw representation of the triples (and can reproduce
them, apart from supporting searches). This is about the same main memory
space used by MonetDB, and 6 times less than RDF-3X.

On the other hand, RDFCSA obtains much more stable times than K2Triples,
below 1-2 psec per occurrence in all cases with a reasonable sampling. RDFCSA
is in all cases at least 3 orders of magnitude faster than MonetDB and RDF-3X
(the only exception is pattern (7S, P, 70), where RDF-3X is only twice as slow).

K2Triples still obtains the best time for (S, P,O) patterns, as it only needs
to accesses the single cell (S,0) of the k2-tree associated to the predicate P,
and this is very fast on the k?-tree. Instead, this is the worst case for RDFCSA,
which must search for a pattern of length 3 and return at most one occurrence.

We can also see that, even though the performance of K2Triples is very poor
when solving (5, 7P, O) queries, the indexes SP and OP included in K2Triples+
help solve (S, 7P, O) queries very efficiently. This is because they discard many
of the n, k2-trees that should be accessed otherwise. Only those predicates P
that are related to subject S and also with object O must be considered.

On the remaining queries RDFCSA is typically faster than K2Triples and
K2Triples+. In particular, for (S, P,?0), (S,?P,70), and (?S,7P,O), RDFCSA
is up to 2 orders of magnitude faster. The first two of these are the most common
queries in real-life SPARQL queries, according to an empirical study [5]. In the
case of (7S, P,?0) and (7S, P,O), RDFCSA outperforms K2Triples+ only when
the denser samplings are used.

With respect to the optimizations discussed in Section 3, we can see that D-
select+forward-check (RDFCSA-f in the plots) outperforms D-select+backward-
check (RDFCSA-b in the plots) in all the triple patterns with one or no un-

4 http://downloads.dbpedia.org/3.5.1/
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Fig. 4. Space/time tradeoff on the primitive SPARQL queries. Space is measured
as the percentage of the size of the (in-memory) indexes with respect to the size
of the source RDF triples represented as a sequence of 32-bit integers (the dictio-
nary size is not considered here). Query time is the average (in psec per occurrence)
over 500 triple pattern queries of each type obtained from K2Triples authors web-
site, http://dataweb.infor.uva.es/queries-k2triples.tgz. Note the logscale in the
main plots; the zooms use linear scale.
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bounded terms (with the exception of (7S, P,O), where it performs very badly
because it must sequentially traverse the generally long interval R,). Except
on the pattern (S, P,O), however, the improvement is not significant, and D-
select+backward-check should be preferred for its more stable and guaranteed
performance (of course, we can decide which strategy to use depending on the
predicted performance, which can be easily estimated from the sizes of the inter-
vals Rs, R,, and R,). In most cases (for example in (S, P, 0)), those two strate-
gies reduce the time of the regular iC'SA binary search to a half or less. In other
patterns, such as in (S, 7P, O) those optimizations are the key to match (and even
outperform) the performance of K2Triples+. Finally, in queries (75,?7P,0) and
(S,7P,?0) we can see the slight advantage obtained by performing two select
operations instead of running the plain binary search with patterns of length 1
(for this experiment, the binary search strategy did not use that speedup).

5 Conclusions and Future Work

We have introduced RDFCSA, a competitive structure to self-index RDF data.
It builds on an adaptation of the compressed suffix array of Sadakane [24], which
is modified to index the RDF triples as cyclic strings, and then various domain-
specific optimizations are studied on top of it.

RDFCSA uses about half the space required by the raw data and replaces
it. It offers stable and predictable times to solve basic graph patterns (on which
more sophisticated SPARQL queries are built), around 1-2 usec per retrieved
triple. Compared to literature standards, RDFCSA uses 6 times less space and
runs most queries about 1000 times faster than RDF-3X. It uses about the same
space as MonetDB, but this is even slower than RDF-3X. There are represen-
tations using around half the space of RDFCSA [4], their performance is less
robust, being up to two orders of magnitude slower than RDFCSA, especially
on the queries that appear most often in real applications.

Of course, RDFCSA handles only basic SPARQL queries, whereas RDF-
3X and MonetDB are much more complete. Still, we believe this kernel can be
extended to a wider functionality without sacrificing space and taking advantage
of its speed when implementing more complex operations. We plan to start by
extending RDFCSA functionality to handle the join and merge operations of
SPARQL. As for the kernel functionality itself, we plan to further study the
compressibility of the modified ¥ array (improvements considered in previous
work [13] were already tried without success) and faster search algorithms for
the particular case of triple patterns.
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