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Specification and analysis of open-ended systems with
CARMA?

Jane Hillston1 and Michele Loreti2,3

1 Laboratory for Foundations of Computer Science, University of Edinburgh
2 Dipartimento di Statistica, Informatica, Applicazioni “G. Parenti”, Università di Firenze

3 IMT, Lucca

Abstract. CARMA is a new language recently defined to support quantified spec-
ification and analysis of collective adaptive systems. It is a stochastic process
algebra equipped with linguistic constructs specifically developed for modelling
and programming systems that can operate in open-ended and unpredictable en-
vironments. This class of systems is typically composed of a huge number of in-
teracting agents that dynamically adjust and combine their behaviour to achieve
specific goals. A CARMA model, termed a “collective”, consists of a set of com-
ponents, each of which exhibits a set of attributes. To model dynamic aggrega-
tions, which are sometimes referred to as “ensembles”, CARMA provides com-
munication primitives based on predicates over the exhibited attributes. These
predicates are used to select the participants in a communication. Two commu-
nication mechanisms are provided in the CARMA language: multicast-based and
unicast-based. A key feature of CARMA is the explicit representation of the en-
vironment in which processes interact, allowing rapid testing of a system under
different open world scenarios. The environment in CARMA models can evolve
at runtime, due to the feedback from the system, and it further modulates the
interaction between components, by shaping rates and interaction probabilities.

1 Introduction

Collective adaptive systems (CAS), comprised on multiple agents working in collab-
oration, competition or a combination of both, are predicted to form the underlying
infrastructure for the next generation of software systems and services. Their transpar-
ent and pervasive nature makes it imperative that the behaviour of such systems should
be thoroughly explored and evaluated at design time and prior to deployment. In this
paper we present a novel modelling language which has been developed to capture the
behaviour of such systems and support their analysis through a variety of techniques.

CARMA (Collective Adaptive Resource-sharing Markovian Agents) is a stochastic
process algebra-based language which means that it represents systems as interacting
agents which undertake actions; actions are assumed to have a duration which is repre-
sented as a random variable, governed by an exponential distribution. The quantitative
information represented by action durations, extends the reasoning power of the lan-
guage beyond functional analysis to assess the correct behaviour of the system, to non-
functional properties such as performance, availability and dependability. Such analysis
? This work is partially supported by the EU project QUANTICOL, 600708.



supports quantitative prediction and checking of system behaviour, including ensuring
that resources will be efficiently and equitably shared — an important and strongly
desirable feature of infrastructures. Moreover, the underlying interleaving Markovian
semantics of CARMAsupports a form of local synchrony as discussed in [1]. Indepen-
dent actions proceed at their own pace, and this autonomy is lost only when agents are
constrained to act together through an explicit interaction.

The compositional nature of the language allows components capturing the be-
haviour of agent types to be defined and then combined to build up the behaviour of
the system. The interaction between agents is represented by explicit communication,
both multicast-based and unicast-based, and through implicit communication. More-
over a distinguishing feature of CARMA is the inclusion of an environment, represented
as a distinct element of the model, which captures the operating principles of the world
in which the agents exist. This environmental influence includes controlling the rate
and effectiveness of communication between agents. Moreover, the environment itself
can evolve during the lifetime of the system, reflecting the adaptive operating condi-
tions of the system. The environment also has a state, which can be used to represent
implicit asynchronous communication between agents, analogous to pheromone trails
in ant systems. This is broadly in-keeping with the architecture proposed by Weyns et
al. proposed in [2].

In this paper we present an overview of the language constructs of CARMA, includ-
ing the representation and role of the environment. The style of presentation is intended
to be intuitive and the interested reader can find the formal semantics of CARMA in [3].
Specifically, we illustrate the features of the language in a running example, a Smart
Taxi System. In this system we consider a set of taxis operating in a city, providing
service to users; both taxis and users are agents, or components within our system. In
order to manage the system and allocate user requests among the operating taxis, our
city is subdivided into a number of patches arranged in a grid over the geography of
the city. The users arrive randomly in different patches, at a rate that depends on the
specific time of day. After arrival, a user makes a call for a taxi and then waits in that
patch until they successfully engage a taxi and move to another randomly chosen patch.
Unengaged taxis move about the city, influenced by the calls made by users.

The rest of the paper is organised as follows. In the next section we give a brief
overview of related modelling techniques for CAS. Section 3 gives a detailed account
of the CARMA language and demonstrates its use to model the Smart Taxi System.
Section 4 presents the result of quantitative analysis of the Smart Taxi System, illus-
trating the types of measures that can be derived from CARMA models. Previous work
on modelling the stochastic dynamic behaviour of a system under the influence of an
environment is discussed in Section 5, and we conclude in Section 6.

2 Related work

Stochastic process algebras, such as PEPA [4], MTIPP [5], EMPA [6], Stochastic π-
Calculus [7], Bio-PEPA [8], MODEST [9] and others [10, 11], have been available to
support quantitative analysis of systems for approximately two decades. Whilst some
offer support for large populations of agents, they have not been designed with CAS in



mind, and typically only support synchronous unicast communication. In recent years
there have been languages targeted towards systems consisting of populations, collec-
tives or ensembles of agents [12–14], which feature attribute-based communication and
explicit representation of locations and the development of CARMA has been informed
by these.

SCEL [12] (Software Component Ensemble Language), has been designed to sup-
port the programming of autonomic computing systems. The language distinguishes
between autonomic components representing the collective members, and autonomic-
component ensembles representing collectives. Each component is equipped with an
interface, consisting of a collection of attributes, describing different features of com-
ponents. There is an underlying knowledge base associated with each component and
rich forms of reasoning on attributes are supported. Attributes from the knowledge base
are used by components to dynamically form ensembles and to select partners for in-
teraction. The stochastic variant of SCEL, called StocS [15], has been used to inves-
tigate a number of different stochastic and probabilistic semantics. Moreover, SCEL
has inspired the development of the core calculus AbC [16] that focuses on a minimal
set of primitives that defines attribute-based communication without the rich underly-
ing knowledge base, and investigates their impact. Communication among components
takes place in a broadcast fashion, with the characteristic that only components satisfy-
ing predicates over specific attributes receive the sent messages, provided that they are
willing to do so.

PALOMA [13] is a process algebra that takes as starting point a model based on
located Markovian agents each of which is parameterised by a location, which can be
regarded as an attribute of the agent. The ability of agents to communicate depends on
their location, through a perception function, which can be used to define the range of a
communication. Examples include local – agents must be co-located, all – communica-
tion is global, or use of predicates. This can be regarded as an example of a more general
class of attribute-based communication mechanisms. Both multicast and unicast com-
munication are supported [17], but in both cases only agents who enable the appropriate
reception action have the ability to receive the message. The scope of communication
is thus adjusted according to the perception function. PALOMA is supported by an
individual-based Markovian semantics, a population-based Markovian semantics and a
continuous semantics in the style of [18].

The attributed pi calculus [14] is an extension of the pi calculus [19] that supports
attribute-based communication, and was designed primarily with biological applica-
tions in mind. As in the languages discussed above, processes may have attributes and
these are used to select partners for interaction, but note that communication is strictly
synchronisation-based and binary. The language is equipped with both a deterministic
and a Markovian semantics, and in the Markovian case the rates may depend on the
attribute values of the processes involved. The possible attribute values are defined by
a language L , and the definition of the attributed pi calculus is parameterised by L .
The language L also defines the possible rates and constraints that can be applied to
attributes, giving the possibility to capture diverse behaviours within the framework
when rates and probabilities of interaction are all dependent only on local behaviour
and knowledge.



CARMA supports both unicast and broadcast communication, providing locally syn-
chronous, but globally asynchronous communication. This richness is important to en-
able the spatially distributed nature of CAS, where agents may have only local aware-
ness of the system, yet the design objectives and adaptation goals are often expressed in
terms of global behaviour. Representing these rich patterns of communication in clas-
sical process algebras or traditional stochastic process algebras would be difficult, and
would require the introduction of additional model components to represent buffers,
queues and other communication structures. Moreover the inclusion of a distinct en-
vironment, allows many possibilities including rates of behaviour based on the global
state, or observed data from a system.

Modelling frameworks and languages have also been developed within the multi-
agent community, but generally with a focus on specification, qualitative or functional
analysis, rather than quantitative assessment of the modelled system e.g. [20–23]. For
example, Helleboogh et al. consider the requirements for modelling multi-agent sys-
tems, with a particular emphasis on the modelling of physical applications via simula-
tion [20]. As with CARMA, the authors make a distinction between the simulated envi-
ronment and the simulating environment, which is transparent to the modeller. However,
in the work presented in [20], the distinction between the simulated environments and
the agents within it is not strong (cf. the framework of Weyns et al. [2]). In CARMA we
prefer to have a clear separation of concern which allows the same collective of agents
to be easily considered in the context of different environments. Moreover, whereas
in CARMA agents explicitly interact, in Helleboogh et al.’s approach the behaviour of
agents is specified in a declarative way with the environment playing a coordinating
role in the evolution of agents.

3 CARMA in a nutshell.

In this section we present the CARMA language and its specific features. To simplify the
presentation, and to help the reader to appreciate CARMA features, we will consider a
simple running scenario. The latter is a Smart Taxi System used to coordinate the activi-
ties of a group of taxis in a city. In our scenario we assume that the city is subdivided in
patches forming a grid. Two kinds of agents populate the system: taxis and users. Each
taxi stay can either stay in a patch, waiting for user requests, or move to another patch.
Users randomly arrive at different patches with a rate that depends on the specific time
of day. After arrival, a user waits for a taxi and then moves to another patch.

The smart taxi scenario represents well the typical scenarios modelled with CARMA.
Indeed, a CARMA system consists of a collective (N) operating in an environment (E ).
The collective consists of a set of components. It models the behavioural part of a sys-
tem and is used to describe a set of interacting agents that cooperate to achieve a given
set of tasks. The environment models all those aspects which are intrinsic to the con-
text where the agents under consideration are operating. The environment also mediates
agent interactions.

Example 1. In our running example the collective N will be used to model the be-
haviour of taxis and users, while the environment will be used to model the city context
where these agents operate.



In CARMA collectives are defined in a style that is borrowed from process algebras.
We let COL be the set of collectives N which are generated by the following grammar:

N ::= C
∣∣ N ‖ N C ::= 0

∣∣ (P,γ)

where C denotes a component while N ‖ N represents the parallel composition of two
collectives.

A component C can be either the inactive component, which is denoted by 0, or a
term of the form (P,γ), where P is a process and γ is a store. A term (P,γ) models an
agent operating in the system under consideration: the process P represents the agent’s
behaviour whereas the store γ models its knowledge. The latter is a function which maps
attribute names to basic values. In the rest of this paper we let:

– ATTR be the set of attribute names a, a′, a1,. . . , b, b′, b1,. . . ;
– VAL be the set of basic values v, v′, v1,. . . ;
– Γ be the set of stores γ,γ1,γ

′, . . ., i.e. functions from ATTR to VAL, of the following
form:

{a0 = v0, . . . ,an = vn}

Example 2. To model our smart taxi system in CARMA we need two kinds of compo-
nents. One for each of the two groups of agents involved in the system, i.e. taxis and
users. Both the kind of components use the local store to publish the relevant data that
will be used to represent the state of the agent.

The local store of components associated to taxis contains the following attributes:

– loc: identifies current taxi location;
– occupancy: ranging in {0,1} describes if a taxi is free (occupied = 0) or engaged

(occupied = 1);
– destination: if occupied, this attribute indicates the destination of taxi journey.

Similarly, the local store of components associated with users contains the following
attributes:

– loc: identifies user location;
– destination: indicates user destination.

The behaviour of a component is specified via a process P. We let PROC be the set
of processes P, Q,. . . defined by the following grammar:

P,Q ::= nil
∣∣ A[X ]

∣∣ P | Q
where nil denotes the inactive process, A[X ] denotes process automaton A in state X ,
while P | Q denotes the behaviour obtained from the concurrent execution of P and Q.
Each process automaton, and its states, are defined as follow:

process A =

X0 : [π0
i ]act0

0 .R
0
0 + · · ·+[π

k0
i ]actk0

0 .Rk0
0

...
...

...
Xn : [πn

i ]actn
n .R

n
n + · · ·+[πkn

n ]actkn
n .Rkn

n
endprocess



Above, π
j

i is a guard, act j
i are CARMA actions, while R j

i can be a state in {X0, . . . ,Xn},
the inactive process nil or the term kill. A process A[Xi], that is active in a component
with store γ , can execute any of the actions actki

i such that π
j

i is satisfied by γ . When
one enabled action act j

i is executed, process A[Xi] terminates, when R j
i = nil, evolves to

A[Xl ], when R j
i = Xl and destroys the enclosing component when R j

i = kill.
In CARMA processes can perform four types of actions: broadcast output (α?[π]〈−→e 〉σ ),

broadcast input (α?[π](−→x )σ ), output (α [π]〈−→e 〉σ ), and input (α [π](−→x )σ ), where:

– α is an action type in the set of action types ACTTYPE;
– π is an predicate;
– x is a variable in the set of variables VAR;
– −→· indicates a sequence of elements;
– σ is an update of the form:

{a0← re0, · · · ,ak← rek}

where all the attributes ai are distinct and re is a random expression defined by the
following syntax:

re ::= now | v | x | this.a | δVAL | re bop re | uop re | f (re0, . . . ,ren)

where now is used to refer to current system time, δVAL is a probability distribution
over VAL4, bop and uop are binary and unary operators, while f denotes an n-ary
function over expressions.
In the rest of this paper we will say that an expression er is ground if it does not
contain any variable, while it is deterministic if no probability expression δVAL
occurs in re. Moreover, we will use e to denote a deterministic expression.

The admissible communication partners in each of these actions are identified by
the predicate π . This is a predicate on attribute names. Note that, in a component (P,γ)
the store γ regulates the behaviour of P. Primarily, γ is used to evaluate the predicate
associated with an action in order to filter the possible synchronisations involving pro-
cess P. In addition, γ is also used as one of the parameters for computing the actual rate
of actions performed by P. The process P can change γ immediately after the execution
of an action. This change is brought about by the update σ . The update is a function
that when given a store γ returns a probability distribution over Γ which expresses the
possible evolutions of the store after the action execution.

The broadcast output α?[π]〈−→e 〉σ models the execution of an action α that spreads
the values resulting from the evaluation of expressions −→e in the local store γ . This
message can be potentially received by any process located at components whose store
satisfies predicate π . This predicate may contain references to attribute names that have
to be evaluated under the local store. These references are prefixed by the special name
this. For instance, if loc is the attribute used to store the position of a component, action

α
?[distance(this.loc, loc)≤ L]〈−→v 〉σ

4 For any denumerable set X , we let Dist(X) denote the set of probability distributions over X
while δX is a generic element in Dist(X)



potentially involves all the components located at a distance that is less than or equal
to a given threshold L. The broadcast output is non-blocking. The action is executed
even if no process is able to receive the values which are sent. Immediately after the
execution of an action, the update σ is used to compute the (possible) effects of the
performed action on the store of the hosting component where the output is performed.

To receive a broadcast message, a process executes a broadcast input of the form
α?[π](−→x )σ . This action is used to receive a tuple of values −→v sent with an action α

from a component whose store satisfies the predicate π[−→v /−→x ]. The transmitted values
can be part of the predicate π . For instance, α?[x > 5](x)σ can be used to receive a
value that is greater than 5.

The other two kinds of action, namely output and input, are similar. However, differ-
ently from broadcasts described above, these actions realise a point-to-point interaction.
The output operation is blocking; in contrast to the non-blocking broadcast output.

Example 3. We are now ready to describe the behaviour of taxis and users. Behaviour
of a user is modelled via process User defined below:

process User =
W : call?[>]〈this.loc〉.W

+
take[loc== this.loc]〈this.dest〉.kill

endprocess

Process User has only one state, W , that can either call or take a taxi. To call a taxi, a
User[W ] executes a broadcast output over call to all taxis. A unicast output over take is
executed to take a taxi. This action is used to send user destination (this.dest) to a taxi
that shares the same location as the user. To identify the target of this action, prediate
(loc == this.loc) is used. The latter is satisfied only by those components that have
attribute loc equal to this.loc. Here prefix this is used to refer to actual values of local
attributes. After this action, user disappears (he/she enters the taxi).

The behaviour of a taxi is described via process automaton Taxi:

process Taxi =
F : take[>](d){dest← d,occupied← 1}.G

+
call?[this.loc 6= loc](d){dest← d}.G

G : move?[⊥]〈◦〉{loc← dest,dest←⊥,occupied← 0}.F
endprocess

Process Taxi has two state: F and G. When in state F the taxi is available and can either
take a user in the current location or receive a call from another patch. In the first case
an input via take is performed and the user destination is received. In the second case,
the location where a user is waiting for a taxi is received. In both the cases, the received
location is used, after action execution, to update taxi destination (dest← d). However,
after take input, the taxi also records that it is occupied (occupied← 1).

When in state G, process Taxi just executes a spontaneous broadcast over action
move. Indeed, no process can receive this message since predicate ⊥ is used. This



models taxi movements. After the movement the taxi position is updated and the taxi is
ready to take users in the new location.

To model the arrival of new users, the following process automaton is used:

process Arrivals =
A : arrival?[⊥]〈◦〉.A

endprocess

Process Arrivals has a single state A where spontaneous action arrival is executed. This
process is executed in a separated component where attribute loc indicates the location
where users arrive. The precise role of this process will be clear in a few paragraphs
when the environment will be described.

CARMA collectives operate in an environment E . This environment is used to model
the intrinsic rules that govern, for instance, the physical context where our system is
situated. An environment consists of two elements: a global store γg, that models the
overall state of the system, and an evolution rule ρ . The latter consists of three functions
that are used to express the probability to receive a message by a component, compute
the execution rate of an action, determine the updates to the environment on both the
global store and the collective. Syntax of an environment E is the following:

environment γ [
µp
µr
µu

]

Element µp is used to compute the probability to receive a message. Syntax of µp
is the following:

prob{
π0,α0→ e0
...
πkp ,αkp → ekp

default e
}

In the above, each πi is a boolean expression over the stores of the two interacting
components, i.e. the sender and the receiver, and while αi denotes the action used to
interact. In πi attributes of sender and receiver attributes are referred to using sender.a
and receiver.a, while the values published in the global store are referenced by using
global.a. A receiver with store γ1 receives a message sent by a component with store γ2
under global store γ with probability p if there exists an index i such that:

γ1,γ2,γ |= πi and JeiKγ1,γ2,γ = p

or, if none of the πis are satisfied, p = JeKγ1,γ2,γ . This probability value may depend
on the number of components in a given state. For this reason in the environment the
syntax of expressions is extended by considering terms of the form:

re ::= · · · | #(Π ,π)



where #(Π ,π) denotes the number of components in the system satisfying predicate π

where a process of the form Π is executed. In turn, Π is a pattern of the following form:

Π ::= ? | A[?] | A[X ] | Π |Π

Example 4. One can use #(Taxi[F ], loc== `) to count the number of available taxis at
patch `. This expression can be used as follows:

prob{
>, take→ 1

#(Taxi[F ],loc==sender.loc)

>,call?→ plost
default 1

}

Above, we say that each taxi receives a user request with a probability that depends
on the number of taxis in the patch. Moreover, call? can be missed with a probability
plost . All the other interactions occur with probability 1.

Function µr is similar and it is used to compute the rate of an unicast/broadcast
output. This represents a function taking as parameter the local store of the component
performing the action and the action type used. Note that the environment can disable
the execution of a given action. This happens when the function µr (resp. µp) returns
the value 0. Syntax of µr is the following:

rate{
π0,α0→ e0
...
πkr ,αkr → ekr

default e
}

Differently from µp, in µr guards πi are evaluated by considering only the attributes
defined in the store of the component performing the action, referenced as sender.a, or
in the global store, whose elements are accessed via global.a.

Example 5. In our example rate can be defined as follow:

rate{
>, take→ λt
>,call?→ λc
>,move?→ mtime(now,sender.loc,sender.dest)
>,arrival?→ atime(now,sender.loc)
default 0

}

We say that actions take and call? are executed at a constant rate; the rate of a
taxi movement is a function of actual time (now) and of starting location and final
destination. Rate of user arrivals depends on current time now and on location loc.



Finally, the function µu is used to update the global store and to install a new col-
lective in the system. Syntax of µu is:

update{
π0,α0→ σ0,N0
...
πku ,αku → σku ,Nku

}
Like for µr, guards in function µu are evaluated on the store of the component

performing the action and on global store. However, the result is a pair (σi,Ni). Within
this pair, σi identifies the update on the global store whereas Ni is a new collective
installed in the system. If none of the guards are satisfied, or the performed action is
not listed, the global store is not changed and no new collective is instantiated. In both
cases, the collective generating the transition remains in operation. This function is
particularly useful for modelling the arrival of new agents into a system.

Example 6. In our scenario function update is used to model the arrival of new users
and it is defined as follows:

update{
>,arrival?→{ },(User[W ],{loc= sender.loc,dest= destLoc(now,sender.loc))

}

When action arrival? is performed a component associated with a new user is created in
the same location as the sender (see Example 3). The destination of the new user will
be determined by function destLoc that takes current system time and starting location
and returns a probability distribution on locations.

To extract data from a system, a CARMA specifications also contains a set of mea-
sures. Each measure is defined as:

measure m = e;

Example 7. In our scenario, we could be interested in measuring the number of waiting
users at a given location. These measures can be declared as:

measure waitingAt` = #(User[?], loc== `)

When the system is simulated a time-ordered sequence of values is generated for each
measure specified.

4 The Smart Taxi System: Simulation and Analysis

In this section we present the Smart Taxi System in its entirety and demonstrate the
quantitative analysis which can be undertaken on a CARMA model.

In the previous section we have shown how in CARMA a system specification in
fact consists of two parts: a collective and an environment. One of the main advantages



//Component definitions
process User =

W : call?[>]〈this.loc〉.W
+
take[loc== this.loc]〈this.dest〉.kill

endprocess

process Taxi =
F : take[>](d){dest← d,occupied← 1}.G

+
call?[this.loc 6= loc](d){dest← d}.G

G : move?[⊥]〈◦〉{loc← dest,dest←⊥,occupied← 0}.F
endprocess

process Arrivals =
A : arrival?[⊥]〈◦〉.A

endprocess

//Environment definitions

#(Taxi[F ], loc== `)

prob{
>,take→ 1

#(Taxi[F ],loc==sender.loc)

>,call?→ plost
default 1

}

rate{
>,take→ λt
>,call?→ λc
>,move?→ mtime(now,sender.loc,sender.dest)
>,arrival?→ atime(now, loc)
default 0

}

update{
>,arrival?→{ },(User[W ],{loc= sender.loc,dest= destLoc(now,sender.loc))

}

measure waitingAt` = #(User[?], loc== `)

function mtime(t, l1, l2) = λstep ·max{|π1(l1)−π1(l2)|+ |π2(l1)−π2(l2)|,1};
function atime(time, l) = λa · 1

|L| ;
function destLoc(time, l) = if (l == (1,1)) then rand(L− l) else (1,1);

collective{
(Taxi[F ], loc= (0,0) , dest=⊥ , occupied= 0) ‖

· · · ‖ (Taxi[F ], loc= (i, j) , dest=⊥ , occupied= 0) ‖
· · · ‖ (Taxi[F ], loc= (2,2) , dest=⊥ , occupied= 0) ‖
(Arrval[A], loc= (0,0)) ‖ · · · ‖ (Arrval[A], loc= (2,2))}

Fig. 1. The CARMA model of the Smart Taxi System



of this approach is that one can evaluate the same behaviour (collective) under different
models for the enclosing environment.

In this section we consider a scenario with a grid of 3×3 patches, a set of locations
(i, j) where 0 ≤ i, j ≤ 2, and we instantiate the environment of the smart taxi system
with respect to two different specifications for the environment:

Scenario 1: Users arrive in all the patches at the same rate;
Scenario 2: At the beginning users arrive with a higher probability to the patches at the

border of the grid; subsequently, users arrive with higher probability in the centre
of the grid.

In both the scenarios users in the border will use the taxi to go to the centre, while
users collected in the centre will use the taxi to go to any other location (the destination
is probabilistically selected). In both the scenarios we assume that the movement rate
is constant and is proportional to the number of patches to be traversed to reach the
destination. In both the considered scenarios the collective has the structure reported
below:

(Taxi[F ], loc= (0,0) , dest=⊥ , occupied= 0) ‖
· · · ‖ (Taxi[F ], loc= (i, j) , dest=⊥ , occupied= 0) ‖
· · · ‖ (Taxi[F ], loc= (2,2) , dest=⊥ , occupied= 0) ‖
(Arrivals[A], loc= (0,0)) ‖ · · · ‖ (Arrivals[A], loc= (2,2))

Above we consider k = 5 taxis in each location.
To instantiate the environment for Scenario 1 considered above, we have just to

instantiate functions mtime and atime of Example 5 and function destLoc of Example 6:

function mtime(t, l1, l2) = λstep ·max{|π1(l1)−π1(l2)|+ |π2(l1)−π2(l2)|,1};
function atime(t, l) = λa · 1

|L| ;
function destLoc(t, l) = if (l == (1,1)) then rand(L− l) else (1,1);

Above λstep is the rate needed to move from one location to an adjacent one, π1 (resp.
π2) is a function that returns the first (resp. the second) element of a pair, λa is the arrival
rate of a user in the system,L is the set of the considered localities while rand is used
to select randomly an element in the set received as parameter. The complete CARMA
specification of our system is presented in Figure 1. The results of the simulation of the
resulting CARMA model is reported in Figure 2. In the left side of the figure we can
observe the average number of users that are waiting for a taxi in the location (1,1)
and in one location in the border of the grid, namely (0,0)5. In the right hand side of
the same figure we can present the proportion of free taxis that are waiting for a user
at location (1,1) and (0,0), respectively, and the fraction of taxis that are moving from
one patch to another without a user (these are the taxis that are relocating after a call
has been received). The remaining taxis (not shown) are engaged by users.

5 Due to the symmetry of the considered model, any other location in the border presents similar
results.
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Fig. 2. Smart Taxi System: Scenario 1

We can notice that, on average and after an initial startup period, around 2.5 users
are waiting for a taxi in the location in the periphery of the grid while only 1.5 users
are waiting for a taxi in location (1,1). This is due to the fact that in Scenario 1 a
larger fraction of users are delivered to location (1,1), that is the central patch. For this
reason, a larger fraction of taxis will soon be available to collect users at the centre
whereas to collect a user from the border, a taxi has to change its location. This aspect
is also witnessed by the fact that, in this scenario, a large fraction of taxis (around 50%)
are continually moving between the different patches.

The simulation of Scenario 2 is reported in Figure 3. The environment for this
scenario is exactly the same as considered for the previous one except for function
atime. Now this function takes into account the current time (parameter now) to model
the fact that the arrival of new users depends on current time, just as we might expect
traffic patterns within a city to vary according to the time of day. We assume that from
time 0 to time 200, 3/4 of users arrive on the border while only 1/4 request a taxi in the
city centre. After time 200 these values are switched. New definition of function atime
is the following:

function atime(t, l) = if l == (1,1) then
if t < 200 then 1

4 ·λa else
3
4 ·λa

else
if t < 200 then 3

4 ·λa else
1
4 ·λa;

We can notice that the results obtained from time 0 to time 200 are similar to the
ones already presented for the first scenario. However, after time 200, as expected, the
number of users waiting for a taxi in the border decreases below 1 whilst the average
waiting for a taxi in the centre increases to just over 1. Since after time 200 a large
proportion of users request a taxi in the centre, the fraction of taxis that change their
location without a user decreases from 40% to 20%.

In both the scenarios one can observe that even if only a small number of users are
waiting for a taxi, a significant fraction of taxis are continually moving from one patch
to another without users (i.e. in a free state). This is mainly due to the fact that the action
used to call a taxi is a broadcast output. As a consequence we have that even if only a
single user needs a taxi at a given location, all the free taxis can change their position
to satisfy this request. To study this aspect in more detail, we consider now a variant of
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Fig. 3. Smart Taxi System: Scenario 2
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Fig. 4. Smart Taxi System: Scenario 1 (modified specification)

processes Taxi and User where action call is no longer a broadcast output, but is instead
a unicast output. The CARMA representation of the variants of these two processes is
reported below:

process User =
W : call[>]〈this.loc〉.W

+ take[loc== this.loc]〈this.dest〉.kill
endprocess

process Taxi =
F : take[>](d){dest← d,occupied← 1}.G

+ call?[this.loc 6= loc](d){dest← d}.G
G : move?[⊥]〈◦〉{loc← dest,dest←⊥,occupied← 0}.F

endprocess

The results of simulating the two scenarios with the modified specifications are
reported in Figure 4 and Figure 5. In both cases we can observe that the number of users
waiting for a taxi in patches located in the border of the grid doubles, whilst almost all
taxis will wait for users’ calls in the centre location (around 80%). This means that after
an initial startup period all the taxis will be always staying in the central location and
the patch arrangement of the city is, in fact, no longer used in the model.
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Fig. 5. Smart Taxi System: Scenario 2 (modified specification)

5 Modelling the environment

A key feature of CARMA is its distinct treatment of an environment. It should be stressed
that although this is an entity within our model, it is intended to represent something
more pervasive and diffuse in the real system, which is abstracted within the modelling
to be an entity which exercises influence and imposes constraints on the more physical
entities in the system, be they software, human or other forms of agents. For example,
in the Smart Taxi System modelled in CARMA the environment determines the rate at
which taxis may move through the city, an abstraction of the presence of other vehicles
causing congestion which may impede the progress of the taxi to a greater to lesser
extent at different times of the day. Thus it should not be considered that the presence of
an environment in the model implies the existence of centralised control in the system.

This view of the environment coincides with the view taken by many within the
situated multi-agent community e.g. [1]. Specifically, in [2] Weyns et al. argue the im-
portance of having a distinct environment within every multi-agent system. Whilst they
are viewing such systems from the perspective of software engineers, many of their ar-
guments are as valid when it comes to modelling a multi-agent or collective adaptive
system as they are when it comes to building one. Thus our work can be viewed as
broadly fitting within the same framework, albeit with a higher level of abstraction. Just
as in the construction of a system, in the construction of a model distinguishing clearly
between the responsibilities of the agents and of the environment provides separation
of concerns and assists in the management of inevitably complex systems. In [2] the
authors provide the following definition:

“The environment is a first-class abstraction that proves the surrounding con-
ditions for agents to exist and that mediates both the interaction among agents
and the access to resources.”

This is the role that the environment plays within CARMA models through the evo-
lution rules. However, in contrast to the framework of Weyns et al. the environment in a
CARMA model is not an active entity in the same sense as the agents are active entities;
in our case the the environment is constrained to work through the agents, by influenc-
ing their dynamic behaviour or by changes to the number and types of agents making



up the system. Despite this difference we consider the CARMA conceptual model to
be in line with the Weyns et al. framework, the difference primarily arising due to the
more abstract approach needed for modelling rather than implementing a CAS. More-
over, note that in CARMA the environment is formally specified and integrated into the
operational semantics of the language.

In [24], Saunier et al. advocate the use of an active environment to mediate the in-
teractions between agents, an active environment that is aware of the current context
for each agent. The environment in CARMA also supports this view, as the evolution
rules in the environment take into account the state of all the potentially participating
components to determine both the rate and the probability of communications being
successful, thus achieving a multicast not based on the address of the receiving agents
as suggested by Saunier et al. This is what we term attribute-based communication in
CARMA. Moreover, when the application calls for a centralised information portal, the
global store in CARMA can represent it. The higher level of abstraction used in CARMA
means that many implementation issues are elided but the CARMA environment could
be viewed as capturing the EASI (Environment for Active Support of Interaction) envi-
ronment of Saunier et al. [24], although in CARMA the filter is more closely associated
with the actions. However, just as in EASI, filters (predicates) may specified separately
by the sender, the receiver and the environment. However, our predicates are more strict
and ”overhearing” type interactions must be anticipated by the modeller, since the ef-
fect is taken to be the conjunction of the sender, receiver and environment predicates,
thus removing the need for policies to arbitrate between conflicting filters.

The role of the environment is related to the spatially distributed nature of CAS —
we expect that where an agent is will have an effect on what an agent can do. Thus we do
find similar features in modelling languages targeted at other domains where location is
considered to have influence on the possible behaviours of agents. For example several
formalisms developed in the context of biological processes, especially intracellular
processes, capture the spatial arrangement of elements in the system because this can
have a profound effect on the behaviours that can be observed. In this context, the
most important aspect of the spatial arrangement is often hierarchical and logical, rather
than the actual physical placement of elements, this is sometimes termed multi-level
modelling. Moreover the concept of level may also refer to organisational levels, as
well as physical levels so that the relationship between levels might be characterised
as consists of or contains [25]. Here we are particularly concerned with modelling
techniques that seek to faithfully represent the stochastic dynamic behaviour of systems,
allowing properties such as performance, availability and dependability to be assessed.

One example of such a language is the ML-RULES formalism developed by Maus et
al [26]. Here the focus is on hierarchical nesting of biological entities and the underlying
semantics is given in terms of a population CTMC, intended for analysis by simulation.
Entities can be created “on demand” but this must be programmed within the underlying
simulation engine by the modeller, and is not supported at the level of the modelling
language itself. Rules are used to define the possible reactions in the system and the state
updates which result from them; rules are applied by pattern-matching. As in CARMA
agents are equipped with attributes and these may be used to filter the rules which
may be applied, although there is no explicit naming of attributes making it difficult



for other agents to access current values. Moreover it is the modeller’s responsibility
to ensure that attributes are used consistently across different rules. Explicit function
calls are made within agents to determine execution parameters such as Markovian
rates or probabilities, thus assuming agents have direct access to a global knowledge.
In contrast, in CARMA it is assumed that access to global knowledge is restricted to
the environment. Allowing agents to directly access global knowledge makes it more
difficult to consider the same set of agents in a different context, because there is less
clear separation between the agents and their environment. The multi-level aspect of
ML-RULES is used to capture a form of vertical causation, where the application of a
rule at one level triggers an update within another level of the model.

The upward and downward causation are also key features of the ML-DEVS for-
malism, presented in [27], although in a slightly more restricted form since here agents
can only trigger changes in the levels immediately above or below them, whereas in
ML-Rules an impact can be across arbitrary levels in the hierarchy. ML-DEVS is a
modular, hierarchical formalism which is intended to represent a reactive system which
interacts asynchronously with its “environment”. However the formalism does not sup-
port the notion of a distinguished environment, as in CARMA, but rather considers the
environment of an agent to be the agents are the same level, with which it may form
horizontal couplings, and those in the adjacent levels, with which it may form vertical
couplings.

BioSpace [28] is a novel process calculus designed for modelling the physical ar-
rangement of biological molecules in applications such as the formation of polymers
and the interactions between microbes and biomaterials [29]. Individual agents in the
calculus represent the biological entities, but operate in a type environment against
which the legitimacy of their actions can be checked: each action and the entities it in-
volves have types and type consistency is checked before the model evolves. BioSpaceL

extends BioSpace by allowing the explicit placement of entities, and giving the mod-
eller the power to program location updates. This reflects the key role that location plays
in the considered biological applications, but the physical environment is represented
rather implicitly.

In the formalism presented in [25], the formalism supports a multi-level approach
which is based on organisational rather than spatial structures. Each level consists of
a number of agents whose behaviour may depend on agents at a lower level. In this
system of systems, agents are represented by automata and automata are organised in
tree-structures representing how agents are one level are constituted from their child
automata. For example, in a biological setting, the top level might be tissue which may
alternate between healthy and diseased states; this may be made up by cells and the state
of the cells within the tissue will influence its health or otherwise; the behaviour and
state of cells will depend on the biochemical networks within them, themselves made
up of proteins in various states of abundance. Again there are notions of horizontal and
vertical couplings, and agents which are above provide the environment to those that
are below, in a hierarchical manner.

Similarly the ambient calculus [30], and its biological dialect, bio-ambients [31],
capture the behaviour of elements within a system, with respect to a hierarchical ar-
rangement of physical or logical space. As elements move into or out of domains, their



behaviour may change because they change their context of operation and communica-
tion is limited to be local.

In contrast to these multi-level models, in CARMA we restrict to two levels. The
behaviour of the entities within the system are captured by the collective, and this is
placed in the context of an environment, which is distinct from any entity and which
has the power to constrain the behaviour of the entities through the evolution rule. This
reflects our treatment of location in terms of physical space, rather than the hierarchi-
cal arrangement of space commonly used in biological modelling where the emphasis
is on the containment relationship. It is noteworthy that BioSpaceL, which has similar
focus of the physical rather than logical representation on space, also takes a two level
approach with the entities and the environment. Within the collective there is no hier-
archy, although a single component may have behaviour comprised of multiple process
automata. This is intended to represent different aspects of the behaviour of a single
entity, such as the taxi having two processes F and G capturing the orthogonal aspects
of its behaviour, relating to passengers and movement in search of a passenger respec-
tively.

A two level approach is also found in quantitative formalisms such as PEPA nets
[32], Spatial PEPA [33] and STOKLAIM [34]. These languages were motivated by
mobile computing and therefore share the aim from modelling CAS to capture systems
with behaviour distributed over physical space, in which the current location or position
of an entity, and in particular the entities that are co-located, may alter the actions that
can be undertaken. In PEPA nets and Spatial PEPA a graphical representation of the
physical locations is used either as a Petri net, or as a hyper-graph, and the physical
structure is taken to be static. In STOKLAIM, in contrast, the processes within the
system may explicitly control the physical structure of the global network. Despite some
success in modelling the mobile computing scenarios of the time, these languages are
not equipped to represent large populations of entities with similar behaviour, thus they
are not well-suited to capture the collective nature of CAS. This large scale nature of
CAS systems makes it essential to support scalable analysis techniques, thus CARMA
has been designed anticipating both a discrete and a continuous semantics in the style
of [18].

6 Conclusions

As we begin to see the deployment of collective adaptive systems in modern infras-
tructures, it is essential that we have tools and techniques to analyse the behaviour of
systems comprised of multiple populations of agents both in terms of their functional
and non-functional requirements. In this paper we have introduced CARMA, a novel
modelling language which aims to represent collectives of agents working in a spec-
ified environment and support the analysis of quantitative aspects of their behaviour
such as performance, availability and dependability. CARMA is a stochastic process
algebra-based language combining several innovative features such as a separation of
behaviour and knowledge, locally synchronous and globally asynchronous communi-
cation, attribute-defined interaction and a distinct environment which can be changed
independently of the agents. We have demonstrated the use of CARMA on a smart taxi



system example, showing the ease with which the same system can be studied under
different contexts or environments.

The quantified nature of CARMA, based on Markovian agents whose actions have
probability and duration governed by an exponentially distributed random variable,
means that CARMA models are amenable to analysis by a variety of techniques. In
this paper, based on the semantics presented in [3], we have studied the behaviour of
the smart taxi system via stochastic simulation. Future work involves extending the tool
support for CARMA and further developing the semantics to also encompass scalable
analysis via mean field approximation in the style of [18]. Future work will also include
more investigation of the use of the environment to study the adaptivity of systems.
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